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We examined how two distinct stimulus features, orientation and color, interact
as contributions to global stimulus dissimilarity. Five subjects rated dissimilarity
between pairs of bars (N = 30) varying in color (four cardinal hues, plus white) and
orientation (six angles at 30◦ intervals). An exploratory analysis with individual-differences
multidimensional scaling (MDS) resulted in a 5D solution, with two dimensions required
to accommodate the circular sequence of the angular attribute, and red-green, blue-yellow
and achromatic axes for the color attribute. Weights of the orientation subspace relative
to the color subspace varied among the subjects, from a 0.32:0.61 ratio to 0.53:0.44,
emphasis shifting between color and orientation. In addition to Euclidean metric, we
modeled the interaction of color and orientation using Minkowski power metrics across
a range of Minkowski exponents p, including the city-block (p = 1), Euclidean (p = 2) and
Dominance metric (p → ∞) as special cases. For averaged data, p ∼ 1.3 provided the
best fit, i.e., intermediate between separable and integral features. For individual subjects,
however, the metric exponent varied significantly from p = 0.7 to p = 3.1, indicating
a subject-specific rule for combining color and orientation, as in Tversky and Gati’s
variable-weights model. No relationship was apparent between dimensional weights and
individual p exponents. Factors affecting dimensional integrality are discussed, including
possible underlying neural mechanisms where the interaction of the low-level vision
attributes orientation and color might shift between uncorrelated (p = 1) or correlated
(p 2) forms.≥
Keywords: color, orientation, bimodal stimuli, feature integration, multidimensional scaling, Minkowski metric,

integral dimensions, separable dimensions

INTRODUCTION
Researchers in visual perception frequently ask observers whether
two stimuli are different, or how different they are. Ecologically-
valid stimuli can vary along more than one attribute, or in more
than one visual sub-modality: that is, their description requires
more than one dimension. The total inter-stimulus dissimilar-
ity is then an aggregate of differences across multiple attributes,
and the research question becomes one of how these differences
interact.

A research tradition beginning with Attneave (1950) has
focused on the special case of “integral” dimensions, where the
attributes on which the stimuli are parameterized can be replaced
with oblique linear combinations, intrinsically as good as the
original parameters, because the inter-stimulus dissimilarities
remain the same. The classic examples of integral dimensions
are lightness and saturation in color space (e.g., Hyman and
Well, 1967; Ashby and Townsend, 1986; Burns and Shepp, 1988).
In Garner’s words (1974, 199), “[p]sychologically, if dimensions
are integral, they are not really perceived as dimensions at all.
Dimensions exist for the experimenter [. . . ] but these are con-
structs [. . . ] and do not reflect the immediate perceptual expe-
rience of the subject in such experiments . . . .” That is, integral
dimensions form a seamless Gestalt.

A second possibility is that the dimensions do not interact,
with dissimilarity perceived as simply a linear summation of
the absolute differences on each of the dimensions in isolation.
Such non-interacting attributes have been dubbed “separable” or
“analyzable” (Attneave, 1950; Shepard, 1964).

The integral/separable distinction is of interest for visual psy-
chophysics because feature interaction is ubiquitous by nature
and not restricted to explicit judgments of dissimilarity, but
bears upon other tasks, such as stimulus classification (Garner
and Felfoldy, 1970; Ashby, 1988); classification errors (Attneave,
1950; Shepard and Chang, 1963); visual search (Treisman and
Gormican, 1988; Koene and Zhaoping, 2007). The implications
for perceptual mechanisms will be discussed below. However,
integral and analyzable dimensions are not the only alternatives.
Numerous models of feature integration can be subsumed within
a family of Minkowski metrics or “Lp norms,” characterized by
a parameter p, the Minkowski exponent (e.g., Shepard, 1987).
Writing �Dn for the difference between two stimuli along the
n-th dimension:

Dissimilarity =
[∑

n

�Dn
p

]1/p

(1)
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Separable dimensions correspond to p = 1, the city-block metric
(Householder and Landahl, 1945). Higher values define percep-
tual models where some level of integration, suppression, or
competition occurs among the attributes. Integral dimensions are
formally described by p = 2, the familiar Euclidean metric (the L2

norm). Here Equation 1 reduces to the Pythagorean formula for
distance.

In the limiting case of p → ∞, dissimilarity is dictated by
the maximum of the differences along the separate dimensions
or attributes; that is, a dimension is suppressed and does not
contribute to the dissimilarity if a larger difference exists along
another dimension to dominate it. This has been dubbed the
“supremum” or “dominance” metric (e.g., Hyman and Well,
1967). Note that although integer values of p receive most atten-
tion, the Minkowski framework remains valid for fractional
values.

Early examinations of the dissimilarities from composite
changes used simple stimuli (circle-spoke structures) confined to
a single location in the visual field (Shepard, 1964; Garner and
Felfoldy, 1970). Judgments of more elaborated attribute combi-
nations were subsequently considered. Griffin and Sepehri (2002)
used pairwise comparisons of simple stimuli varying in texture
and color, concluding that the interaction follows a Minkowski
metric (though they did not specify the value of p). Izmailov and
Edrenkin (2010) elicited dissimilarity ratings among bar stimuli
combining orientation and luminance and found p in the range
1.8–2.0.

In contrast to the above simple-stimulus studies, To et al.
(2008, 2010) collected dissimilarity judgments for pairs of natural
visual scenes that had been subjected to one or two ecologically-
realistic manipulations (color, location, size, and/or blur). The
image manipulations were typically distributed across the entire
scene and could not be parameterized by or reduced to a change
in a single localized “visual primitive.” The authors’ analysis led
to the conclusion that dissimilarities between images separated
by two manipulations were most concordant with those between
single-manipulation pairs if the latter interacted according to
a quasi-Dominance metric, with p = 2.84 (To et al., 2008) or
p = 2.48 (To et al., 2010).

Apart from its psychophysical meaning, the p exponent may
reflect the mechanisms of cortical processing accessed by a given
task or index of dissimilarity. To et al. (2008, 2011) proposed
that a large p can be expected when the variations along the
dimensions are strongly correlated, exhibiting a high level of
redundancy, so that a stimulus difference along one attribute is
normally accompanied by a comparable difference on the others.
In informational terms, such differences can be encoded effi-
ciently if the neural nexus at which they converge allows the larger
of the signals to dominate others that add little or no further
information about dissimilarity.

Conversely, the additive combination expressed as the city-
block metric is the most efficient way of encoding a combination
of difference signals from attributes where the values are empir-
ically uncorrelated. If visual primitives such as color, size, or
orientation are processed independently and in parallel, then the
dissimilarity when two such features vary might be a linear com-
bination of the �Dn in isolation, i.e., p near 1. Intermediate

degrees of correlation require intermediate levels of non-linearity:
competition among the attributes implies the kind of non-linear
combinations characterized by p > 1 (Zhaoping and Snowden,
2006).

The present study further explores the interaction of visual
attributes in bimodal stimuli and extends Izmailov and Edrenkin’s
(2010) path of research, with bar stimuli varying in color (rather
than luminance) in addition to orientation. To determine p for
this situation, we obtained the dissimilarity for each difference
in orientation independent of color and each difference in color
independent of orientation, and used these to predict the dissimi-
larity between pairs differing in both color and orientation, while
varying p in the Minkowski metric (cf. Shepard and Cermak,
1973; To et al., 2008).

This approach postulates that color and orientation are sepa-
rable (in the mathematical sense), i.e., that the difference between
each same-color pair (differing only in orientation) is constant
whatever the color, and conversely for each same-orientation
pair. To test this postulate we applied multidimensional scal-
ing (MDS) to the data. Unlike the process discussed so far,
MDS begins with a matrix of inter-stimulus dissimilarities or
“map distances” and reconstructs “map coordinates”: empiri-
cal dimensional descriptions of the subjects’ mental/perceptual
representations of the stimuli. We ask whether a geomet-
rical representation is adequate, treating it as Euclidean in
nature (p = 2). It is tempting to seek the Minkowski met-
ric for a given set of data by repeating MDS analysis for
different p, and choosing the value that minimizes the mis-
match between data and reconstructed distances. However, this
strategy is known to be deceptive (Arnold, 1971; Shepard,
1974).

MATERIALS AND METHODS
PARTICIPANTS
Five participants (four females), aged 20–27 years old, were
normal trichromats with normal or corrected-to-normal vision.
They were all undergraduate Psychology students, familiar with
the scaling procedure but naïve to the specific research area.

STIMULI
Stimuli were colored bars of different orientation presented on
a CRT screen at 12 cd/m2 against a darker (2 cd/m2) gray back-
ground (as illustrated in Figure 1). At the viewing distance of
100 cm, each bar subtended an angle of 8.6◦ lengthwise and
0.6◦ widthwise. The bars were presented in pairs, to the right
and left from the central nominal fixation point; their cen-
ters were separated by 10.8◦, the same for all pairs—that is,
the bars can be imagined as rotating around these centers
of gravity to generate the different orientations. Observation
was binocular, without head fixation, in an otherwise-unlit
room.

The bars took on six orientations, varying in 30◦ steps from
the horizontal, and five different colors: red, yellow, green, blue,
and white (Table 1). Thus, the two variables created 30 different
bars. For convenience, these are labeled below as Sa

m, where the
subscript m identifies the orientation and the superscript index a
identifies the color.
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FIGURE 1 | Example of two stimuli presented for dissimilarity

judgment.

Table 1 | CIE 1931 coordinates of the stimulus colors.

Color x y L (cd/m2)

Green 0.900 0.600 12

Blue 0.170 0.145 12

White 0.355 0.355 12

Yellow 0.405 0.510 12

Red 0.620 0.340 12

Dark gray (background) 0.355 0.355 2

PROCEDURE
Subjects were instructed to rate the total dissimilarity of each pair
of bars on a scale of 1 (least) to 9 (most). No particular pair was
provided to subjects as an example of the maximum value. Each
pair of bars was shown twice to each subject, once in the form
“i:j” and once as the mirror-image “j:i,” providing (30 × 29 =)
870 pairs. These were presented in the course of three sessions for
each subject. Each pair was presented for 1.5 s followed by a 0.5 s
interval, during which the subject entered the rating using cor-
responding keys of a computer keyboard. The response was not
recorded if it exceeded this interval, though for each individual
subject the number of missing inputs was just one or two.

The square matrix of pairwise differences obtained from each
participant consists of an upper and lower triangular half-matrix
containing i:j and j:i pairs. The Pearson correlation coefficients
r between these two values for each participant are shown in
the diagonal elements of Table 2 and indicate good intra-subject
replicability. Inter-subject replicability, shown in the off-diagonal
elements of Table 2, was fair. Here the two judgments from each
subject for a given stimulus pair were averaged and compared
with the mean from each other subject.

The 870 stimulus pairs can be classified into three classes, as
shown in Figure 2:

1. 150 orientation-only pairs of the form (Sa
m: Sa

n), in which the
bars differ in orientation but are both the same color, “a,” out
of five possibilities;

2. 120 color-only pairs of the form (Sa
m: Sb

m), in which the
bars differ in color but are both orientation “m,” out of six
possibilities;

Table 2 | Pearson correlation coefficients between individual subjects’

dissimilarity matrices and (on the diagonal) between individuals’ ij

and ji half-matrices.

Ss 1 2 3 4 5

1 0.86 0.76 0.55 0.61 0.54

2 0.67 0.49 0.48 0.39

3 0.48 0.37 0.43

4 0.66 0.58

5 0.55

Right-hand stimuli
ID SG

0 SG
30 SG

60 SG
90 SG

120 SG
150 SB

0 SB
30 SB

60 SB
90 SB

120 SB
150 SW

0

color Green Blue White
ID angle 0° 30° 60° 90° 120° 150° 0° 30° 60° 90° 120° 150° 0°

Left-
hand

stimuli

SG
0 0° 0:30 0:60 G:B G:W

SG
30 30° 30:0 G:B

SG
60 G 60° G:B

SG
90 90° G:B

SG
120 120° G:B

SG
150 150° G:B

SB
0 0° B:G 0:30 0:60 B:W

SB
30 30° B:G 30:0

SB
60 B 60° B:G

SB
90 90° B:G

SB
120 120° B:G

SB
150 150° B:G

SW
0 0° W:G W:B

SW
30 W 30° W:G W:B 30:0

FIGURE 2 | Pairwise comparisons of stimuli created from two

attributes (upper left corner of matrix only). Gray cells indicate
orientation-only pairs Sa

m: Sa
n; yellow cells indicate color-only pairs Sa

m: Sb
m.

The Figure shows the 12 pairs averaged for the estimated Green:Blue
dissimilarity; five of the 10 pairs averaged to estimate the 30◦:0◦
dissimilarity; etc.

3. 600 bimodal pairs (Sa
m: Sb

n), differing in both orientation and
color (for brevity we use “bimodal” in a broader sense than
usual since sub-modalities of vision are involved rather than
separate sensory modalities).

RESULTS
Each subject’s dissimilarity judgments were analyzed in com-
bination with other subjects, and then in isolation. The mean
dissimilarity ratings for each subject, across all 870 pairs, were
5.83, 5.76, 5.84, 5.25, and 4.66. We examine the individ-
ual distributions of ratings below (Figure 7), noting for now
that all subjects used the full range from 1 to 9. That is,
all five subjects used the response scale in much the same
manner.

MULTIDIMENSIONAL SCALING (EUCLIDEAN METRIC)
Analysis began with MDS, in which a Euclidean geometrical
model is used to account for the data, representing each stimu-
lus as a point in a low-dimensional space. In an iterative process,
the locations of the 30 points are adjusted so that the distances
among them reflect the dissimilarities among the corresponding
stimuli as accurately as possible. Any mismatch between the data
and reconstructed distances in a solution is measured by stress1,
an index of badness-of-fit, which is progressively minimized by
the MDS process (Kruskal, 1964). The dimensions of the solution
can be interpreted as the variables that underlie the visual domain
in question.
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As noted above, we work with the assumption of Euclidean
geometry, i.e., p = 2, secure in the knowledge that departures
from this approximation have little effect on MDS solutions
(Arabie, 1991). Attempting to accommodate the averaged data
within 3D, 4D, 5D, and 6D models resulted in stress1 values of
0.217, 0.167, 0.129, and 0.112, respectively. Standard rules for
interpreting stress1 (Kruskal, 1964) show the three-dimensional
solution to be inadequate. Here we focus on the 5D solution,
ignoring the 6D version which provides only a small improve-
ment in goodness-of-fit.

To rotate the optimized solution to non-arbitrary dimensions,
we applied the “weighted Euclidean” or INDSCAL framework of
individual variation (Wish and Carroll, 1974). This framework
allows for the possibility that subjects vary in the relative salience
or weight they place on one dimension or another: that is, an
inter-stimulus difference along a given dimension may contribute
more to perceived dissimilarity for one subject than another.
Specifically, the model includes dimensional-weight parameters
wqd (where the index q designates a subject, while d labels the
dimensions), and finds their optimal values. If the coordinates of
the i-th and j-th items in the model are written xid and xjd respec-
tively, the parameters wqd modulate the perceived inter-item
distances for that subject:

distance(i, j)2 =
∑

d

w2
qd(xid − xjd)

2 (2)

This weighting is equivalent to systemically altering the inter-
point distances by stretching or compressing the consensus model
along its dimensions for a better fit to each subject’s data (which
are kept separate in this analysis). The outcome is that the dimen-
sions of the final solution (which would otherwise be arbitrary)
correspond to modes of inter-subject variation within the data.
To test whether noise alone could account for any differences in
the subject-specific weight parameters, the wqd were replicated
by repeating the INDSCAL analysis with each subject’s i:j and j:i
matrices treated separately.

ORIENTATION SUBSPACE
Figure 3 is a scatterplot in which the stimuli are located by
their coordinates on the first two (rotated) dimensions, D1 and
D2. These clearly accommodate the orientation parameter. Two
dimensions are required rather than one because of that param-
eter’s cyclic nature (for these symmetrical stimuli, θ + 180◦ is
equivalent to θ), to give the parameter room to loop back on
itself. This outcome is in accord with previous results when
stimulus pairs of bars varied in orientation alone (Indow, 1988;
Izmailov et al., 2004) or in orientation and luminance (Izmailov
and Edrenkin, 2010).

Even so, the dimensions have separate physical meanings. D1
serves to separate horizontal from vertical stimuli, providing the
dissimilarity between what have been called “the cardinal axes of
the visual coordinate system” (Orban et al., 1984). D2 separates
bars inclined right vs. left from the vertical direction. D1 dis-
perses the stimuli more than D2, accounting for more variance
in the MDS solution (27.7% compared to 23.1%). This is con-
sistent with the “oblique effect” (cf. Orban et al., 1984), whereby
spatial vision exhibits orientation anisotropy, so that two bars at

D1: cardinal axes (horizontal vertical)
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FIGURE 3 | Locations of stimuli in the orientation subspace of MDS

solution (coordinates on D1 and D2), where symbols are coded

according to stimulus color.

right angles seem more dissimilar if they align with the cardinal
axes than if they are diagonals.

We note also that the dissimilarities among orientations
obtained by Izmailov et al. (2004) could best be explained by sep-
arate cardinal-axis and diagonal-axis contributions, combining in
a Minkowski metric with p ∼ 1.75.

COLOR SUBSPACE
The remaining three dimensions capture the dissimilarities from
differences in color. Figure 4 projects the solution onto its 3rd
vs. 4th dimensions and 3rd vs. 5th dimensions. In each panel,
other dimensions (including D1 and D2) are orthogonal to the
plane of the page. D3 and D4 can immediately be identified
as “red-green” and “blue-yellow” opponent perceptual systems,
respectively. Further, it appeared that a white and any chromatic
bar are perceived as more dissimilar than the isoluminant plane
can accommodate, requiring D5, an “achromatic” distinction, to
capture this additional dissimilarity.

The crucial aspect of Figures 3, 4 is that subjects treat ori-
entation and color as separate, decoupled attributes in their
mental/perceptual models, with each attribute confined to its own
subspace, orthogonal to the other subspace. That is, a given pair
of orientations are perceived as equally dissimilar if the bars are
(for instance) both blue or both yellow. Conversely, dissimilari-
ties within the color subspace are the same whether two colors
are presented as a pair of 30◦ bars or a pair of any other angle.
This lack of coupling is a pre-requisite for applying Equation 1 in
subsequent analysis.

RELATIVE SALIENCE OF THE ORIENTATION AND COLOR SUBSPACES
This rotated 5D solution provides a quantitative measure of the
relative importance of the inter-color and inter-orientation dif-
ferences for the subjects. Specifically, the combined axes of the
“orientation subspace” (Figure 3) disperse the items marginally
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FIGURE 4 | Two projections of color subspace of 5D MDS solution. Coordinates of stimuli on (A) D3 and D4, red-green and blue-yellow; and (B) D3 and D5
“achromatic” dimension.

Table 3 | Parameters of individual and mean data from the MDS and Minkowski-metric analyses.

Subject Stress1 D1 D2 D3 D4 D5 Subspace weights: Mean �mn Mean �ab Optimal

(in 5D) card diag R-G B-Y Achr. orientation/color (orientation) (color) Minkowski p

1 0.10 0.31 0.29 0.31 0.34 0.30 0.41/0.56 2.60 5.00 1.3

2 0.07 0.29 0.22 0.34 0.34 0.34 0.32/0.61 3.00 5.57 1.8

3 0.15 0.34 0.30 0.31 0.31 0.29 0.46/0.51 4.22 5.65 3.1

4 0.12 0.35 0.32 0.30 0.28 0.29 0.47/0.50 3.64 1.40 0.7

5 0.09 0.38 0.35 0.27 0.26 0.27 0.53/0.44 3.67 2.10 1.1

Mean 0.13 3.43 3.94 1.3

5D solution for individual-differences MDS includes weights wq1 . . . wq5 on the five dimensions (two orientation, three chromatic); total weight (wq1
2 + wq2

2)0.5 of

orientation subspace; total weight (wq3
2 + wq4

2 + wq5
2)0.5 of color subspace.

more than the combined axes of the “color subspace” (Figure 4),
respectively accounting for 50.2 and 49.8% of variance within the
MDS solution. Note that this is a combined outcome, with wide
variations in the relative importance of orientation to individual
subjects.

INDIVIDUAL DIFFERENCES IN DIMENSION WEIGHTS
Table 3 shows dimension weights from the individual-differences
MDS analysis. In the orientation subspace, subjects differed in
the weights they placed on D1 (cardinal axes) relative to those
for D2 (diagonals). Greater variations appeared in the color sub-
space, particularly in the weight of D3, red-green dimension,
relative to the blue-yellow (D4) and achromatic (D5) dimensions.
Notably, the combined weight of the orientation subspace relative
to the color subspace (Table 3) again showed individual varia-
tions (Figure 5). These differences are replicated between i:j and
j:i ratings. Subject #5, for instance, places relatively greater weight
on orientation differences while Subjects #1 and #2 place more
weight on color differences. Here the combined weights of the
orientation and color subspaces are wqO = (wq1

2 + wq2
2)0.5 and

wqC = (wq3
2 + wq4

2 + wq5
2)0.5, respectively.

DISSIMILARITY JUDGMENTS FOR COLOR AND FOR ORIENTATION
Averaged across the subjects, the dissimilarities for orientation
and for color are comparable in magnitude (Figure 6), with the

Subject

Combined weights on orientation axes

C
om

bi
ne

d 
w

ei
gh

ts
 o

n 
co

lo
r a

xe
s

FIGURE 5 | Individual values from MDS (two values per subject) for the

combined weights of orientation dimensions (wq1
2 + wq2

2) plotted

against the combined weights of color dimensions

(wq3
2 + wq4

2 + wq5
2).

mean rating across color-only pairs (3.94 ± 0.47) slightly greater
than the mean across orientation-only pairs (3.43 ± 0.85). Recall
that orientation-only pairs outnumber color-only pairs (150 vs.
120), and contribute more to variance; thus this is consistent with
the earlier observation that the color subspace disperses the items
slightly less than the orientation subspace.
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Table 3 indicates substantial inter-individual variation, how-
ever, with Subject #2 rating color-only pairs twice as dissimilar as
orientation-only pairs, while for other subjects they are only half
as dissimilar (also evident in the dimensional weights).

We mention this situation of similar magnitude for color-only
and orientation-only dissimilarities because it provides great-
est sensitivity to p in the comparison between predicted and
actual dissimilarities (cf. To et al., 2008, 2010). If p > 1 (i.e.,
if there is some degree of non-linear competition between the
single-attribute differences), and if either attribute is generally
smaller than the other, it contributes disproportionately less to
the combined dissimilarity.

The individual distributions of dissimilarity ratings tend to
be double-peaked (Figure 7), with the dominant peak containing

Mean = 3.94

Mean = 3.43

Δab
 (c

ol
or

-
on

ly
pa

irs
) 

Δ m
n 
(o

rie
nt

at
io

n-
on

ly
 p

ai
rs

)

FIGURE 6 | Distribution of dissimilarities for stimulus pairs differing in

color only (top) and orientation only (bottom).

the 600 bimodal pairs, while 270 color-only and orientation-only
pairs form a smaller bulge of lower values. The distinctness of the
second peak relies upon the color-only and orientation-only pairs
having comparable dissimilarities and overlapping distributions;
it is thus least distinct for Subject #2.

ESTIMATING MINKOWSKI PARAMETER p
For each subject in turn, and for a given pair of colors (a:b),
we obtain a mean dissimilarity �ab by averaging the mean dis-
similarity over the six appropriate color-only pairs (Sa

m: Sb
m) with

1 ≤ m ≤ 6, and over (Sb
m: Sa

m), i.e., the 12 presentations of that
color combination as same-orientation bars (including the two
presentations of a pair, left-right and right-left). By the same
token, we obtain a mean dissimilarity �mn for each pair of orien-
tations by averaging the (5 × 2) combinations of that orientation
pair as same-color bars (Sa

m: Sa
n) and (Sa

n: Sa
m) where 1 ≤ a ≤

5. Inserting these values into Equation 1, with a given p, pro-
vides predicted dissimilarities for the bimodal stimulus pairs.
We vary p and compare the predictions against the reported
values. Note that this comparison relies on the raw data and
does not involve the inter-point distances obtained in the MDS
analysis.

Plotting the observed dissimilarity ratings (averaged over
subjects) against the values predicted from �ab and �mn for
three Minkowski metrics (p = 1, p → ∞, and p = 2) results in
Figures 8A–C. Seemingly neither of the extreme metrics is ideal:
the predicted dissimilarities for bimodal pairs are too large in
(p = 1; Figure 8A) or too small (p → ∞; Figure 8B), in both
cases introducing a discontinuity into the plot. The Euclidean
metric (p = 2; Figure 8C) provides a better solution.

FIGURE 7 | Distributions of dissimilarity judgments from each subject.
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FIGURE 8 | Observed dissimilarity ratings plotted against values predicted by combining �mn and �ab with different Minkowski exponents.

(A) p = 1; (B) p → ∞; (C) p = 2; (D) p = 1.3. Diagonals shown as dotted lines.

In addition to the three Minkowski metrics named above, we
explored the predictive power of intermediate metrics, varying
exponent p between 0.7 and 3.0. Following Soto and Wasserman
(2010) we use the root-mean square error (RMSE) to compare
the predicted and actual observed dissimilarities, measuring the
discontinuity in the predictions and how well they account for
the observations. The RMSE as a function of p is plotted in
Figure 9. A minimum of 0.47 is achieved at p = 1.30, compared
to the values of 1.02 and 0.99 at p = 1 and 2, respectively. Note
that RMSE is closely related to the summed residuals used by
To et al. (2008, 2011) and the Pearson correlation r used by
Shepard and Cermak (1973) (see also Dunn, 1983). Predicted
dissimilarities for p = 1.3 are plotted against observations in
Figure 8D.

An assumption in the argument is that the data are ratio-level,
i.e., that each numerical rating is proportional to the perception
of that dissimilarity. This is crucial for applying Equation 1 to
the mean orientation-only and color-only ratings. The assump-
tion cannot be tested directly. If, however, the subjects’ rating
responses are a non-linear function of perceptions, then a dif-
ferent p should be optimal for predicting the larger dissimi-
larities of the bimodal pairs generated by orientation-only and
color-only dissimilarities that are both in the upper half of their
distributions (i.e., �mn > 3.43, �ab > 3.94), where the percep-
tion/response curve presumably differs in slope. The optimal p
should be different again when we take orientation-only and color-
only ratings that are both in the lower half of their distributions
and use them to predict the correspondingly smaller bimodal
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FIGURE 9 | RMSE between predicted and observed dissimilarities as a

function of Minkowski exponent p, for all observations (solid line), for

subset of smaller observations predicted from �mn and �ab less than

mean value (gray line); for subset of larger observations predicted

from �mn and �ab greater than mean value (dashed line).

dissimilarities. Figure 9 plots, as a function of p, the correla-
tion between predicted and empirical dissimilarities for these two
subsets. Clearly the same Minkowski metric of p ∼ 1.3 gener-
ates the dissimilarities for both subsets. Estimates of p could also
be distorted if the dissimilarity ratings were interval-level, linear
but including a non-zero constant; this possibility is harder to
exclude.

Repeating this analysis for individual subjects (Figure 10)
shows substantial variation in the relationship between RMSE
and p. It reveals, in particular that Subjects #1, #2, and #5 are gov-
erned by similar functions. Their optimal Minkowski exponents
(1.3, 1.8, and 1.1, respectively; Table 3) correspond to a combina-
tion rule in which orientation and color are neither integral nor
wholly separable. For Subject #4, with optimal p = 0.7, the func-
tion clearly indicates that orientation and color were separable,
and indeed synergistic, so that the dissimilarity between stim-
uli differing on both attributes is greater than the sum of each
attribute’s dissimilarity in isolation. Finally, the optimal p = 3.1
for Subject #3 points to a combination rule that is closer to the
Dominance metric.

DISCUSSION
On first glance the task of rating dissimilarities seems arbi-
trary and artificial. However, the relevance of the combination
function that governs the underlying parameters is not lim-
ited to this task: integral and separable dimensions contribute
in different ways to stimulus classification (Garner, 1974), clas-
sification errors (Shepard and Chang, 1963; Shepard, 1964),
visual search (Treisman and Gormican, 1988), visual pop-
out (Koene and Zhaoping, 2007), and signal detection (Ashby
and Townsend, 1986). Moreover, perceptual dissimilarities bear
upon the survival-centered problem of deciding whether or
not the consequences of one stimulus generalize to a second.
Shepard (1964, 1987) argued on a priori grounds that if an

FIGURE 10 | RMSE between predicted and observed dissimilarities as

a function of Minkowski exponent p, calculated separately for each

subject’s data.

organism’s perceptual process is attuned to regularities in its
environment, it should follow either the p = 1 or p = 2 metric
when it combines multiple sources of dissimilarity, depending
on assumptions about selective attention and the consequential
neighborhoods of the stimuli.

Hyman and Wells (1968) considered other conditions con-
ducive to a low p. If the stimuli are processed as symbolic
or verbal codes then the city-block metric would be the natu-
ral rule for obtaining their dissimilarities, with no interaction
between the separately-encoded components of these descrip-
tions (in addition, the discrete nature of the parameters of varia-
tion can be emphasized by spatial separation of the corresponding
attributes). Indeed, the simple reductionist stimuli of the present
study varied along orthogonal, “nameable” parameters of ori-
entation and color. They lend themselves to a “verbal response
strategy” where the representation of each stimulus is simplified
by reducing it to higher-order symbolic labels (e.g., “60◦+ red”)
and the parameters are processed as parallel verbal codes.

Tasks with a greater cognitive component can also shift integral
dimensions to separable ones (Dunn, 1983; Foard and Nelson,
1984). Tversky and Gati (1982) went further, reporting a series of
experiments where the dissimilarities could best be explained by
a metric with p < 1, i.e., the attributes combined in a synergistic
way (as with the present Subject #4).

Focusing like Shepard (1964) on cues and regularities in the
visual environment, To et al. (2008, 2010) arrived at a different
conclusion about dimensional integrality: the authors argue that
changes in real-world scenes tend to be correlated (i.e., if one
attribute of the scene has changed, it is likely that other attributes
have changed also). Our perceptual mechanisms have the plastic-
ity to recognize and exploit such correlations, creating the phe-
nomenon of “cue recruitment” (Haijiang et al., 2006). The most
efficient way of encoding such a change is the Dominance metric,
in which the dissimilarity is determined by whichever attribute
has changed most, suppressing other attributes since they provide
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little additional information. Indeed, dissimilarities between pic-
tures of natural scenes were best fitted with Minkowski exponent
p = 2.84 (To et al., 2008) or p = 2.48 (To et al., 2010), i.e., p > 2,
indicating that an approximation to the Dominance metric was
in place.

Further, a correlation between attributes is not the only con-
dition that is conducive to a large value of p. Hyman and Wells
(1967, 247) speculated that “speeding up the judgment pro-
cess or otherwise overloading” the subject would increase p by
causing competition and mutual masking among the dimen-
sions. They wondered: “Does the apparent fit to the Euclidean
metric in many judgment situations [i.e., p = 2 rather than
p = 1 as might have been expected] indicate that [subject] is
having trouble in extracting the information from both dimen-
sions?” Complex differences in particular (as in To et al., 2008,
2010) might “saturate” the inter-stimulus dissimilarity. One
complex scene manipulation—controlled by a single parame-
ter, but changing multiple details of the scene—might leave the
observer hard-pressed to attend to another simultaneous manip-
ulation (thereby suppressing its contribution to the combined
dissimilarity) simply by occupying the limited “bandwidth” of
conscious comparisons. Foard and Nelson (1984) add stimulus
duration and the task’s nature to the factors affecting dimensional
integrality.

We note in passing that the discriminative-limitation per-
spective predicts that p can be scale-dependent. Shepard’s view
(1987, Figure 4) of consequential neighborhoods makes the same
prediction. For small enough differences between stimuli (or
between stimulus and background), there is a threshold of dis-
crimination where the detection of any change is limited by the
specific sensory channel on which the difference is greatest (To
et al., 2011). The contribution from any sub-threshold differ-
ences coded on other channels is small (in the case of probabilistic
detection models) or zero. That is, p is large, approximating the
Dominance metric as an asymptote. Thus, the neural channels
that underlie some sensory domain can often be resolved with
stimuli at the discrimination threshold, even if they merge in an
isotropic continuum of integral dimensions at supra-threshold
dissimilarities.

A tempting approach to the question is to apply MDS repeat-
edly with different Minkowski exponents p, choosing the p
that minimizes badness-of-fit stress1. However, a confounding
factor in calculations of stress1 is that the constraints of geo-
metrical embedding are imposed most stringently in Euclidean
geometry (p = 2). This is why the algorithms function most
smoothly in Euclidean space. As Arabie notes (1991), MDS for
p = 1 and p → ∞ turns a single d-dimensional optimization
into a series of d one-dimensional optimizations (requiring a
combinatorial attack rather than a simple steepest-descent algo-
rithm), the problem persisting in milder form for any p �= 2. A
related property of Minkowski metrics for p �= 2 is that small
changes in the relative weighing or salience of the dimensions can
produce abrupt, discontinuous changes in similarity or prefer-
ence ranking (Shepard, 1964). Recent algorithms using Bayesian
Likelihood rather than stress1 may finesse this problem (Okada
and Shigemasu, 2010), but it is not clear how they apply to
a “hybrid” geometry such as the present situation, in which p

governs the combination of orientation and color, two internally-
Euclidean subspaces.

One possibility is that the perception of dissimilarity emerges
at an early stage of visual processing, from a neural locus where
the signals of color and orientation are first combined; before
attributes are subjected to parallel processing along separate
pathways, and eventually re-integrated (Cavina-Pratesi et al.,
2010). “Bottom-up” models based on visual search data allow
the combination of dissimilarity contributions to approximate
the Dominance metric (Zhaoping and May, 2007), but do not
require such behavior, for the models do not place tight bounds
on p (see also Nothdurft, 2000). Koene and Zhaoping (2007) pos-
tulated a “saliency map” in primary visual cortex in which the
contrast between some combination of features (e.g., color C1+
orientation O1) and a background combination (C2 + O2) fol-
lows the Dominance metric, modified by detectors tuned to color
+ orientation conjunctions. The greater the input from conjunc-
tion detectors (relative to single-feature detectors), the further
the metric is shifted toward the city-block model. Lateral inhi-
bition from task-irrelevant variations in the background pattern
reduces the city-block contribution (Zhaoping and May, 2007)
and allows the proposed saliency map to behave more in line with
the Dominance metric. Lateral inhibition of this kind could be a
factor in difference judgments of the complex natural scenes used
by To et al. (2008, 2010).

CONCLUSIONS
MDS of dissimilarity ratings confirmed the expectation that ori-
entation and color can be represented as separate subspaces, with
color-only and orientation-only mean dissimilarities �ab and �mn.
Following Shepard and Cermak (1973), we combined these to
obtain p directly (Figures 9, 10). The range of inter-individual
variation of optimal exponents is substantial—between 0.7 and
3.1 (Table 3)—but comparable to ranges found in previous stud-
ies (cf. Dunn, 1983; Soto and Wasserman, 2010). Notably, the
exponent is p < 2 for four of our five subjects, and for data aver-
aged across subjects, so the orientation and color attributes had
not become “integral,” nor merged their separate natures within
an isotropic continuum. These values also conflict, to an even
greater degree, with the results of To et al. (2008, 2010) from more
complex scenes and manipulations.

The same conclusion—that color and orientation are not
integral—emerges from the individual variations found by MDS.
Specifically, the weight placed on color as a contribution to
dissimilarity varies across subjects relative to the contribution
from orientation (Table 3), with corresponding variations in
the magnitudes of �ab and �mn. There is no obvious rela-
tionship between these dimensional-salience parameters and the
exponents p, nor is one to be expected. We note that for
Subject #3, whose p > 2, the data showed lowest internal consis-
tency (Table 2) and least compatibility with a geometrical model,
i.e., highest stress1 (Table 3).

The obtained values also rule out the possibility that dissim-
ilarities for these stimuli were determined purely by high-level,
top-down cognitive operations, since the top-down symbolic-
label model predicts p = 1, i.e., an absence of non-additive inter-
actions between the two attributes. In practice the contribution of
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each attribute to total dissimilarity is affected by the value of the
other attribute. If, for instance, a stimulus pair is separated by a
smaller difference between their colors than between their orien-
tations, then increasing the color difference will yield a relatively
small increase in dissimilarity.

Possible artifacts were mentioned above that could increase
p by encouraging mutual “masking” among the dimensions of
variation. Of them, only the short time for responses applies (cf.
Foard and Nelson, 1984): a change along either dimension is
unlikely to saturate the capacity of visual processing, nor is there a
background of task-irrelevant variations to inhibit the signal from
feature-conjunction detectors in V1. Thus, it is unlikely that the
subjects’ actual values of p were much lower than these observed
values.

It follows that the present results are not restricted to sit-
uations where the inter-stimulus variations involve clear-cut
attributes, and a cognitive verbal-response strategy. We note also
that Minkowski exponents p near to 1 have been reported even
when the underlying parameters generating the stimuli are “rela-
tively novel and difficult to verbalize—at least in any way that is
general enough to extend beyond the immediate neighborhood
of any one form” (Shepard and Cermak, 1973, 353).

The range of p-values across subjects is an interesting phe-
nomenon in its own right, although it is an obstacle to drawing
general, universally-applicable conclusions. One possible expla-
nation is that a subject has access to several parallel strategies or
processes, each comparing stimuli within a different Minkowski
metric, with the judgment of dissimilarity being a combina-
tion of their outputs. Then the variations among subjects spring
from weighting these outputs in different ratios. A possible role

of top-down modulation in this weighting could be tested by
manipulating the experimental instructions.

As noted earlier, Izmailov and Edrenkin (2010) reported dis-
similarity data for 25 bar stimuli with five levels of orienta-
tion (0◦, 30◦, 60◦, 90◦, 120◦) and of luminance (1, 2, 8, 32,
and 64 cd/m2). We applied our analysis to their 50 orientation-
only and 50 luminance-only pairs to predict the dissimilarities
of bimodal pairs. The predictions were most accurate for p ∼
1.9. That is, in comparison to the present study, orientation
and luminance appeared close to being integral. The departure
demonstrates that there is nothing about the present approach
that forces p < 2 as an outcome. Without further investiga-
tion, the reason for the different behavior of luminance is not
obvious.
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