
ORIGINAL RESEARCH ARTICLE
published: 18 October 2013

doi: 10.3389/fpsyg.2013.00756

Residual fMRI sensitivity for identity changes in acquired
prosopagnosia
Christopher J. Fox 1*, Giuseppe Iaria 2, Bradley C. Duchaine3 and Jason J. S. Barton 1

1 Departments of Medicine (Neurology) and Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
2 Departments of Psychology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
3 Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA

Edited by:

Peter J. Hills, Anglia Ruskin
University, UK

Reviewed by:

Peter J. Hills, Anglia Ruskin
University, UK
Jessica Taubert, University of
Louvain, Belgium

*Correspondence:

Christopher J. Fox, Ophthalmology
Research, 3rd Floor, VGH Eye Care
Centre, 2550 Willow Street,
Vancouver, BC V5Z 3N9, Canada
e-mail: cfoxneuro@gmail.com

While a network of cortical regions contribute to face processing, the lesions in acquired
prosopagnosia are highly variable, and likely result in different combinations of spared
and affected regions of this network. To assess the residual functional sensitivities
of spared regions in prosopagnosia, we designed a rapid event-related functional
magnetic resonance imaging (fMRI) experiment that included pairs of faces with same
or different identities and same or different expressions. By measuring the release from
adaptation to these facial changes we determined the residual sensitivity of face-selective
regions-of-interest. We tested three patients with acquired prosopagnosia, and all three
of these patients demonstrated residual sensitivity for facial identity changes in surviving
fusiform and occipital face areas of either the right or left hemisphere, but not in the right
posterior superior temporal sulcus. The patients also showed some residual capabilities for
facial discrimination with normal performance on the Benton Facial Recognition Test, but
impaired performance on more complex tasks of facial discrimination. We conclude that
fMRI can demonstrate residual processing of facial identity in acquired prosopagnosia, that
this adaptation can occur in the same structures that show similar processing in healthy
subjects, and further, that this adaptation may be related to behavioral indices of face
perception.
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INTRODUCTION
Prosopagnosia is a neurological syndrome characterized by the
failure to recognize familiar faces in the absence of more pervasive
dysfunction of vision or memory (Barton, 2003). Patients with
the acquired form can have a variety of lesions, most often dam-
age to inferomedial occipitotemporal cortex, either bilaterally or
in the right hemisphere only (Bodamer, 1947; Landis et al., 1986;
Barton, 2003). Functional magnetic resonance imaging (fMRI)
studies have shown a number of face-selective regions in the
occipital and temporal lobes (Kanwisher et al., 1997; Haxby et al.,
2000; Ishai et al., 2005), including the fusiform face area (FFA),
the occipital face area (OFA), and the posterior superior tempo-
ral sulcus (pSTS) in both right and left hemispheres (Haxby et al.,
2000). These regions are proposed by some as an anatomic “core”
for face processing (Gobbini and Haxby, 2007). It seems proba-
ble that damage to these regions is involved in at least some if not
most cases of acquired prosopagnosia, but the extent of damage
to the various modules of this network in prosopagnosia is not
yet known. Given the variety of lesions associated with prosopag-
nosia (Barton, 2008a,b), it is also likely that patients will differ in
both modules affected and modules spared (de Gelder et al., 2003;
Rossion et al., 2003a,b).

One question of interest is the residual function of spared
regions of the face network in prosopagnosia. Identifying surviv-
ing face-selective regions in acquired prosopagnosia with a stan-
dard contrast between viewing faces and viewing objects (Rossion

et al., 2003a,b) does not tell us the type of face information being
processed by spared regions. Faces are a source of many types
of information, including identity, expression, gaze direction,
attractiveness, age and gender, among others. Cognitive models
often segregate these different types of information into separate
processing streams (Bruce and Young, 1986). Current anatomic
models go even further and attempt to link specific functions to
specific regions, for example, initial perception of facial struc-
ture in the OFA, perception of facial identity in the FFA, and
perception of facial expression in the pSTS (Haxby et al., 2000).
However, this segregation of function may not be as complete
as the model suggests: a number of studies have shown some
sensitivity to facial identity in the OFA (Rossion et al., 2003a,b;
Avidan et al., 2005) and the pSTS (Winston et al., 2004; Fox et al.,
2009a,b) on the one hand, and to facial expression in the FFA
(Vuilleumier et al., 2004; Ganel et al., 2005; Fox et al., 2009a,b) on
the other. In prosopagnosia, where patients have lost the ability
to recognize facial identity, one can ask (1) which, if any, surviv-
ing face-selective modules still show sensitivity to identity, and (2)
whether this correlates with residual ability to discriminate facial
identity on behavioral tests.

One method used to assess the specific function of cor-
tical regions is fMRI adaptation (Grill-Spector et al., 2006).
This technique has shown that the fMRI BOLD signal declines
with repeated presentations of identical stimuli. Furthermore,
the technique can be exploited to determine what aspects of a
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stimulus are being processed in a region, by varying one stimu-
lus property or dimension while keeping others constant. If the
repeated stimuli vary only along a dimension that is irrelevant to
the processing performed by a specific region, adaptation will still
occur. However, if the varying dimension is being processed in
this region, then repeated presentations will be treated as differ-
ent stimuli, and no adaptation will be found (i.e., a “release from
adaptation” will occur). In this way it is possible to determine
what aspect of a stimulus is of interest to a cortical region. This
method has been used in healthy subjects to demonstrate sensi-
tivity to structural changes in a face within the OFA (Rotshtein
et al., 2005), sensitivity to identity changes in the FFA (Winston
et al., 2004; Rotshtein et al., 2005), and sensitivity to expression
changes in the pSTS (Winston et al., 2004).

To date, there has been only one study of fMRI adaptation in
an acquired prosopagnosic patient, patient PS. This study found
residual sensitivity to facial identity changes, not in the spared
right FFA, but in an object-selective region of the ventral lateral
occipital cortex (Schiltz et al., 2006; Dricot et al., 2008). A similar
fMRI adaptation study in four congenital prosopagnosic subjects
found sensitivity to facial identity in both the undamaged OFA
and FFA (Avidan et al., 2005). In contrast, a case of congenital
“prosopamnesia” showed normal adaptation to familiar faces but
not to unfamiliar faces in the right FFA (Williams et al., 2007).

Of note, the adaptation effects seen in the congenital prosopag-
nosia study were reported for the group, not for each subject
(Avidan et al., 2005). While it may be valid to group congen-
ital prosopagnosic subjects who have no apparent neurological
lesion, the heterogeneity of damage in acquired prosopagnosia
(Barton, 2003) makes group analyses difficult to interpret. Thus,
it is important to design an fMRI adaptation method that can
reveal significant sensitivity to identity or expression changes in
an individual. The power of group analyses lies in the averaging
of results across a number of subjects (Friston et al., 1999). In
a similar fashion, averaging across multiple scans within a sin-
gle subject can increase the power to detect a significant effect in
that subject. By performing and averaging across multiple adap-
tation scans in each individual, we aimed to identify significant
adaptation effects in single subjects.

Our goal was to use such a method to determine whether
surviving face-selective regions of individuals with acquired
prosopagnosia had any residual sensitivity to facial identity
and/or expression. We assessed three patients on a wide array of
behavioral tests to characterize their face processing deficits, and
in particular their residual behavioral sensitivity to facial struc-
ture. All three patients then underwent fMRI testing, first with
a face-localizer to determine which regions of the core face net-
work (bilateral OFA, FFA, and pSTS) had or had not survived
their lesion, and then with our adaptation paradigm to determine
the residual sensitivity to identity and expression changes in these
surviving regions. Given current models, we hypothesized that we
would find residual sensitivity for identity changes in the right
FFA, and for expression changes in the right pSTS. In addition,
we hypothesized that residual sensitivity in the fMRI experiment
may be indicative of a residual ability of prosopagnosic subjects
to discriminate the structural properties of faces, as determined
by our own experimental tests and standard neuropsychological

instruments such as the Benton Face Recognition Test (Benton
and van Allen, 1972).

METHODS
PATIENTS
Three brain-damaged patients with acquired prosopagnosia par-
ticipated in this study. Informed consent was obtained and the
protocol was approved by the institutional review boards of the
University of British Columbia and Vancouver General Hospital,
in accordance with The Code of Ethics of the World Medical
Association, Declaration of Helsinki (Rickham, 1964). The focus
of this research was to demonstrate the presence of residual
sensitivity within face-selective regions of cortex in prosopag-
nosic individuals using an adaptation paradigm. Our goal was
not to compare this residual sensitivity to the general popula-
tion but rather simply to determine whether or not we could
definitively demonstrate the presence of such a phenomenon in
these brain-damaged individuals. [For data from three healthy
right handed control subjects (C01-28 year old male, C02-34 year
old male, C03-27 year old female) with normal or corrected-to-
normal vision and no history of neurological disorders please see
Supplemental Figure 1].

All patients had detailed neuropsychological and neurologi-
cal examinations, supplemented with Goldmann perimetry and
Farnsworth-Munsell 100-hue tests. The tests used to characterize
their face perceptual abilities are listed in Table 1. Face percep-
tion is commonly segmented into a number of different cognitive
processes, ranging from the early processing of facial structure
relevant to the perception of (1) facial identity or (2) facial expres-
sion, to latter stages of facial memory which can be accessed
both (3) overtly and (4) covertly. First, identity perception was
assessed with the Benton Facial Recognition Test (Benton and
van Allen, 1972) and with a 3-alternative forced-choice oddity test
(chance = 33%) for discriminating identity changes in morphed
facial stimuli (Fox et al., 2011). Importantly, normal scores on the
Benton Facial Recognition Test do not necessarily indicate nor-
mal identity perception (Farah, 1990; Duchaine and Weidenfeld,
2003), and therefore, more weight should be given to perfor-
mance on the morphed-face discrimination test, which has been
shown to be a more sensitive measure of impaired perceptual
processing (Fox et al., 2011). Second, expression perception was
assessed with the revised version of the Reading the Mind in the
Eyes Test (Baron-Cohen et al., 2001), and with a forced-choice
oddity test of the discrimination of morphed-expression changes,
equivalent in difficulty to the oddity test for morphed-identity
changes (Fox et al., 2011). Third, overt short-term facial mem-
ory was assessed with the Warrington Recognition Memory Test
(Warrington, 1984), and long-term facial memory with a Famous
Face Recognition Test that required subjects to indicate which of a
series of 20 famous and 20 anonymous faces was familiar (Barton
et al., 2001). This test included a similar series of 20 famous
and 20 unfamiliar names with the patient selecting the famous
name and then providing semantic information about the name
to ensure that semantic memory stores were intact. A 37-item
facial imagery test was also used to assess the adequacy of facial
memory stores independent of the status of perceptual processes
(Barton and Cherkasova, 2003). Fourth, covert facial memory
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Table 1 | Results from the battery of face tests.

Modality Test Max B-AT1 R-AT1 R-IOT1

Faces—Identity Benton facial
recognition

54 45 41 45

Morph
discrimination

100% 72* 56* 83*

Faces—Expression Reading the
mind in the
eyes

36 24 19* 26

Morph
discrimination

100% 100 92 92

Faces—Memory Words,
WRMT

50 45 41 41

Faces, WRMT 50 27* 17* 33*

Famous face
recognition
(d′)

3.92 1.52*† 1.22* 1.96

Face imagery
(%)

100% n/a 71* 82

Faces—Covert Name-cued
forced-choice

20 11* 8* n/a

Occupation
sorting

41 21* 24* n/a

Impairments are indicated in red.

(WRMT = Warrington Recognition Memory Test). For normative data on these

previously published tests please consult the appropriate references included

herein.
†Due to poor knowledge of celebrities, a version of this test using personally

familiar faces was given to B-AT1.

was assessed with two tests using a direct strategy, a name-cued
forced-choice test that showed subjects a famous face (that they
claimed not to recognize) paired with an anonymous one and
asked them to indicate which was the face named by the examiner,
and an indirect strategy, an occupation-sorting test that required
subjects to sort famous faces they did not recognize on the basis
of whether they were politicians or actors (Barton et al., 2001).

The first patient, identified as B-AT1 (B = bilateral; AT = ante-
rior temporal,) is a 24 year-old right-handed male who had herpes
simplex encephalitis three years prior (Figure 1). Since recov-
ery, he has noted extreme difficulty in recognizing and learning
faces, though he can recognize some family members. General
memory and mental functioning is unaffected, allowing him
to attend college and hold full-time employment. He has mild
topographagnosia, and mild anomia for low-frequency items
(although semantic knowledge of these items is evident). He had
acuity of 20/20 and normal visual fields. He performed normally
on the Benton Facial Recognition Test, but was mildly impaired
in discrimination of morphed-identity changes. Facial expression
processing was unaffected. He was severely impaired on the Faces
component of the Warrington Recognition Memory Test, but not
the Words component. He did poorly on a modified familiar face
recognition test that used pictures of his relatives rather than
celebrities, due to limited knowledge of the latter (which also
invalidated the test of facial imagery). He showed no evidence of

FIGURE 1 | Coronal T1-weighted MRI brain images of the three

patients, standardized to Talairach space. Slices were taken every
12 mm, from y = +48 mm to y = −84 mm. B-AT1 has large bilateral
lesions of the anterior temporal lobes following herpes encephalitis
(+12 to −36 mm). R-AT1 has a small surgical lesion in the right anterior
temporal lobe, additionally affecting the right hippocampus and amygdala
(0–12 mm). R-IOT1 has a single right inferior occipitotemporal lesion from
his prior hemorrhage (−48 to −84 m).

covert recognition on either the name-cued forced-choice or the
occupation-sorting test.

The second patient, R-AT1 (R = right hemisphere; AT = ante-
rior temporal), is a 24 year-old right-handed female. One year
prior to testing she had a selective right amygdalohippocampec-
tomy for epilepsy (Figure 1), following which she has had diffi-
culty recognizing faces, needing to rely on voice or other means
to recognize individuals. General mental functioning was intact:
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she is currently attending university, although she has prob-
lems with visual memory and relies on verbal strategies to study.
She had acuity of 20/20 and normal visual fields. She performed
normally on the Benton Facial Recognition Test (Table 1), but
was impaired on the more difficult discriminations of morphed-
identity changes. The Reading the Mind in the Eyes Test sug-
gested reduced recognition of expression, but the perception
of morphed-expression changes was normal. She was impaired
on the Faces but not the Words component of the Warrington
Recognition Memory Test. Face recognition was reduced on
the Famous Face Recognition Test and she had reduced facial
imagery. There was no evidence for covert face recognition on
either the name-cued forced-choice or the occupation-sorting
tests.

The third patient, R-IOT1 (R = right hemisphere, IOT =
inferior occipitotemporal), is a 49 year-old left-handed male
who twelve years prior had suffered an occipital cerebral hemor-
rhage from rupture of an arteriovenous malformation (Figure 1).
Immediately following this event he complained of trouble recog-
nizing hospital workers and needed to rely on hairstyle, facial hair,
or voice for person recognition, a problem that has not resolved.
He also displayed letter-by-letter reading immediately after the
hemorrhage but this had resolved quickly. On examination his
acuity was 20/20 and he had a left superior quadrantanopia and
mild topographagnosia. He performed normally on most face
tests, including the Benton Face Recognition Test (Table 1), but
was mildly impaired on the discrimination of morphed-identity
changes. He did better on the Famous Face Recognition Test than
any other prosopagnosic patient, but claimed that because we
used well-known images, he was recognizing the pictures and not
the people (because he recognized these images, he also could
not do the covert tests, as they used similar images). In sup-
port of this, he was significantly impaired on a famous faces
test using less typical images of celebrities [11/25; (Duchaine,
2000)] and on the Faces (but not the Word) component of the
Warrington Recognition Memory Test, which tests short-term
recognition with anonymous people. Facial expression processing
was unaffected.

STIMULI
Face images were selected from the Karolinska Database of
Emotional Faces (Lundqvist and Litton, 1998) and from our lab-
oratory’s collection. All images were cropped about the face and
uniformly sized to 512 by 634 pixels. A standard gray oval was
placed over each face to occlude the neck, hairline and picture
background while leaving internal facial features and external
face contour unaffected (Figure 2). Quartets of face images were
selected such that for a given image, a second image showed
the same identity with a different version of the same expres-
sion, a third image showed the same identity with a different
expression, and a fourth image showed a different identity (of
the same gender as the first image) displaying the same expres-
sion as the given image. Forty such quartets were created, 20
using female faces and 20 using male faces. Five facial expres-
sions were included amongst the faces (anger, fear, happiness,
sadness, disgust) with each expression appearing ten times (5
for each gender) as the base expression (displayed in 3 of the 4

FIGURE 2 | Schematic representation of an experimental trial. In all
three experimental conditions the first image was the same. The second
image in the pair was either a new picture with the same identity and same
expression as the first image, a picture of a different person with the same
expression or a picture of the same person with a different expression. An
image pair was presented within every TR (2 s) and fixation trials were
randomly intermixed with experimental trials.

images) and 10 times as the different expression (displayed in 1 of
the 4 images).

DESIGN
Images from each of the 40 face quartets were paired to create
the three experimental conditions. The same image was always
presented as the first in each pair with the second image vary-
ing between conditions: same-identity/same-expression, different-
identity/same-expression, same-identity/different-expression. This
resulted in 40 unique trials for each of the three experimental
conditions.

Six other faces (3 males, 3 females), which were different
from the faces used in the experimental conditions, display-
ing 3 different expressions (anger, fear, happiness) were selected
and formatted in a gray oval as described above. Upright and
inverted versions of these six faces were created. Two face pairs
were formed from each of the six identities; upright-inverted and
inverted-upright. These 12 pairs became target trials in the fMRI
adaptation experiment.

PROCEDURE
An experimental trial consisted of a pair of faces presented within
each repetition time (TR = 2 s). The first face was presented for
500 ms and followed by a 300 ms inter-stimulus-interval (ISI).
This was followed by a 500 ms presentation of the second face
and a 700 ms inter-trial-interval (ITI). In order to avoid retinal
adaptation image location randomly varied from image to image
within a region of 50 by 50 pixels.

For each experimental scan 32 of the 40 face quartets were
randomly selected, and all 3 experimental trials (one from each
condition: same-identity/same-expression, different-identity/same-
expression, same-identity/different-expression) from these quartets
were presented during the scan. This resulted in 32 experimental
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trials per condition (from the 32 randomly selected face quartets)
and 96 trials total. In addition to these experimental trials 10 of
the 12 target trials (i.e., inverted faces) were randomly selected
and included. Participants were asked to respond to the inverted
face in these target trials with a keypress, which acted as a means
to ensure subjects attended to the faces. Finally, 48 fixation tri-
als, in which the face images were replaced by a fixation cross,
were randomly interspersed among the experimental and tar-
get trials, producing the jittering required for rapid event-related
experimental designs (Grill-Spector et al., 2004; Serences, 2004).
The same procedure of random selection and randomized trial
order was used to create six different experimental scans. Each
experimental scan began with 1 fixation trial and ended with 6
fixation trials. All six experimental scans were presented to each
participant in random order.

fMRI
Structural and functional MRIs were performed on all par-
ticipants. All scans were acquired in a 3.0 Tesla Philips scan-
ner. Stimuli were presented using Presentation 9.81 software
and were rear-projected onto a mirror mounted on the head
coil. Whole brain anatomical scans were acquired using a T1-
weighted echoplanar imaging (EPI) sequence, consisting of 170
axial slices of 1 mm thickness (1 mm gap) with an in-plane res-
olution of 1 mm × 1 mm (FOV = 256). T2-weighted functional
scans (TR = 2 s; TE = 30 ms) were acquired using an interleaved
ascending EPI sequence, consisting of 36 axial slices of 3 mm
thickness (1 mm gap) with an in-plane resolution of 1.875 mm ×
1.875 mm (FOV = 240).

We used a dynamic localizer that presented videos of mov-
ing faces and moving objects (Fox et al., 2009a,b) to identify
regions of the core face network (i.e., right and left OFA, FFA,
and pSTS) (Haxby et al., 2000). This localizer contrasts video-
clips of faces changing in expression (i.e., from neutral to happy)
with those of objects undergoing types of motion without large
translations in position (i.e., basketball rotating). Video-clips of
objects were gathered from the internet, and video-clips of faces
were provided by Chris Benton, Department of Experimental
Psychology, University of Bristol, UK (Benton et al., 2007), with
all video-clips resized to a width of 400 pixels. Prior work in
our laboratory demonstrated that this dynamic localizer is more
sensitive in localizing regions of the core face network (98%
success rate) than the standard technique which contrasts static
images of faces and objects (Fox et al., 2009a,b). Importantly
work from other laboratories also suggests that a dynamic signal
can act to enhance facial identity recognition in prosopagnosic
patients (Longmore and Tree, 2013) making dynamic stimuli
a more appropriate choice to activate the core face network.
Patients performed a “one-back task”: that is, they pressed a
button if a video was identical to the previous one. Fixation
blocks began and ended the session and were alternated with
image blocks, with all blocks lasting 12 s. Eight blocks of each
image category (object, face) were presented in a counterbal-
anced order. Each image block consisted of 6 video-clips (5
novel and 1 repeated) presented centrally for 2000 ms each.
The dynamic localizer was followed by presentation of the six
experimental scans.

The first volume of each functional scan was discarded to
allow for scanner equilibration. All MRI data were analyzed
using BrainVoyager QX Version 1.8 (www.brainvoyager.com).
Anatomical scans were not preprocessed, but were standardized
to Talairach space (Talairach and Tournoux, 1988). Preprocessing
of functional scans consisted of corrections for slice scan time
acquisition, head motion (trilinear interpolation), and temporal
filtering with a high pass filter in order to remove frequencies
less than 3 cycles/time course. Functional scans were individually
co-registered to their respective anatomical scan, using the first
retained functional volume to generate the co-registration matrix.

The dynamic localizer time course was analyzed with a single
subject GLM, with objects (O) and faces (F) as predictors, and
a F > O contrast was overlaid on the whole brain. Using a False-
Discovery-Rate of q < 0.05 (corrected for multiple comparisons),
we identified the core regions of face perception, bilaterally,
within each participant (Haxby et al., 2000). Contiguous clus-
ters of face-selective voxels located on the lateral temporal portion
of the fusiform gyrus were designated as the FFA, while clusters
located on the lateral surface of the inferior occipital gyrus were
designated as the OFA. Face-selective clusters located on the pos-
terior segment of the superior temporal sulcus were designated
as the pSTS. Following a technique to maximize face-selectivity
in each region-of-interest (ROI) (Fox et al., 2009a,b), we selected
the 50 voxels, contiguous with the peak voxel, that displayed the
highest t-value for the F > O contrast. These 50 voxel clusters
were then subject to the experimental analyses.

Experimental MRI scans were analyzed using a deconvolution
analysis that accounts for non-linear summation of the blood
oxygen level dependent (BOLD) response in rapid event-related
designs. The deconvolution analysis samples BOLD activity at
trial onset (time = 0 s) and a further 9 times in 2 s intervals, result-
ing in an unbiased model of the hemodynamic response (HDR).
The inverted target trials were included as a separate condition in
the deconvolution analysis, to account for all non-fixation trials,
but were not included in subsequent analyses.

Within each ROI, results from the six experimental scans
were combined using a multi-study GLM function that used the
three experimental conditions (same-identity/same-expression,
different-identity/same-expression, and same-identity/different-
expression) as functions within the GLM (BrainVoyager). While
one cannot determine the significance of differences in a single
scan in a single subject, averaging across multiple scans enables
the assessment of statistical significance in the single subject.
Significant adaptation of the HDR may take a number of forms
including a reduced HDR-peak due to neural fatigue or a
narrowing of the full-HDR due to a facilitated neural response
(Grill-Spector et al., 2006). To examine both possibilities we
first collapsed data across all three experimental conditions.
Then, within each ROI, the full-HDR was defined as the sum
of all consecutive time points that showed a significant increase
from baseline (p < 0.05, 1-tailed). The HDR-peak was defined
as the time point exhibiting a maximal increase in BOLD
activity, or the average of this time point and adjacent time
points that did not significantly differ (p > 0.05, 1-tailed).
Using these definitions, the values of the full-HDR and HDR-
peak were then determined for each of the three experimental
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conditions. Contrasts of the different-identity/same-expression >

same-identity/same-expression and the same-identity/different-
expression > same-identity/same-expression were performed,
using the multi-study GLM, to assess identity and expression
adaptation, respectively. Significant release from adaptation in
the different conditions was set at α < 0.05, and would indicate
sensitivity of the ROI to changes in identity or expression. Only
positive release from adaptation values indicate sensitivity to
the varied stimulus; negative values would suggest priming of
an ROI to the presented stimulus and are not discussed herein
(in fact only one control demonstrated a negative release from
adaptation in the L-FFA). The difference values resulting from
these two contrasts are presented graphically. As all effects in the
full-HDR condition were replicated in the HDR-peak condition,
but were stronger in the latter, we only present the results of
the HDR-peak analyses (Figure 3). Release from adaptation is
therefore, defined as a difference in peak beta values from the
modeled HDR, with the specific contrasted conditions outlined
above.

RESULTS
B-AT1 has extensive bilateral damage to the anterior temporal
lobes, which extends to the inferior surface of the middle tem-
poral lobe (Figure 1). Functional MRI located all six regions of
the core face-processing system (Table 2; Figure 4). Release from
adaptation when identity changed was found in the right FFA
(0.14 ± 0.07, p < 0.05; Figure 5) and in the right (0.27 ± 0.11,
p < 0.05) and left (0.18 ± 0.06, p < 0.005) OFA (Figure 6). No
sensitivity to expression changes was observed.

R-AT1 has a small lesion in the anterior right temporal lobe
that affects the anterior hippocampus, amygdala, and overlying
temporal cortex (Figure 1). All six ROIs of the core face pro-
cessing system were identified (Table 2; Figure 4). Release from
adaptation when identity changed was found in the right FFA
(0.24 ± 0.10, p < 0.05; Figure 5) and the left OFA (0.33 ± 0.11,

FIGURE 3 | A representative example of the hemodynamic response

(HDR) as calculated by the deconvolution analysis. In this case the time
point at 6 s (encircled) would be considered the HDR-peak and the value at
this time point would be used for analysis.

p < 0.005; Figure 6). No sensitivity to expression changes was
observed.

R-IOT1 has a unilateral right lesion affecting both the occipital
and posterior temporal cortex (Figure 1). The functional local-
izer failed to identify an OFA or FFA in the right hemisphere,
though the right pSTS and all three regions in the left hemisphere
were identified (Table 2; Figure 4). Release from adaptation when
identity changed was observed in the left FFA (0.41 ± 0.13,
p < 0.005; Figure 5), and the left OFA (0.43 ± 0.15, p < 0.005;
Figure 6). No sensitivity to expression changes was observed.

DISCUSSION
RESIDUAL SENSITIVITY TO IDENTITY CHANGES IN THE FUSIFORM
FACE AREA
A surviving right FFA was found in two prosopagnosic patients
(B-AT1 and R-AT1; Figure 4).In both it showed residual sensi-
tivity to facial identity, with larger responses to different than
to repeated identities (Figure 5). This sensitivity to identity is
consistent with the role of the right FFA in identity process-
ing in current models of face perception (Haxby et al., 2000),
and prior fMRI adaptation studies using group-based analyses
(Andrews and Ewbank, 2004; Winston et al., 2004; Rotshtein
et al., 2005; Fox et al., 2009a,b). However, this finding contrasts
with the only previous study of identity adaptation in acquired
prosopagnosia (patient PS), which did not find such sensitiv-
ity in the spared right FFA (Schiltz et al., 2006; Dricot et al.,
2008). An important difference is that both of our patients had
damage limited to the anterior temporal lobes, with sparing

Table 2 | Results of the dynamic functional localizer, with brains

standardized to Talairach space.

Subject Region Maximum Minimum X Y Z

t-value t-value

B-AT1 ROFA 12.37 11.18 30 −88 −5

RFFA 13.09 10.25 39 −52 −20

RpSTS 9.67 7.62 45 −49 −2

LOFA 9.43 7.45 −30 −85 −8

LFFA 5.96 5.04 −39 −55 −26

LpSTS 5.9 4.95 −60 −46 4

R-AT1 ROFA 14.88 11.27 27 −70 −20

RFFA 11.29 6.46 36 −58 −11

RpSTS 14.18 10.81 42 −40 4

LOFA 12.92 11.31 −42 −70 −8

LFFA 11.90 9.99 −39 −43 −26

LpSTS 11.66 8.81 −57 −46 13

R-IOT1 ROFA LESION

RFFA LESION

RpSTS 5.52 3.67 57 −40 13

LOFA 6.50 4.85 −37 −82 −20

LFFA 4.73 3.18 −33 −67 −23

LpSTS 7.42 5.23 −42 −40 4
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FIGURE 4 | Core system regions-of-interest identified with the functional

localizers (all brains standardized to Talairach space). All six regions of the
core system were identified in B-AT1 and R-AT1. Due to the location of the

lesion, R-IOT1 does not display a right OFA or right FFA. However, a right
posterior STS (pSTS) was identified along with all three core regions in the
left hemisphere.

FIGURE 5 | Release from adaptation in response to identity

changes as seen in the fusiform face areas of the three

patients. Significant release from adaptation was observed in the
right FFA of both B-AT1 and R-AT1. In contrast, R-IOT1 who did not
have a right FFA due to damage, exhibited significant release from
adaptation in the left FFA. ∗p < 0.05.

of all six core regions of the face processing network, while
PS had loss of the right OFA and left FFA (Rossion et al.,
2003a,b). This suggests that residual sensitivity to face identity
in the FFA may depend upon inputs from other surviving core
face-processing regions, a hypothesis that should be tested in
additional patients.

The left FFA did not show sensitivity to identity changes in
either patient B-AT1 or R-AT1, but significant sensitivity was
observed in the left FFA of R-IOT1, who differs from the oth-
ers in that he is strongly left-handed (Figure 5). This raises the
possibility of anomalous lateralization, as suggested in prior cases
of prosopagnosia in left-handed individuals with unilateral left
occipitotemporal lesions (Tzavaras et al., 1973; Mattson et al.,
2000; Barton, 2008a,b). While all fMRI studies show smaller and
less frequent face-selective activity in the left fusiform region than

FIGURE 6 | Release from adaptation in response to identity changes as

seen in the occipital face areas of the three patients. Significant release
from adaptation was observed in the left FFA of all three patients and only
in the right OFA of B-AT1 (R-IOT1 did not have a right OFA due to damage).
∗p < 0.05.

the right, it may be that the left FFA has a greater role than nor-
mal in face-processing in a left-handed subject like R-IOT1. If so,
this could explain why adaptation effects for identity were found
in the left FFA of R-IOT1 but not in the other patients.

RESIDUAL SENSITIVITY TO IDENTITY CHANGES IN THE
OCCIPITAL FACE AREA
Beyond the FFA, we also found identity adaptation in the OFA
of our three patients (Figure 6). The right OFA is spared in B-
AT1, and R-AT1 (Figure 4) but identity adaptation was found in
the right OFA only for B-AT1 (Figure 6). In contrast, we observed
identity adaptation in the surviving left OFA of all three patients
(Figure 6). The OFA is traditionally thought to be involved in
the early perception of facial structure prior to the decoding of
facial identity (Haxby et al., 2000; Rotshtein et al., 2005; Fox
et al., 2009a,b). While this ability to detect structural changes
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ultimately leads to identity recognition, it may be that the release
from adaptation we observe in the OFA reflects response to a
structural change at an early perceptual level and is not neces-
sarily linked to a perceived identity change. However, while it
is sometimes claimed that the OFA may encode facial structure
relevant to both identity and expression, we did not find a sim-
ilar release from adaptation when expression changed. In fact,
none of the face-selective regions in any patient showed release
from adaptation when expression changed, not even the right
pSTS, which has shown such adaptation sensitivity to expres-
sion in previous group studies (Winston et al., 2004; Fox et al.,
2009a,b). Failure to demonstrate adaptation for expression may
have many origins, including lack of power in the individual sub-
ject, or even a requirement for enhanced attention, given that
more pronounced activity is found for expression-based signals
during expression-based tasks than during an irrelevant experi-
mental task (Narumoto et al., 2001; Fox et al., 2009a,b). However,
the fact that sensitivity to expression was not observed any-
where in this study leaves open the possibility that the sensitivity
we report in the OFA is in fact a response to the structural
differences between two different faces rather than sensitivity
to the identity change itself, as the structural change between
two identities is often more readily apparent than the structural
change between two expressions. Importantly, adaptation effects
for identity have not previously been reported or examined in the
left OFA, thus, another possibility is that the sensitivity to iden-
tity changes we observe in the left OFA of these three patients
may actually reflect a compensatory change in the face network of
these brain-damaged patients much like the report which demon-
strated identity adaptation effects in the ventral lateral occipital
complex, a region not normally implicated in face processing, in
the prosopagnosic patient PS (Dricot et al., 2008).

NO RESIDUAL SENSITIVITY IN THE POSTERIOR SUPERIOR
TEMPORAL SULCU
We did not find any identity adaptation in the right pSTS of
any patient. Residual processing of identity in the STS has been
suggested by some as a possible compensatory mechanism in
prosopagnosia, particular by those who promote a dissociated
dorsal route of face processing as an explanation for covert recog-
nition (Tranel et al., 1995). While our behavioral tests did not
show any covert face processing in any of these four patients,
it should be stressed that the dissociable dorsal route has been
advanced primarily by those studying autonomic indices of covert
recognition (Bauer and Verfaellie, 1988; Tranel et al., 1995).
Indeed, it may be that covert behavioral and covert autonomic
measures index different phenomena, with the former emerging
from residual function of the normal face-processing network,
while residual electrodermal responsivity to faces may reflect
activity in a separate pathway for mediating autonomic reactions
to faces (Schweinberger and Burton, 2003). For these reasons, our
data are limited in the conclusions that can be drawn regard-
ing the anatomic correlates of covert face recognition. However,
our data would at least suggest that following a variety of pat-
terns of damage in prosopagnosia, residual sensitivity to face
identity appears more likely in other components of the core
face-processing network than in the pSTS.

Another possibility for the failure to identify adaptation to
facial expression within the current design may be the restric-
tion of our analysis to predefined ROIs. A recent study by
Mur et al. (2010) demonstrated adaptation to repeated pre-
sentation of faces in areas outside the traditional face areas,
including the parahippocampal place area and early visual cor-
tex. They argue that this may represent an attentional affect
rather than specific face-sensitivity within these regions. However,
the possibility remains that the pSTS which we identified with
our localizer did not in fact capture the collection of neurons
that are most involved in expression recognition, and which
would demonstrate a measurable release from adaptation with
expression changes. Further experimentation with whole-brain
analysis rather than predefined ROIs may identify just such a
region.

RESIDUAL SENSITIVITY AND BEHAVIORAL PERFORMANCE
It is interesting to compare the patient’s residual ability to dis-
criminate faces of different identities and parallel these findings
with the fMRI adaptation results for identity. B-AT1, R-AT1, and
R-IOT1 all performed normally on the Benton Face Recognition
Test and had mild to moderate deficits on the morph discrim-
ination test for identity; on the fMRI experiment all showed
identity adaptation effects in at least one face-selective region.
In contrast, a prosopagnosic patient in another study, PS,
was significantly impaired on the Benton Facial Recognition
Test and showed no identity adaptation effects in the FFA
(Rossion et al., 2003a,b). These results suggest that residual
perceptual sensitivity to aspects of facial structure related to
identity may have an anatomic correlate in the residual neu-
ral sensitivity of the FFA and OFA to these same structural
properties.

In conclusion, we devised an fMRI adaptation protocol which
can reveal significant adaptation to facial identity in the single
subject. In three acquired prosopagnosics with a variety of lesions,
we found residual sensitivity to identity in the spared right FFA
of two right handed prosopagnosic patients with anterior tem-
poral damage, and in the spared left FFA of one left-handed
prosopagnosic patient who had loss of the right FFA and OFA.
We also observed sensitivity to identity within the left OFA of
these three patients, which may reflect either normal sensitiv-
ity to facial structure or a compensatory enhancement following
damage to the face processing network. The presence of adap-
tation effects for identity paralleled residual ability to discrimi-
nate between different faces, as measured by the Benton Facial
Recognition Test but not the more difficult morphed-face dis-
crimination test. Further study in a larger cohort of subjects
with either acquired or congenital prosopagnosia would be of
interest.
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Supplemental Figure 1 | (A) Control data for the different-identity/

same-expression > same-identity/same-expression contrast. A significant

release from adaptation (*) for identity changes was seen within the right

FFA of C01 and C03, and within the left OFA of C03. A trend in the same

direction (#) was observed in the right OFA of C03. (B) No significant

release from adaptation was observed for changes in expression,

following the same-identity/different-expression > same-identity/same-

expression contrast. When compared to the data from the patient

population we again see a release from adaptation to identity changes in

the right FFA (2/3 controls) but there is no evidence of sensitivity to facial

expression with this experimental design.

REFERENCES
Andrews, T. J., and Ewbank, M. P.

(2004). Distinct representations
for facial identity and changeable
aspects of faces in the human tem-
poral lobe. Neuroimage 23, 905–913.
doi: 10.1016/j.neuroimage.2004.
07.060

Avidan, G., Hasson, U., Malach,
R., and Behrmann, M. (2005).
Detailed exploration of face-related
processing in congenital prosopag-
nosia: 2. Functional neuroimaging
findings. J. Cogn. Neurosci. 17,
1150–1167. doi: 10.1162/0898
929054475145

Baron-Cohen, S., Wheelwright, S.,
Hill, J., Raste, Y., and Plumb, I.
(2001). The ‘Reading the Mind
in the Eyes’ test revised version:
a study with normal adults, and
adults with asperger syndrome or
high-funtioning autism. J. Child
Psychol. Psychiatry 42, 241–252. doi:
10.1111/1469-7610.00715

Barton, J. J. (2003). Disorders of
face perception and recognition.
Neurol. Clin. 21, 521–548. doi:
10.1016/S0733-8619(02)00106-8

Barton, J. J. (2008a). Prosopagnosia
associated with a left occipitotem-
poral lesion. Neuropsychologia
46, 2214–2224. doi: 10.1016/j.
neuropsychologia.2008.02.014

Barton, J. J. S. (2008b). Structure
and function in acquired prosopag-
nosia: lessons from a series of
ten patients with brain damage.
J. Neuropsychol. 2, 197–225. doi:
10.1348/174866407X214172

Barton, J. J., and Cherkasova, M.
(2003). Face imagery and its rela-
tion to perception and covert recog-
nition in prosopagnosia. Neurology
61, 220–225. doi: 10.1212/01.WNL.
0000071229.11658.F8

Barton, J. J., Cherkasova, M., and
O’Connor, M. (2001). Covert
recognition in acquired and
developmental prosopagnosia.
Neurology 57, 1161–1168. doi:
10.1212/WNL.57.7.1161

Bauer, R. M., and Verfaellie, M. (1988).
Electrodermal discrimination of

familiar but not unfamiliar faces
in prosopagnosia. Brain Cogn. 8,
240–252. doi: 10.1016/0278-
2626(88)90052-8

Benton, A., and van Allen, M. (1972).
Prosopagnosia and facial dis-
crimination. J. Neurol. Sci. 15,
167–172. doi: 10.1016/0022-510X
(72)90004-4

Benton, C. P., Etchells, P. J., Porter,
G., Clark, A. P., Penton-Voak,
I. S., and Nikolov, S. G. (2007).
Turning the other cheek: the
viewpoint dependence of facial
expression after-effects. Proc.
Biol. Sci. 274, 2131–2137. doi:
10.1098/rspb.2007.0473

Bodamer, J. (1947). “Die prosopag-
nosie.” Archiv für Psychiatrie und
Nervenkrankheiten, vereinigt mit
Zeitschrift für die gesamte Neurologie
und Psychiatrie 179, 6–54. doi:
10.1007/BF00352849

Bruce, V., and Young, A. (1986).
Understanding face recogni-
tion. Br. J. Psychol. 77(Pt 3),
305–327. doi: 10.1111/j.2044-
8295.1986.tb02199.x

de Gelder, B., Frissen, I., Barton, J.,
and Hadjikhani, N. (2003). A mod-
ulatory role for facial expressions
in prosopagnosia. Proc. Natl. Acad.
Sci. U.S.A. 100, 13105–13110. doi:
10.1073/pnas.1735530100

Dricot, L., Sorger, B., Schiltz, C.,
Goebel, R., and Rossion, B. (2008).
The roles of “face” and “non-face”
areas during individual face percep-
tion: evidence by fMRI adaptation
in a brain-damaged prosopag-
nosic patient. Neuroimage 40,
318–332. doi: 10.1016/j.
neuroimage.2007.11.012

Duchaine, B. C. (2000). Developmental
prosopagnosia with normal con-
figural processing. Neuroreport 11,
79–83. doi: 10.1097/00001756-
200001170-00016

Duchaine, B. C., and Weidenfeld, A.
(2003). An evaluation of two com-
monly used tests of unfamiliar
face recognition. Neuropsychologia
41, 713–720. doi: 10.1016/S0028-
3932(02)00222-1

Farah, M. J. (1990). Visual Agnosia:
Disorders of Visual Recognition and
What They Tell us About Normal
Vision. Cambridge, MA: MIT Press.

Fox, C. J., Hanif, H. M., Iaria, G.,
Duchaine, B. C., and Barton, J. J.
(2011). Perceptual and anatomic
patterns of selective deficits in facial
identity and expression processing.
Neuropsychologia 49, 3188–3200.
doi: 10.1016/j.neuropsychologia.
2011.07.018

Fox, C. J., Iaria, G., and Barton, J. J.
(2009a). Defining the face process-
ing network: optimization of the
functional localizer in fMRI. Hum.
Brain Mapp. 30, 1637–1651. doi:
10.1002/hbm.20630

Fox, C. J., Moon, S. Y., Iaria, G.,
and Barton, J. J. (2009b). The
correlates of subjective percep-
tion of identity and expression in
the face network: an fMRI adap-
tation study. Neuroimage 44,
569–580. doi: 10.1016/j.
neuroimage.2008.09.011

Friston, K. J., Holmes, A. P., and
Worsley, K. J. (1999). How
many subjects constitute a
study? Neuroimage 10, 1–5. doi:
10.1006/nimg.1999.0439

Ganel, T., Valyear, K. F., Goshen-
Gottstein, Y., and Goodale, M. A.
(2005). The involvement of the
“fusiform face area” in processing
facial expression. Neuropsychologia
43, 1645–1654. doi: 10.1016/j.
neuropsychologia.2005.01.012

Gobbini, M. I., and Haxby, J. V.
(2007). Neural systems for
recognition of familiar faces.
Neuropsychologia 45, 32–41.
doi: 10.1016/j.neuropsychologia.
2006.04.015

Grill-Spector, K., Henson, R., and
Martin, A. (2006). Repetition
and the brain: neural mod-
els of stimulus-specific effects.
Trends Cogn. Sci. 10, 14–23. doi:
10.1016/j.tics.2005.11.006

Grill-Spector, K., Knouf, N., and
Kanwisher, N. (2004). The fusiform
face area subserves face percep-
tion, not generic within-category

identification. Nat. Neurosci. 7,
555–562. doi: 10.1038/nn1224

Haxby, J. V., Hoffman, E. A., and
Gobbini, M. I. (2000). The dis-
tributed human neural system for
face perception. Trends Cogn. Sci.
4, 223–233. doi: 10.1016/S1364-
6613(00)01482-0

Ishai, A., Schmidt, C. F., and Boesiger,
P. (2005). Face perception is
mediated by a distributed corti-
cal network. Brain Res. Bull. 67,
87–93. doi: 10.1016/j.brainresbull.
2005.05.027

Kanwisher, N., McDermott, J., and
Chun, M. M. (1997). The fusiform
face area: a module in human
extrastriate cortex specialized for
face perception. J. Neurosci. 17,
4302–4311.

Landis, T., Cummings, J. L., Christen,
L., Bogen, J. E., and Imhof, H.
G. (1986). Are unilateral right
posterior cerebral lesions sufficient
to cause prosopagnosia. Clinical
and radiological findings in six
additional patients. Cortex 22,
243–252. doi: 10.1016/S0010-9452
(86)80048-X

Longmore, C. A., and Tree, J. J. (2013).
Motion as a cue to face recog-
nition: evidence from congenital
prosopagnosia. Neuropsychologia
51, 864–875. doi: 10.1016/j.
neuropsychologia.2013.01.022

Lundqvist, D., and Litton, J. E. (1998).
The averaged karolinska directed
emotional faces - AKDEF. CD
ROM from department of clinical
neuroscience, psychology sec-
tion, karolinska institutet. ISBN:
91-630-7164-9

Mattson, A. J., Levin, H. S., and
Grafman, J. (2000). A case
of prosopagnosia following
moderate closed head injury
with left hemisphere focal
lesion. Cortex 36, 125–137. doi:
10.1016/S0010-9452(08)70841-4

Mur, M., Ruff, D. A., Bodurka, J.,
Bandettini, P. A., and Kriegeskorte,
N. (2010). Face-identity change
activation outside the face system:
“release from adaptation” may not

www.frontiersin.org October 2013 | Volume 4 | Article 756 | 9

http://www.frontiersin.org/journal/10.3389/fpsyg.2013.00756/abstract
http://www.frontiersin.org/journal_Science/10.3389/fpsyg.2013.00756/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Fox et al. fMRI adaptation in prosopagnosia

always indicate neuronal selectivity.
Cereb. Cortex 20, 2027–2042. doi:
10.1093/cercor/bhp272

Narumoto, J., Okada, J., Sadato,
N., Fukui, K., and Yonekura, Y.
(2001). Attention to emotion
modulates fMRI activity in human
right superior temporal sulcus.
Brain Res. Cogn. Brain Res. 12,
225–231. doi: 10.1016/S0926-6410
(01)00053-2

Rickham, P. P. (1964). Human exper-
imentation. code of ethics of
the world medical association.
Declaration of Helsinki. Br. Med.
J. 2:177. doi: 10.1136/bmj.2.
5402.177

Rossion, B., Caldara, R., Seghier,
M., Schuller, A. M., Lazeyras,
F., and Mayer, E. (2003a). A
network of occipito-temporal
face-sensitive areas besides the
right middle fusiform gyrus is
necessary for normal face process-
ing. Brain 126, 2381–2395. doi:
10.1093/brain/awg241

Rossion, B., Schiltz, C., and
Crommelinck, M. (2003b). The
functionally defined right occip-
ital and fusiform “face areas”
discriminate novel from visually
familiar faces. Neuroimage 19,
877–883. doi: 10.1016/S1053-8119
(03)00105-8

Rotshtein, P., Henson, R. N., Treves, A.,
Driver, J., and Dolan, R. J. (2005).
Morphing Marilyn into Maggie
dissociates physical and identity
face representations in the brain.
Nat. Neurosci. 8, 107–113. doi:
10.1038/nn1370

Schiltz, C., Sorger, B., Caldara, R.,
Ahmed, F., Mayer, E., Goebel, R.,
et al. (2006). Impaired face dis-
crimination in acquired prosopag-
nosia is associated with abnor-
mal response to individual faces in
the right middle fusiform gyrus.
Cereb. Cortex 16, 574–586. doi:
10.1093/cercor/bhj005

Schweinberger, S. R., and Burton,
A. M. (2003). Covert recognition
and the neural system for face
processing. Cortex 39, 9–30. doi:
10.1016/S0010-9452(08)70071-6

Serences, J. T. (2004). A comparison
of methods for characteriz-
ing the event-related BOLD
timerseries in rapid fMRI.
Neuroimage 21, 1690–1700. doi:
10.1016/j.neuroimage.2003.12.021

Talairach, J., and Tournoux, P. (1988).
Co-Planar Stereotaxic Atlas of the
Human Brain. New York, NY:
Thieme.

Tranel, D., Damasio, H., and
Damasio, A. R. (1995). Double
dissociation between overt

and covert face recognition. J.
Cogn. Neurosci. 7, 425–432. doi:
10.1162/jocn.1995.7.4.425

Tzavaras, A., Merienne, L., and Masure,
M. C. (1973). Prosopagnosie,
amnesie, et troubles du langage
par lesion temporale gauche chez
un sujet gaucher. Encephale. 62,
382–394.

Vuilleumier, P., Richardson, M. P.,
Armony, J. L., Driver, J., and Dolan,
R. J. (2004). Distant influences of
amygdala lesion on visual corti-
cal activation during emotional
face processing. Nat. Neurosci.
7, 1271–1278. doi: 10.1038/
nn1341

Warrington, E. (1984). Warrington
Recognition Memory Test. Los
Angeles, CA: Western Psychological
Services.

Williams, M. A., Berberovic, N.,
and Mattingley, J. B. (2007).
Abnormal FMRI adaptation to
unfamiliar faces in a case of
developmental prosopamnesia.
Curr. Biol. 17, 1259–1264. doi:
10.1016/j.cub.2007.06.042

Winston, J. S., Henson, R. N., Fine-
Goulden, M. R., and Dolan,
R. J. (2004). fMRI-adaptation
reveals dissociable neural rep-
resentations of identity and
expression in face perception.

J. Neurophysiol. 92, 1830–1839. doi:
10.1152/jn.00155.2004

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 27 February 2013; accepted:
27 September 2013; published online: 18
October 2013.
Citation: Fox CJ, Iaria G, Duchaine
BC and Barton JJS (2013) Residual
fMRI sensitivity for identity changes in
acquired prosopagnosia. Front. Psychol.
4:756. doi: 10.3389/fpsyg.2013.00756
This article was submitted to Perception
Science, a section of the journal Frontiers
in Psychology.
Copyright © 2013 Fox, Iaria, Duchaine
and Barton. This is an open-access arti-
cle distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or repro-
duction in other forums is permitted,
provided the original author(s) or licen-
sor are credited and that the original
publication in this journal is cited, in
accordance with accepted academic prac-
tice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Psychology | Perception Science October 2013 | Volume 4 | Article 756 | 10

http://dx.doi.org/10.3389/fpsyg.2013.00756
http://dx.doi.org/10.3389/fpsyg.2013.00756
http://dx.doi.org/10.3389/fpsyg.2013.00756
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive

	Residual fMRI sensitivity for identity changes in acquired prosopagnosia
	Introduction
	Methods
	Patients
	Stimuli
	Design
	Procedure
	fMRI

	Results
	Discussion
	Residual Sensitivity to Identity Changes in the Fusiform Face Area
	Residual Sensitivity to Identity Changes in the Occipital Face Area
	No Residual Sensitivity in the Posterior Superior Temporal Sulcu
	Residual Sensitivity and Behavioral Performance

	Acknowledgments
	Supplementary Material
	References


