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A common assumption in psychology, economics, and other fields holds that higher
performance will result if extrinsic rewards (such as money) are offered as an incentive.
While this principle seems to work well for tasks that require the execution of the same
sequence of steps over and over, with little uncertainty about the process, in other cases,
especially where creative problem solving is required due to the difficulty in finding
the optimal sequence of actions, external rewards can actually be detrimental to task
performance. Furthermore, they have the potential to undermine intrinsic motivation to do
an otherwise interesting activity. In this work, we extend a computational model of the
dorsomedial and dorsolateral striatal reinforcement learning systems to account for the
effects of extrinsic and intrinsic rewards. The model assumes that the brain employs both
a goal-directed and a habitual learning system, and competition between both is based
on the trade-off between the cost of the reasoning process and value of information.
The goal-directed system elicits internal rewards when its models of the environment
improve, while the habitual system, being model-free, does not. Our results account
for the phenomena that initial extrinsic reward leads to reduced activity after extinction
compared to the case without any initial extrinsic rewards, and that performance in
complex task settings drops when higher external rewards are promised. We also test
the hypothesis that external rewards bias the competition in favor of the computationally
efficient, but cruder and less flexible habitual system, which can negatively influence
intrinsic motivation and task performance in the class of tasks we consider.

Keywords: striatal models, reinforcement learning model, model-free vs. model-based learning, intrinsic

motivation, extrinsic motivation

1. INTRODUCTION
What motivates intelligent beings to perform certain actions in
their environment is a central question in psychology. The influ-
ential paradigm of operant conditioning by Skinner (1953) held
that all behavior is stimulated by external rewards presented
to an animal. This view was challenged, however, by observa-
tions made by White (1959) that some behaviors are intrinsically
motivated, i.e., they are performed simply because the activ-
ity is intrinsically rewarding. Deci (1971) then examined what
effects external rewards would have on intrinsic motivation and
found that under certain circumstances, extrinsic rewards could
undermine intrinsic motivation. Later on, several studies (see
extensive meta-analytic review by Deci et al., 1999) observed
that external rewards can decrease cognitive flexibility in problem
solving (McGraw and McCullers, 1979), and have the potential to
decrease performance on complex tasks (Erez et al., 1990). These
findings significantly contradicted predictions of earlier theories
such as operant conditioning or utility theory in economics.

To explain these observations, several theoretical accounts
have been put forward [e.g., Cognitive Evaluation Theory by
Deci and Ryan (1985), Attribution Theory by Lepper et al.
(1973), or Self-Determination Theory by Ryan and Deci. (2000)
amongst others] which suggest different cognitive mechanisms to
account for the data. However, it is not clear what computational

mechanisms in the brain could give rise to these phenomena.
A computational model would enable quantitative comparisons
of different hypotheses, test various experimental settings, and
generate predictions for new, untested scenarios.

Here, we provide such a computational model by extending
two previously presented models explaining behavioral control in
the decision systems (Daw et al., 2005), and trade-offs between
habitual and goal-directed brain processes (Keramati et al., 2011).
Both of these models follow a hypothesis from behavioral eco-
nomics, suggesting that two distinct control systems in the brain
compete for control of actions (see e.g., Kahneman and Frederick,
2002). The models are formalized using the framework of rein-
forcement learning (RL, see e.g., Sutton and Barto, 1998), and
it is assumed that one controller uses computationally efficient
model-free RL, whereas the other one uses statistically efficient
model-based RL algorithms. The model-free system represents
a habitual process, implementing a cache of efficient actions
for a given situation, while the model-based system realizes a
goal-directed process by searching a tree of recorded state-action
transition probabilities for alternative choices. Both computa-
tional models could account for several phenomena from animal
experiments designed to test devaluation resistance, including
habituation after extensive training, non-habituation in ambiva-
lent tasks, and habituation in preference tasks. Our proposed
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model is a mixture of both earlier models (see below for details),
and, for the first time, connects them to intrinsic rewards for
the model-based goal-directed subsystem. With this extension, we
aim to explain three additional phenomena which the previous
models could not account for.

1.1. ACTIVITY WITHOUT EXTRINSIC REWARD
When dealing with a creative or complex system, both humans
and animals can be observed to interact (to “play”) with it even if
no extrinsic reward whatsoever is being provided or promised.

1.2. REDUCED POST-EXTINCTION ACTIVITY
In creative tasks, the presence of strong extrinsic rewards can
lead to diminished activity after said rewards have been deval-
ued. More specifically, the activity will be lower than it would
have been had the subject never received any extrinsic reward in
the first place (Deci, 1971). Strong extrinsic rewards are therefore
expected to suppress intrinsic motivation.

1.3. EFFECTS OF PROMISED EXTERNAL REWARDS
It has been observed that the promise of strong extrinsic rewards
for a certain level of task performance does not only lead to
diminished activity during creative problem solving as described
above, but in fact also leads to inferior final performance on tasks
involving cognitive skills (Ariely et al., 2009).

2. MATERIALS AND METHODS
Since our model is an extension of the work by Daw et al. (2005)
and Keramati et al. (2011) on striatal competition, we first give a
brief description of their respective approaches. After that, we will
detail the changes that were newly introduced in detail.

2.1. STRIATAL COMPETITION
Both previous models intend to give a formal account of the deci-
sion system and its division into a goal-directed and a habitual
module. The former realizes a model-based “tree” system that
gradually builds a comprehensive model of the task, which can
then be used to find an optimal sequence of steps that results in
the greatest reward for a given task. In contrast, the habitual sys-
tem learns in a model-free fashion as a “cache,” retaining only the
knowledge of which possible action in a given situation promises
a higher final payoff, but does not record which subsequent state
the action would lead to. This makes it computationally cheaper
than the goal-directed system, but also less adaptive to changes in
the environment.

In Daw et al. (2005), these systems are assumed to be located
in the prefrontal cortex and the dorsolateral striatum, respectively.
While newer studies have placed the goal-directed system in the
dorsomedial striatum (Yin et al., 2005), the functional distinction
between the two types of system remains unchallenged.

Reproducing these aspects in the models allows them to
explain several observations regarding habituation in animals.
Specifically, it was found by Killcross and Coutureau (2003) as
well as Holland (2004) that if a rat performs a simple lever-
pulling task long enough that generates a food reward, it will
become resistant to devaluation. Even if the food reward is being
negated (via poison), the animal will continue performing the

same sequence of actions. If the devaluation occurs after only
moderate training, no such resistance occurs, and the rat will
immediately adapt its behavior.

It was argued that the observed effects are caused by the
competition between both modules. The adaptable goal-directed
system is active initially, but replaced by the habitual system after
extended training, at which point the agent becomes resistant to
devaluation. The main difference between the two models lies
in the specific competition mechanism used to arbitrate between
both systems.

2.1.1. Uncertainty-based competition
In the earlier model by Daw et al. (2005), it is assumed that
the system is chosen which is more certain about the action
to be taken. To determine uncertainty, both the model-based
and the model-free system are implemented using Bayesian
Reinforcement Learning Dearden et al., 1998, Mannor et al., 2004.
Therefore, rather than learning Q-values for a given state, they
assume a prior (Beta) distribution over Q-values for each entry
in the Q-table. Bayesian updates are then used to calculate the
posterior distribution based on the experience during learning.
Likewise, the transition function and the terminal reward func-
tion employed by the model-based subsystem are also tables of
distributions. A policy is then generated through tree-search on
this model, which is realized by performing Value Iteration on a
Q-function initialized to the reward function.

When the system enters some state s, the value distribution
Qs, a is determined for each available action a. For each a, either
the goal-directed or the habitual system’s estimate of Qs, a is used.
The system that provides the Q-distribution is chosen depending
on which one has the lower variance σ2 :

Q∗
s, a =

{
Qtree

s, a if (σ2
s, a)tree < (σ2

s, a)cache

Qcache
s, a otherwise

(1)

After selecting the more confident system for each action, the
actual action to be performed is chosen through Boltzmann
exploration over the Q-distributions’ means μ∗, parameterized
by the softmax parameter β .

P(a = ai|s) ∝ eβμ∗
s, ai (2)

At each time step, all distribution parameters decay exponentially
with a forgetting factor θto their priors, thus keeping the system
capable of learning from new experiences even after long training
durations.

Since the tree-search is performed until convergence at each
time step, a sudden change in the reward model resulting from
a devaluation event will immediately be propagated all the way
through the state space. In contrast, the model-free system will
have to perform the original sequence several times to register
a change in the terminal state’s value in the starting state. The
habitual system becomes dominant after extended training, but
not after moderate one, since its variance decreases more slowly
than that of the goal-directed system. Thus, the model accounts
for the empirical findings.
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2.1.2. Value-based competition
Keramati et al. (2011) modify the basic approach of Daw et al.
(2005) by using the value of perfect information (VPI) instead
of uncertainty. Here, the model-free system computes how much
value would be gained from knowing the true value of a given
action. Such knowledge would only have value if it allows the
agent to improve its policy. Therefore, it should reveal that the
previously preferred action is not in fact optimal, either by show-
ing that its true value is less than thought, or that another action
promises higher rewards. Formally, the gain G of knowing that
an action ahas the value Qs, a = x can be computed as follows,
where the calculation differs depending on whether ais the opti-
mal action a1 or second best action a2 as judged by the habitual
system thus far.

Gs, a(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Qcache
s, a2

− x if a = a1 and

x < Qcache
s, a2

x − Qcache
s, a1

if a �= a1 and

x > Qcache
s, a1

0 otherwise

(3)

The VPI is then simply given by the expected Gain over the
distribution of possible values that Qs, a can take.

VPI(s, a) = E[Gs, a(x)] (4)

Intuitively and generally speaking, this value is higher if an
action’s Q-distribution overlaps strongly with the best action,
since in this case the former may turn out to be preferable.
Conversely, once the distributions have separated, knowing the
true value of an action is unlikely to change which one is ulti-
mately chosen.

Once computed, the VPI is compared against the costs of
opportunity for performing a tree-search, denoted by R̄τ, with
R̄ being the expected average reward and τbeing the cost in terms
of deliberation time for traversing an edge of the tree.

Q∗
s, a =

{
Qtree

s, a if VPI(s, a) > R̄τ

Qcache
s, a otherwise

(5)

Only if the VPI is higher than the opportunity costs is the model-
based system activated to determine the true reward. The winning
system’s estimate is then used for action selection. Since deter-
mining the VPI does not involve the goal-directed system in any
way, this approach better adheres to the assumption that using the
habitual system is less time-intensive.

Finally, the average reward R̄ is updated with new observations
rusing learning rate η :

R̄t + 1 = (1 − η)R̄t + ηrt (6)

One advantage of using the VPI instead of both modules’ uncer-
tainty lies primarily in considerations of speed. Since the VPI
can be computed purely from the habitual system’s uncertainty
about the value distribution, thus often eliminating the need

for the costly computations required when activating the goal-
directed system. In contrast, the previous model always required
the calculation of the goal-directed system’s uncertainty and
value. Without the ability to speed up the decision process, that
would raise the issue of why a habitual module should even have
evolved.

It is worth noting that the goal-directed system used both here
and by Keramati et al. (2011) does not initially provide perfect
value estimates, making the term “value of perfect information”
somewhat incorrect. As such, it may not fulfill its purpose of
improving the action choices at the very beginning of the learning
process. However, its ability to reason globally allows it to learn
sensible actions from fewer observations than the rigid cache, and
thus to provide value estimates soon.

2.2. MODEL EXTENSION
Aside from using a mixture of the features present in our prede-
cessor models, there are two major extensions in our model that
were not present in its predecessors, which will be described in
detail in the following.

2.2.1. Intrinsic rewards
The main contribution of our model lies in its extension with a
mechanism for intrinsic motivation. The central feature of intrin-
sic rewards lies in that their value depends on the current state
of the model, as opposed to extrinsic rewards that are provided
by the process or environment. As such, intrinsic rewards can
notably arise only in the goal-directed system, and are not applied
to the habitual one.

Currently we consider only one of multiple types of intrin-
sic reward, namely the learning progress of the transition model
(similar to Oudeyer et al., 2007). Learning progress is based
on the intuition that a system should explore regions where it
can currently learn the most based on the state of its internal
models, i.e., make the largest progress at improving its mod-
els. In contrast, simple metrics based on surprise are prone to
get stuck in completely unpredictable situations which is avoided
by rewarding progress (i.e., reduction of surprise over time)
instead. There are other proposed aspects to intrinsic moti-
vation, such as competence-based and information-theoretical
mechanisms (for an overview, see section 4.1), but we focus
on progress for the sake of simplicity, as it already accounts
for the phenomena we consider by itself. As measure of learn-
ing progress we use the magnitude of shifts in the means
of the transition function’s distributions. Formally, the intrin-
sic reward I for choosing action ain state sis given by the
equation:

Is, a = ι
∑
s′ ∈ S

|�μtrans
s, a, s′ | (7)

Here, ι is a factor used to accentuate the intrinsic rewards and
bring them into the same order of magnitude as the extrinsic
ones.

I is then added to the result of the tree-search:

Q̃
tree
s, a := Qtree

s, a + Is, a (8)
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The resulting Q-values Q̃
tree

are then used in place of those deter-
mined by the search for the purpose of subsystem selection and
exploration.

At this point, one may wonder why, from among the many
alternative types of intrinsic motivation, we choose �μtrans rather
than �(σ2)trans, which provides a more meaningful measure of
learning progress. Our model provides the variance readily, but
when using Dirichlet distributions with a large number of states,
the variance is not a useful metric. This is because shifts in vari-
ance for observations that have or have not been made before
differ very little. Only once the transition model is nearly stable
will unexpected observations cause a distinct shift. However, by
that time, the intrinsic rewards will be too low to have significant
influence on action selection anyway.

2.2.2. Transition costs
Aside from intrinsic rewards, we also introduce transition costs.
While a common element of RL and formalized in the Bellman
Equation (see Sutton and Barto, 1998), they were not present
in the model by Daw et al. (2005). Instead, the entire terminal
reward of a trajectory was propagated all the way to the starting
state.

By accommodating them, we enable the model to acquire
minimum-time policies in tasks where trajectories can contain
loops. Most importantly, transition costs can also be chosen
differently for each action, thereby modeling energy conservation.

It is worth noting that action-based transition costs do not
fall cleanly into the distinction between extrinsic and intrin-
sic rewards. Traditionally considered extrinsic rewards, they are
likewise applied to the habitual system, as opposed to intrin-
sic rewards, which due to being model-based can naturally only
occur within the goal-directed system. On the other hand, they
mimic intrinsic rewards in that they are essentially inherent—
one may be tempted to say “intrinsic”—to the agent. Action costs
are not provided by the environment, and can thus be assumed
to occur even when other extrinsic rewards do not. To avoid
confusion, we will dub them action rewards in the following
and mention explicitly when they are used and when not, since
their appearance is not bound to either of the two major reward
types.

Applying transition costs can easily be done during both tree-
search and update of the habitual system by adding them to the
discounted extrinsic reward that would result from choosing the
optimal action a∗ in the successor state s′. Doing so yields a new
target mean μ̂ :

μ̂s, a = γμs′, a∗ + ra (9)

The update rule for the distribution parameters also requires the
second moments of the successor states’ Beta distributions. We
therefore generate a new distribution Q̂s, a = Beta(α̂, β̂) with the
target mean μ̂s, a , from which we can then infer these moments.
Between its parameters, the following relationship must hold:

α̂

μ̂
= β̂

1 − μ̂
(10)

Thus, we need to fix one of the Beta parameters to determine the
other. Depending on which one is chosen, the distribution’s vari-
ance may either increase or decrease, as illustrated in Figure 1.
Under the reasonable assumption that every step of tree-search
introduces additional uncertainty, we choose whichever would
cause a variance increase.

The resulting Q̂s, a is then used for the computation of the
new distribution parameters. Analogously to Daw et al. (2005),
they are updated using a mixture rule derived from Dearden et al.
(1998).

∫ 1

0
Beta(αs, a + x, βs, a + (1 − x))Q̂s, a(x) dx (11)

Details on the closed-form update can be found in the supple-
mental material to Daw et al. (2005).

2.2.3. Model mixture
Like Keramati et al. (2011), we use the VPI to mediate between
the goal-directed and the habitual subsystem. The alternative
approach of using the variance of the Q-function’s estimates
would not be plausible in a framework containing intrinsic
rewards. Intrinsic motivation is generally assumed to be high

FIGURE 1 | Illustration of the relationship between Beta parameters

for a given positive mean shift of an arbitrary distribution (left).

If α is fixed (middle), the lower β results in a flatter distribution

with higher variance. Conversely, fixing β would reduce the variance
(right). For action costs, i.e., negative action rewards, the effects are
reversed.
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for regions of the state space in which the model has not been
learned yet. In these regions, the goal-directed system’s variance
will also be particularly high (Oudeyer and Kaplan, 2007). If
the goal-directed system’s variance is involved in the competition
mechanism, this will lead to it being rejected in precisely those
situations when intrinsic motivation is high, thereby neutralizing
the effect of the latter.

From the original approach by Daw et al. (2005) we retain the
use of Beta and Dirichlet distributions to represent the model and
the policies learned by the agent, as opposed to the Gaussians
used by Keramati et al. (2011). Using a Beta distribution for
the policy carries the advantage that its probability density func-
tion can have two peaks, as illustrated in Figure 2. Therefore,
it is able to represent a limited amount of ambiguity arising
from non-determinism, while single-peaked Gaussians model
only uncertainty. Since their range is constrained in the interval
[0; 1], we can simply compute the integral of the VPI by sampling.

E[Gs, a(x)] =
∫ 1

0
Gs, a(x)P(Qcache

s, a = x) dx (12)

Instead of Boltzmann exploration, we employ ε-greedy explo-
ration when choosing an action, i.e., at each decision point, a
random action is uniformly sampled from the options with prob-
ability ε. This approach was chosen because given more complex
tasks, the different learning speed of both subsystems may cause
their Q-values to be of considerably different magnitude. In such
cases, Boltzmann exploration is implausible, as it would virtually
eliminate the chance of attempting an underestimated action, and
thus prevent the system from learning its true value.

3. RESULTS
Our model is evaluated in a number of settings, which can be
divided into two broad classes. The first consists of variations
of a simple feeder task, identical to those by Daw et al. (2005),

FIGURE 2 | Unlike a Gaussian, a Beta distribution can represent both

double-peaked (with α , β < 1) and single-peaked (with α , β > 1)

distributions.

which are to show that even with the modifications introduced
here, the model still reproduces the basic devaluation resis-
tance effects of its predecessors. Afterward, we will examine our
central phenomena related to intrinsic motivation and activity
in a more complex, “creative” task. Here, we take creative to
mean a problem that requires a long chain of actions to solve,
where each action does not cause a visible approach toward
the goal.

3.1. DEVALUATION RESISTANCE
Daw et al. (2005) and Keramati et al. (2011) mostly examined
their respective models using a decision task inspired by exper-
iments with rats (Holland, 2004, Killcross and Coutureau, 2003),
where the animals needed to manipulate a feeding apparatus in
a short sequence to generate a reward. Those sequences had a
maximum length of two decision points, and either two or three
possible actions were available.

The first, simpler variant of the task allows the agent to choose
between two actions, representing a lever press and a magazine
entry. Only a press followed by an entry generates any reward,
while any other sequence leads to a restart. In a second variation
of moderate difficulty, there is an additional chain-pulling action,
which, if followed by a magazine entry, leads to a different, but
equivalent, extrinsic reward.

We perform the same series of experiments, with largely iden-
tical parametrization. Those that were changed, as well as newly
introduced ones, are summarized in Table 1.

To examine the system’s habituation, we devalue the goal state
that is reached through the lever press by resetting its extrinsic
reward distribution to Beta(1, 15). This is done after both mod-
erate (20 episodes) and extensive training (200 episodes), and the
changes in the ratio at which the lever is pressed is observed. In the
moderately difficult setting, the devaluation takes place slightly
later after 240 episodes to account for the more difficult task.

The results for all settings, summarized in Figure 3, are con-
sistent with those of the predecessor models. While the system
generally reacts more quickly to an early devaluation in the simple
setting, its behavior does not change readily after extensive train-
ing, due to the inflexible habitual system having become active.
The effect of early devaluations exhibits a much higher variance,
which is to be expected; considering the random nature of explo-
ration, the degree to which the system has learned the optimal
policy and become habituated can differ considerably after a mere
30 episodes.

The speed of adaption mirrors the rate at which the goal-
directed system was used around the time of devaluation, as
Figure 4 illustrates. In the moderate task, the ambiguity of the
two available actions causes a persistently high VPI and thus
a continued use of the goal-directed system. Coupled with the

Table 1 | Default parameters that were used in the feeder task.

Parameter Symbol Value

Search costs τ 0.1

Exploration ε 0.2

Intrinsic reward factor ι 2.0
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high accuracy of the transition model after extended train-
ing, this allows the agent to switch to the chain-pulling action
immediately.

3.2. REWARD-BASED ACTIVITY
The above feeding tasks consist only of very few states and actions,
making them too simple to showcase those phenomena related
specifically to intrinsic motivation. We therefore consider a more
complex setting, adapted from the Playroom environment used

FIGURE 3 | Post-devaluation frequency of choosing the lever press

action in the starting state. Values are relative to their respective
pre-devaluation rates. Comparisons are between the 100 cycles before and
after the devaluation for the late settings, and 20 cycles for the early one.
Note that action choices are determined before exploration, hence the
sharp drop in the moderate task.

FIGURE 4 | Development of the ratio of selecting the habitual system

over the goal-directed one in the starting state in the rat experiment.

Ratios in each time step were averaged across 100 runs. Devaluation points
are marked using dashed lines in the matching color.

by Singh et al. (2005), albeit simplified to accommodate the use
of exact inference Bayesian RL.

In this task, the agent has to learn to manipulate a number
of objects, each of which causes a different effect when used. A
blue box can be used to start playing music, while a red one
stops it. A switch toggles the lighting of the room, which causes
the colored boxes to become indistinguishable. Lastly, there is
a toy monkey, which does not cause any effect and serves as a
neutral distractor. These objects need to be used in a specific
sequence to bring about some desired goal state, which differs
between experiments. Generally, the goal is to turn the music on
and the light off, with additional success requirements in some
settings.

The agent possesses a hand and an eye, both of which must
rest on an object for it to become usable. Aside from performing
an object affordance, the agent can also move its eye to a random
object, bring the hand to the object the eye is resting on, or per-
form a null action that has no effect whatsoever. The null action
generates a small positive action reward, unlike the other actions
which cause negative ones. We thereby model an agent’s general
tendency to prefer the action that exerts the least effort.

While still simple for a task aimed at intrinsic motivation, it is
considerably more complex than the food dispensal experiments.
Most notably, trajectories can be cyclic, and one of the actions
is non-deterministic. In addition, the partial observability of the
state when the light is off can lead to local minima in the policy.

In this framework, we observe the behavior of the system using
different combinations of intrinsic and extrinsic rewards, and
determine whether the phenomena described in section 1 can be
reproduced. Action rewards are present in all cases.

Unless noted differently, the system was parameterized as
in Table 2. Most notably, the forgetting factor θ, the reward
horizon η and the Dirichlet initialization αi were adjusted to
account for the longer episodes and more complex process model;
otherwise, the system would forget old experiences faster than
it could collect new ones. The action rewards ra were always
very slightly positive (0.005) for the null action, and nega-
tive (−0.02) for all others. They thereby model the intuitive
assumption that if doing nothing promises the same reward as
performing an action, the null action should be preferred. At
the same time, the use of the null action should not accumu-
late too high action rewards, lest it overshadow those arising in
the terminal states, where a terminal extrinsic reward of 1 was
given.

Table 2 | Default parameters that were used in the Playroom task

unless noted otherwise.

Parameter Symbol Value

Forgetting factor θ 0.9999

Search costs τ 0.1

Update rate of avg. reward η 0.001

Exploration ε 0.2

Intrinsic reward factor ι 2.0

Initial transition model αi 0.1

Reward discount factor γ 0.95
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3.2.1. Activity without extrinsic rewards
A first experiment compares the activity of the system with and
without intrinsic rewards. In this setting, there are no external
rewards whatsoever, aside from the action-dependent transi-
tion costs. One would intuitively expect the overall activity, i.e.,
the occurrence of non-null actions, to be increased when using
intrinsic rewards—higher motivation should naturally lead to
more activity. And indeed, as Figure 5 illustrates, their use leads
to a significantly lower rate at which the null action is chosen.

The activity with intrinsic motivation drops to a similar level
as without it only after extensive training, once the model has
stabilized and no more intrinsic reward can be generated. This
effect seems plausible as well, seeing as how even a motivated indi-
vidual will eventually cease playing or being otherwise active. It
is caused by the retaining of action-dependent costs, which will
always cause the system to settle on the null action in the end.

3.2.2. Post-extinction activity
To show that stronger extrinsic rewards lead to less activity, as pro-
posed in section 1.2, we next have the system learn a policy while
providing the maximum extrinsic reward upon entering the goal
state s+. In this case, s+ is reached by having the music turned
on and the lights off. We devalue it either after 50 or after 200
episodes of training by replacing the distribution of the extrinsic
reward model for the goal state with the Beta distribution Beta(1,
15). The parameters of the replacement distribution were chosen
in accordance with Daw et al. (2005) in such a way as to con-
centrate most of the probability mass at 0. Note that we devalue
the goal, rather than merely extinguishing its extrinsic reward,
under the assumption that for higher-level intelligent agents, an
extinction will be registered immediately, like a devaluation.

FIGURE 5 | Development of the percentage of non-null action choices,

with and without intrinsic rewards. Curves are based on the theoretical
greedy choice of action, even in the 20% of cycles in which an ε-greedy
exploratory action was ultimately used. Ratios were determined across
bins of 200 samples and smoothed using locally weighted scatterplot
smoothing.

If the devaluation occurs early, the post-devaluation activity
drops sharply compared to its earlier level, as shown in Figure 6.
In contrast, the purely intrinsic system remains active during the
same time period. Only considerably later, once all intrinsic moti-
vation in the model has been exhausted, does it become as inactive
as the system using extrinsic rewards does after the devaluation.

The lowered activity is in fact caused by the re-activation of
the goal-directed system. As the costs of opportunity for perform-
ing a tree-search decrease, it takes over from the habitual system
as seen in Figure 7. The previous takeover of the habitual sys-
tem caused the agent to be active mostly in a limited region of
the state space, as any exploration attempts were cut short by the

FIGURE 6 | Percentage of non-null actions chosen by the system using

both intrinsic and extrinsic rewards, compared to activity using only

intrinsic motivation. The goal state is devalued after episodes 50 and 200.

FIGURE 7 | Ratio of how often the habitual system is selected vs. the

goal-directed one, when using both intrinsic and extrinsic rewards.

The vertical lines mark the times of devaluation at 50 and 200 episodes.
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habitual system’s drive to reach the goal. Consequently, the model
in this area of the state space is very accurate already. Therefore,
no intrinsic reward is generated anymore, and the goal-directed
system will not deviate from its path once having taken over.
Essentially, due to the prolonged activation of the habitual sys-
tem, the intrinsic motivation will have been exhausted without
having the chance to cause any increased exploration and activity.

Also note that in Figure 6 the purely intrinsic setting results in
slightly lower initial activity than the pre-devaluation case. This
observation seems plausible, since a system not driven by extrinsic
rewards would be more likely to try the sub-optimal null action
to improve its model.

3.2.3. Scope of motivation
One assumption we made was the local scope of intrinsic moti-
vation. In accordance with Equation (8), the intrinsic reward I
is only applied to the final Qtree after the tree-search. Therefore,
only the progress in the transition model out of the current state
is considered when generating I .

One possible alternative would be to not consider intrinsic
rewards locally, but globally, by applying them to the target mean
already during tree-search. To do so, one would merely have to
revise Equation (9) to

μ̂
tree
s, a = μtree

s′, a∗ + ra + Is, a (13)

This should drive the agent more strongly into areas of the state
space it has not observed yet, facilitating the acquisition of a better
model.

However, the assumption of global intrinsic rewards is incon-
sistent with the empirical findings. Figure 8 compares the post-
devaluation activity between both approaches, and it becomes
clearly apparent that the previously observed reduction in activity
becomes much less pronounced when using global motivation.

FIGURE 8 | Relative amounts of non-null action after devaluation for

local (left) and global (right) intrinsic rewards. Activities are normalized
to the pre-devaluation level.

3.3. SYSTEM PERFORMANCE
While intrinsic rewards as modeled here account for the above
activity phenomena, there have been no considerations of learn-
ing performance. Therefore, we also perform a number of exper-
iments in the same setting as before to examine the overall
performance of the system.

3.3.1. Model acquisition
Clearly, a sensible model of intrinsic rewards should also justify
their existence, as one would expect them to aid learning in some
manner.

We thus test the system with and without intrinsic motivation
in a task in which we change the goal state after a period of train-
ing. Initially, the agent receives an extrinsic reward for turning
on the music and switching off the light as before, regardless of
where the hand and eye are placed when the two conditions are
met. After 200 episodes, one variation of the goal is devalued: if
hand and eye are on a box when the music and light conditions
have been met (i.e., if the light has been left off), no more extrin-
sic reward is given. The other possibility of having the hand and
eye on the switch at the time, i.e., (turning the light on before
manipulating the music, then turning it off again) remains as
before. The first combination, which we will refer to as the proxi-
mal goal, can be potentially reached in as little as three steps, while
the second distal goal requires three times as many.

The setup is repeated both using intrinsic rewards and using
only extrinsic ones. We observe the frequency at which the agent
manages to reach the remaining goal state after the devalua-
tion. While it almost never enters the distal when only extrinsic
rewards are given, it does manage to do so more often if using
intrinsic motivation. The effect is not completely independent of
the ε-greedy exploration; as figure Figure 9 illustrates, even the
intrinsically motivated system fails to find the distal goal in case of
too low a value for ε. Similarly, excessive over-exploration causes

FIGURE 9 | Comparison of the number of times the agent reaches the

distal goal after devaluation during 100 test episodes, with and

without intrinsic rewards, for different exploration rates.

Frontiers in Psychology | Cognitive Science October 2013 | Volume 4 | Article 739 | 8

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Boedecker et al. Modeling rewards in striatal competition

the performance to drop as well, as it prevents the agent from per-
forming its learned policy. Regardless, the system clearly performs
better with intrinsic reward than without, and this effect is even
more pronounced if using slightly lower values for ε.

The results can be explained by the intrinsically motivated sys-
tem’s drive to better explore the state space. Thus, it possesses a
higher change of finding the distal goal state. Ideally, the agent
should then directly learn to prefer the distal route, as it provides a
guaranteed extrinsic reward—unlike the proximal one, due to the
inability to differentiate the box colors while the light is off. But
even if it does not, having seen this alternate goal would enable it
to immediately switch over to it once the devaluation occurs.

3.3.2. Effects of promised rewards
As a final experiment, we examine how the model accounts for
phenomena related to promises of extrinsic rewards. As observed
by Ariely et al. (2009), a high expectation of being rewarded later
upon completion of a task can actually reduce an agent’s per-
formance in complex tasks compared to a purely intrinsically
motivated individual.

A reasonable assumption to simulate promises of later rewards
seems to be to fix the average reward R̄ at 1, i.e., treat the promise
of extrinsic rewards just the same as their observation. We thus
take R̄ as the expected reward, rather than the observed average. In
fact, this assumption is closer to those of Niv et al. (2007), whose
model of tonic dopamine levels Keramati et al. (2011) have based
the concept of R̄ on.

The conditions with and without fixed R̄ are compared with
respect to both the time spent on reasoning processes and the abil-
ity to learn a task. We also test in two different settings of distinct
difficulty, both of which require the agent to turn the music on
and the light off while looking at the blue box. In the distal task,
the agent starts in the same configuration as before, with light and
music off, while in the proximal setting, the music is already play-
ing and the light is on, requiring it to perform a much simpler
sequence of actions.

The results for 300 episodes of training are summarized in
Figure 10. Using promises of extrinsic reward reduces the amount
of time spent on tree-searches significantly, particularly in the
distal setting. However, the speed improvement also comes at a
drastic decrease in performance in complex tasks, with the fixed
R̄ completely preventing the agent from solving the distal case.

It should be noted that this behavior does not result from our
additions to the model, but would already have been present in
that of Keramati et al. (2011) using the slightly changed interpre-
tation of R̄ adopted here. It is included here mostly because it has
been ignored in the prior work, despite its noteworthy consistency
with the empirical findings of Ariely et al. (2009).

4. DISCUSSION
We have proposed an extension to two previous models of the
striatal learning system that introduces the concept of intrinsic
motivation. By assigning additional intrinsic rewards for higher
learning progress, we were able to reproduce several additional
empirical phenomena that were not covered by our predecessors.
In particular, we account for the fact that the presence of intrinsic
motivation predictably raises the overall activity, but that it can be

FIGURE 10 | Comparison of performance (left) and speed (right)

between systems with promised extrinsic rewards (dark gray) and

with only observed rewards (light gray). As one tree-search takes an
average of 350 ms, compared to less than a millisecond needed for
querying the habitual system, the number of tree-searches is directly
proportional to the total time.

suppressed by high extrinsic rewards in turn. We have also shown
that intrinsic rewards lead to better system performance in more
complex tasks requiring creative solutions.

Of course, there are always aspects of the model that could be
improved or require clarification, as well as behaviors that have
not been examined empirically yet. These will be discussed in
more detail in the following.

4.1. COMPUTATIONAL INTRINSIC MOTIVATION AND RELATED
BIOLOGICAL MODELS

The principles of intrinsically motivated learning have
gained increasing interest in the field of computational RL.
Formalization of different aspects of intrinsic motivation, such as
curiosity or competence, are expected to provide general, task-
independent mechanisms that let artificial agents explore their
own skills and their environment efficiently and autonomously.
Furthermore, the models, which the agents build through envi-
ronment interaction guided by intrinsic motivations, promise to
enable improved adaptability to environmental changes or new
task requirements.

Starting with the pioneering work of Schmidhuber (1991a,b),
who introduced curious model-building controllers that got
rewarded strongest for (near-mismatches of) predictions about
the world, to Singh et al. (2005) who used internal reward signals
proportional to the agent’s error in predicting salient events in
a related way, many approaches that tried to formalize notions
of interestingness, curiosity, competence, and improvement of
an agent’s model about the world have been proposed [e.g.,
by Oudeyer et al. (2007), Schembri et al. (2007), Schmidhuber
(2008), Baranes and Oudeyer (2009), and Grzyb et al. (2011)].
Here, our focus is on computational mechanisms that could
explain phenomena observed in the psychology literature, i.e.,
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on cognitive modeling, rather than proposing general-purpose
reward mechanisms. A full overview of approaches from the com-
putational RL literature is therefore beyond the scope of this
article. Surveys for this purpose, however, such as Oudeyer and
Kaplan (2007) and Schmidhuber (2010), as well as the recent
book by Baldassarre and Mirolli (2013) give a much more com-
plete picture in this regard.

Recent models dealing with aspects of intrinsic motivation
from a biological perspective include those in Bolado-Gomez
and Gurney (2013) and Mirolli et al. (2013). Both of these pro-
pose a role for the phasic dopamine signal from dopaminergic
neurons in the brain, and both strive for consistency with neuro-
scientific data. In Bolado-Gomez and Gurney (2013) the authors
suggest that this signal indicates surprising actions outcomes,
and that objects associated with such outcomes acquire a novelty
salience. They show that these signals can be used by an agent for
the purpose of action discovery. In Mirolli et al. (2013), on the
other hand, it is proposed that phasic dopamine signals reward
prediction errors which are shaped by two different kinds of rein-
forcers: temporary, internal rewards for unexpected stimuli the
agent experiences, and permanent, external rewards of a biologi-
cal nature. Based on this assumption, phasic dopamine can drive
both discovery and learning of new actions in a unified way. The
model we present here also relies on an internal reinforcer which
the agent can perceive in case its model of the world changes (see
below). However, at this point, we do not identify the exact source
of this signal. In future studies, it might be interesting to examine
whether our proposed mechanism would fit the empirical data
about phasic dopamine release though.

4.1.1. Alternative mechanisms of motivation
The underlying assumption behind our concept of intrinsic moti-
vation is higher learning progress yields increased rewards. To
measure progress, we observed shifts in the model’s distribution
means. This approach is inferior to tracking reductions in the dis-
tribution variance, as it does not allow us to differentiate between
actual learning progress and cases where the model simply can-
not be learned, for instance due to non-determinism. However, as
described in section 2.2.1, the variance cannot be used when using
Dirichlet distributions. Therefore, future improvements should
try to either replace the distribution type used, or examine if alter-
nate types of intrinsic motivation still exhibit the same behavioral
effects.

4.1.2. Applicability to larger problems
In this work, we were focused purely on the explanation of empir-
ical phenomena. For the sake of a clean theory, we used exact
inference Bayesian RL. However, this approach quickly becomes
intractable when applied to more complex problems. Both from a
pragmatic standpoint as well as from a theoretical one—after all,
rats and humans are capable of solving problems more difficult
than pressing a lever or manipulating a small number of objects
in sequence—it would therefore be desirable to replace it with
approximative methods. Ideally, the observed phenomena should
remain in that case. The ability to solve more complex tasks would
also enable us to truly examine the validity of the model and of
different hypotheses of motivation quantitatively.

4.1.3. Isolated treatment of actions
In our model, just like in those of our predecessors, we assume
that the choice between the habitual and the goal-directed
system is made independently for each available action, and
only afterward exploration is performed over the resulting Q-
values. Therefore, once the VPI approaches the threshold R̄τ,
the habitual system may take over for single actions, but not
for others. This can potentially lead to sub-optimal behav-
ior if both systems learn at different speeds, as is often the
case for complex tasks. If, then, the goal-directed system has
a lower estimate than the habitual one, its prediction will be
disregarded during exploration, despite generally being more
accurate.

While this effect does not usually prevent learning, as either
the sub-optimal action will also drop to its true level over time, or
its VPI will decrease below threshold, this may reduce the speed at
which the system learns to solve a task. Thus, for practical applica-
tions, one might either use the goal-directed system to determine
all actions’ values if even one calls for it, or re-calculate the VPI
for all actions immediately after performing a tree-search. These
approaches should still account for all observed phenomena, and
may be worth examining in future works.

4.1.4. Integration with other models
A model for the division of the decision-making system in
rats has also been proposed by Caluwaerts et al. (2012), albeit
with the goal of explaining a different type of behavior entirely,
namely navigation. While their design of a learning arbitration
mechanism does not readily afford a speed/accuracy trade-off
as introduced by Keramati et al. (2011), their use of learn-
ing progress to detect context changes (i.e., a shift in the
goal state) could prove compatible with our model and poten-
tially be employed to replace the explicit devaluation used
so far.

4.2. PARAMETRIZATION
The model was generally designed to be robust to the choice
of its parameters. Usually, their exact values should only affect
the speed at which the system learns and the time at which the
observed phenomena occur. However, there are a few parameters
that influence the principal behavior of the system.

4.2.1. Search costs
In our model, we adopted the VPI-based competition mech-
anism of Keramati et al. (2011) for its high plausibility and
larger compatibility with intrinsic rewards. It should, however,
be noted that the choice of the active subsystem in Equation
(5) depends heavily on the search costs τ. Since the habitual
system’s value distributions may always overlap to some extent,
the VPI will generally converge to some non-zero value. Thus,
if τis chosen too small, the habitual system may never become
active as the tree-search can be performed practically for free.
Conversely, too high a search cost will prevent the goal-directed
system from being chosen. The fact that the same setting of
τ = 0.1 can be used both for the simple feeder task and the
more complex Playroom suggests that the admissible range of
τis wide enough to not require an exhaustive search. Even so,
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in principle it may be necessary to choose τappropriately in
different tasks.

4.2.2. Forgetting factor
One aspect that the system is fairly dependent on is the forget-
ting factor θ. With θ = 0.98, as used by Daw et al. (2005), it is
impossible to learn a task as complex as the Playroom setting,
since the distribution parameters will usually decay back to their
priors faster than new experiences are acquired. This requires us
to tune the parameter closely to the task complexity.

In this work, we settled for a setting of θ = 0.9999, there-
fore practically turning parameter decay off. This approach comes
at a cost, in turn, as it makes it difficult to change the sys-
tem’s behavior after a while. Once the distributions have stabi-
lized after extensive training, new experiences will be virtually
ignored. Also, when learning tasks with a larger state space, the
acquisition of the Dirichlet transition model may take notice-
ably longer than learning a policy along a narrow trajectory
in the habitual system, causing the latter to become severely
over-trained.

While such behavior can actually be realistic—after all, a habit
usually takes very long to unlearn—it would effectively render the
habitual system useless in real-world applications. For its exis-
tence to be truly plausible, the system needs to be extended with
a more robust mechanism for forgetting experiences. One option
would be a surprise-based approach, which causes the parame-
ter decay to accelerate when an unexpected event occurs, while
gradually slowing down otherwise.

4.3. PREDICTIONS
Our model makes a number of assumptions and shows behav-
iors that have not been examined in empirical studies to date.
These predictions could therefore be used to support or falsify
the model.

4.3.1. Scope of motivation
In section 3.2.3 we found that in order to reproduce the empirical
effects on activity, we have to assume that intrinsic motivation
is local in scope rather than propagating all the way through
the model. To our knowledge, no studies regarding the scope of
intrinsic rewards exist, and it remains unclear how one could test
such an aspect empirically. A possible approach could be to have
individuals perform a creative task before introducing an unex-
pected event into the process. In two conditions to be compared,
this event should either be immediately reproducible by the sub-
ject, say by pressing a previously unavailable button, or require a
long sequence of actions to bring about. By observing whether the
longer sequence causes less exploration in its direction or not, it
should be possible to confirm or falsify our locality assumption.

4.3.2. Promised rewards
In section 3.3.2, we adopted the hypothesis of Niv et al. (2007)
that expected rewards are explicitly encoded in the striatal sys-
tem through tonic dopamine levels. In the framework of our
model, assuming that the average reward R̄ encodes expectations
leads to a system behavior that matches empirical findings by
Ariely et al. (2009). Our model therefore supports the predic-
tion that promises of rewards should indeed increase dopamine
levels. However, the dopamine level theory is untested thus far,
and would require an empirical study to confirm. Furthermore,
a more detailed examination how promises of varying degrees
influence behavior would be in order.
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