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A hypothesis regarding the development of imitation learning is presented that is rooted in
intrinsic motivations. It is derived from a recently proposed form of intrinsically motivated
learning (IML) for efficient coding in active perception, wherein an agent learns to perform
actions with its sense organs to facilitate efficient encoding of the sensory data. To this
end, actions of the sense organs that improve the encoding of the sensory data trigger an
internally generated reinforcement signal. Here it is argued that the same IML mechanism
might also support the development of imitation when general actions beyond those of
the sense organs are considered: The learner first observes a tutor performing a behavior
and learns a model of the the behavior's sensory consequences. The learner then acts
itself and receives an internally generated reinforcement signal reflecting how well the
sensory consequences of its own behavior are encoded by the sensory model. Actions
that are more similar to those of the tutor will lead to sensory signals that are easier to
encode and produce a higher reinforcement signal. Through this, the learner’s behavior is
progressively tuned to make the sensory consequences of its actions match the learned
sensory model. | discuss this mechanism in the context of human language acquisition and
bird song learning where similar ideas have been proposed. The suggested mechanism
also offers an account for the development of mirror neurons and makes a number of
predictions. Overall, it establishes a connection between principles of efficient coding,
intrinsic motivations and imitation.
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1. INTRODUCTION

Imitation is a powerful form of learning where an agent acquires a
skill from observing the skill being performed by a second agent.
This can dramatically speed up the learning of useful behaviors
compared to random exploration (Miller and Dollard, 1941). In
the animal learning literature, imitation has been defined as “the
copying of a novel or otherwise improbable act or utterance,
or some act for which there is clearly no instinctive tendency”
(Thorpe, 1963), but many other more or less stringent definitions
exist. Many authors reserve the term imitation to situations where
the behavior in question is not yet in the behavioral repertoire of
the imitating agent (Clayton, 1978), but assessing the behavioral
repertoire of an animal is in itself problematic. In the following, I
will simply use imitation as an umbrella term for various forms of
social learning and highlight important distinctions in the context
of specific examples.

Despite many years of research, the origin and development of
imitation abilities in animals and humans are still poorly under-
stood (Heyes, 2001). While some theories have proposed that
the ability to imitate relies on sophisticated innate mechanisms
(Meltzoff and Moore, 1997), other accounts have emphasized
the role of generic learning mechanisms for the development of
imitative behaviors (Miller and Dollard, 1941; Gewirtz, 1969).
Recent learning accounts considering possible underlying neu-
robiological mechanisms have rested on associative (Hebbian)

learning (Heyes and Ray, 2000; Keysers and Perrett, 2004) or
reinforcement learning (Triesch et al., 2007). These are sufficient
for the development of a simple form of imitation also called
response facilitation, where the agent learns to map the observa-
tion of a behavior performed by a second agent onto an already
existing motor representation for performing the same behav-
ior. This motor representation could already be present at birth
or have been learned previously through random exploration of
movement possibilities, often referred to as babbling. Importantly,
however, these accounts have difficulties explaining the devel-
opment of what is sometimes called true imitation, where the
to-be-learned skill is not yet in the behavioral repertoire of the
developing agent. This is the much more difficult and interest-
ing case, because it addresses how imitation could accelerate the
acquisition of novel skills.

An important example is speech acquisition, where the infant
learns to produce utterances from her native language based on
interactions with her caregivers. Infants are capable of statistical
learning and readily discover statistical patterns of their native
language, but also the social interaction with caregivers is criti-
cal for normal development of speech, see Kuhl (2004) for review.
A closely related case is the acquisition of songs in certain species
of song birds. This learning has been related to human language
learning (Marler, 1970; Doupe and Kuhl, 1999) and is used as a
model system for it. As early as 1773 it was shown that birds learn
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their song(s) from experience during development (Barrington,
1773). For example, male juvenile zebra finches usually learn
to sing a song that closely resembles that of their father. The
learning proceeds in two phases. During a first phase of purely
sensory learning, the juvenile bird is suspected to form an audi-
tory template of the father’s (or other social tutor’s) song (Baptista
and Petrinovich, 1984; Konishi, 2010). During a second phase
of sensory-motor learning, the bird learns to produce a song to
match the learned template. Depending on the species, the sen-
sory and sensory-motor phases may or may not overlap. Presently
it is still unclear through what precise mechanisms the juvenile
bird manages to better and better approximate the father’s song.
Here I discuss how a recently proposed intrinsically motivated
learning (IML) mechanism for efficient coding in active percep-
tion might be generalized for this form of imitation learning.
This suggests that principles of efficient sensory coding may be
a foundation for song learning in birds and speech acquisition in
humans.

Intrinsic motivations have recently come into focus as impor-
tant driving forces in the development of complex behaviors
(Baldassarre and Mirolli, 2013). While there is still much debate
about the correct definition of intrinsic motivations (Baldassarre,
2011), the term is usually used when referring to behaviors such as
play or other “curious” exploration of the environment that seem
unrelated to any immediate “extrinsic” goal such as the acquisi-
tion of food. This hypothesis article does not propose any specific
computational model nor does it present any empirical results. It
is merely discussing the new hypothesis in the context of existing
work. In the following, I briefly review a recently proposed form
of IML for efficient sensory coding in active perception. Then I
show how a generalization of this mechanism may account for the
development of imitative behaviors. This also suggests a mecha-
nism for the development of mirror neurons. Finally, I discuss
predictions that the proposed mechanism makes.

2. INTRINSICALLY MOTIVATED LEARNING FOR EFFICIENT
CODING IN ACTIVE PERCEPTION

The efficient coding hypothesis posits that sensory systems strive
to encode sensory information in an efficient manner by exploit-
ing the statistical structure and redundancies present in the
sensory data (Attneave, 1954; Barlow, 1961). Since its first formu-
lation, numerous aspects of sensory coding have been successfully
explained in this context. This includes research on how early
visual representations can be understood as adaptations to the
statistics of natural images (Simoncelli and Olshausen, 2001)
as well as related findings in the auditory (Smith and Lewicki,
2006) and olfactory (Perez-Orive et al., 2002) modalities. While
this research program has been highly successful, it has typically
neglected the active nature of perception. In particular, the statis-
tics of sensory signals are a result of both the natural environment
and the organism’s behavior. This implies that the behavior of
the organism and in particular the movement of the sense organs
could be utilized to make the encoding of sensory information
more efficient.

Along these lines and inspired by previous work from
Schmidhuber (2009) proposing compression progress as an
objective for IML, Zhao et al. (2012) have recently presented a

model that learns to efficiently encode visual input from two eyes,
see Figure 1A. Their approach proposes a form of IML using
an internally generated reinforcement signal for learning efficient
coding strategies in active perception. The method works as fol-
lows: A sensory model learns to encode sensory data, while a
reinforcement learner generates actions of the sense organs that
help the agent to encode the sensory data efficiently. To this end,
an internally generated reinforcement signal is given to the rein-
forcement learner that reflects how well the sensory model is able
to encode the input.

In the context of binocular vision Zhao et al. (2012) have
shown that this mechanism elegantly explains the joint devel-
opment of an efficient representation for stereo disparity in
the sensory model and an accurate controller for vergence eye
movements. In this setting, the system discovers that it is useful
(intrinsically rewarding) to verge both eyes onto a common phys-
ical point, because then the sensory model is able to encode the
data more efficiently. This is because the images from both eyes
become more redundant and their joint encoding by the sensory
model becomes more accurate. We may think of this in terms of
the affordance concept. The observation of a certain disparity at
the center of gaze is found to afford a certain vergence command
that will lead to an improved representation of this input.

reinforcement signal
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FIGURE 1 | The recently proposed intrinsically motivated learning
architecture for efficient coding in active perception (A) also gives rise
to the development of imitation (B). (A) The learning architecture
comprises an efficient coding model for the sensory input and an
intrinsically motivated reinforcement learning mechanism for generating
behavior. In the example of Zhao et al. (2012), the efficient coding model
learns a sparse code for binocular images, while the reinforcement learner
generates vergence eye movements. To this end, it receives from the
sensory coding model a representation of the sensory input (thin arrow)
and an internally generated reward signal reflecting how well the sensory
model could encode the binocular input (thick arrow). Both the sensory
coding model and the reinforcement learner try to optimize the encoding of
the data. The system discovers that the input data can be encoded most
efficiently when vergence commands are used to minimize binocular
disparity. (B) The learner acquires an efficient encoding of speech signals
provided by a tutor (big mouth). When the learner starts babbling (small
mouth), the resulting acoustic signals are encoded by the sensory model
that has been tuned to the tutor’s speech. Signals that are easy to encode
for the sensory model because the utterance sounds similar to the tutor's
speech will produce a high reinforcement signal. Through this, the system'’s
utterances are progressively driven to approximate the tutor’s speech.
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Importantly, the learning of the sensory model and the eye
movement control develop jointly in this approach, driven by
the identical objective of encoding the data efficiently. This
mechanism has been shown to lead to fully autonomous and
self-calibrating development of binocular vision and has been val-
idated on a real robot (Lonini et al., 2013). More recently, it has
also been extended to the development of smooth pursuit eye
movements. Whether this approach can be extended to actions
beyond eye movements is still an open question.

The central assumption of this approach is the existence of an
internally generated reinforcement signal that encourages move-
ments of the sense organs leading to an improved encoding of
the sensory stimulus. Research on perceptual fluency supports the
plausibility of this assumption. It has been found that the ease
of processing of a sensory stimulus is related to positive affect
(Reber et al., 1998). Assuming that the ease of processing reflects
the quality of encoding of the stimulus by the sensory model,
then easy to encode stimuli should produce positive affect. This
positive affect may be due to the proposed internally generated
reinforcement signal.

One point requires some discussion, however. Simply trying to
behave such that the incoming sensory signals are encoded most
easily might drive the agent to more or less abolish sensory input.
In the case of visual perception, the agent could simply close the
eyes or stare at a blank wall. This would make the sensory sig-
nals be encoded most easily, but is of little use otherwise. There
are several ways to avoid this. A first solution is to introduce
a separate mechanism for selecting what the agent will look at,
while the described IML mechanism ensures that how the target
object is being looked at is most efficient. For example, an atten-
tion mechanism selects what object in the scene should be looked
at, while the proposed IML mechanism ensures that this partic-
ular object is well represented through vergence, smooth pursuit,
and possibly other eye, head, and body movements. At the same
time, it provides an optimized sensory encoding of the stimulus
by properly taking into account the statistics of the sensory sig-
nals resulting from these movements. A second solution to the
problem is to measure the ease of encoding of the sensory data
in relation to some notion of the complexity of the data or the
amount of information it contains. For example, the sensory sig-
nals resulting from staring at the blank wall may indeed be easy
to encode (e.g., lead to a low reconstruction error of a genera-
tive model), but they may contain very little information to start
with. There are various ways of making these notions mathemat-
ically precise, but the details are not important for the present
paper.

Having introduced the recently proposed IML mechanism for
efficient coding in active perception, we are now ready to con-
sider its connection to imitation learning, which will require us
to generalize it from movements of the sense organs to other
motor acts.

3. HOW INTRINSICALLY MOTIVATED LEARNING FOR
EFFICIENT CODING MAY SUPPORT IMITATION

The mechanism for IML in active perception discussed above

could also lead to the development of a form of imitation learn-

ing, as illustrated in Figure 1B. Consider the example of an infant

faced with the problem of acquiring speech by imitating the utter-
ances of her caregivers (or that of a juvenile song bird learning the
father’s song). Let’s assume that at a certain point in development
the infant has already learned a reasonably good sensory repre-
sentation of what her native language sounds like Kuhl (2004).
This representation will continue to improve with age and expe-
rience. When the infant vocalizes, her utterances will be processed
by her own auditory system, which has already been tuned toward
the sounds and words of her mother tongue. According to the
IML mechanism described above, utterances that sound more like
her mother tongue will be more easily encoded by her auditory
system, which will lead to the generation of a higher reinforce-
ment signal compared to utterances that sound dissimilar from
her mother tongue. Thus, over time, the infant will adapt her
utterances to the language she is exposed to driven by her intrin-
sic motivation to behave in such a way that the sensory data are
encoded easily for her auditory system. Importantly, this suggests
that language specific information could enter the babbling pro-
cess early on, with each utterance being evaluated in the light of
already learned sensory representations. We will return to this
point in the Discussion.

An important question in this context is how the sensory
model will learn to encode the caregiver’s speech and when exactly
the infant’s speech will be easy to encode for the sensory model.
The caregiver’s utterances will necessarily sound different from
the infant’s utterances due to the different structure of their vocal
tracts. For example, it is not lcear why the sound of a certain
vowel produced by the infant with her vocal tract should be easy
to encode for her auditory system, if this has been tuned to speech
of her caregiver, whose vowels will generally differ in fundamental
frequency and other parameters. For the case of vowel acquisition
in the context of infant caregiver interactions, it has been argued
that an automirroring bias can overcome this difficulty Ishihara
et al. (2009); Miura et al. (2012).

3.1. RELATIVE TIMING OF SENSORY AND MOTOR LEARNING

For The proposed IML mechanism it may be maladaptive for the
learner to produce utterances at an excessive rate right after birth.
If a sensory representation properly reflecting the correct target
language (or song) is not acquired first, then the learner’s auditory
representation may become tuned to or even dominated by its
own utterances. According to the proposed IML mechanism, the
learner would then find rewarding whatever it is producing itself.
This could potentially slow down learning of the native language.
Enforcing a sufficient amount of passive exposure to the language
may avoid this problem.

Similarly, reducing plasticity in sensory areas at the end of a
critical period and before the onset of vocalizations may also alle-
viate this problem, because it prevents the sensory representation
from becoming dominated by the sensory consequences of the
agent’s own actions.

An alternative solution to the problem would be to reduce
or switch off sensory learning during one’s own vocalizations.
Instead, the auditory feedback could be used to train a forward
model that predicts the auditory feedback based on an effer-
ence copy of the motor signals. Note that an accurate forward
model allows planning and off-line learning without the need for
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producing actual motor output and observing the consequences.
This can dramatically speed up learning (Sutton and Barto, 1998)
and could even happen during sleep.

3.2. LEARNING ONE THING OR MANY?

As discussed above, the absence of sensory input might be par-
ticularly easy to encode for the sensory system. This might lead
the infant to not vocalize at all. Several solutions are conceiv-
able. First, as suggested above the quality of encoding of the
sensory model could be relative to the complexity of the sen-
sory input or the amount of information contained in it. In this
way, the situation of not babbling at all could be made compara-
tively undesirable. Second, a mechanism reinforcing the learning
of novel cause and effect relationships or the “discovery of novel
actions” (Redgrave and Gurney, 2006) could foster varied bab-
bling. Third and maybe most obviously, the infant may want to
communicate.

The question remains what and how many different things
might be acquired through this IML mechanism. Note that while
some bird species only learn a single song that “crystallizes” dur-
ing development, others learn thousands of utterances during
their life time (Catchpole and Slater, 2003) as do humans. If
the sensory model allowed for only a single song “template” to
be stored, this might explain why only a single song is learned.
If, however, the sensory model had a high capacity for storing
many acoustic patterns with high fidelity, then a large repertoire
of actions would be learned with this mechanism. In general, for
any kind of sensory model there will be a trade-off: given a fixed
storage capacity more patterns can only be stored at the cost of
storing them with smaller fidelity. Such differences could con-
tribute to the varied vocabulary sizes in different species of song
birds.

3.3. CONTEXT DEPENDENCE

The mechanism described thus far will allow an agent to learn to
imitate a range of utterances or behaviors whose sensory conse-
quences match those of its learned sensory model. In the simplest
case, however, all of these behaviors will appear equally “good” in
any situation, i.e., what vocalization is performed would not nec-
essarily depend on the current context. This could lead to behav-
iors being produced in inappropriate contexts. How could the
agent learn to generate a certain behavior only in the appropriate
context?

One solution is certainly through instrumental learning. If, say,
the behavior has undesirable consequences in the present con-
text, its execution may be made less probable because of this.
A second solution to the problem is that during learning of the
sensory model, contextual information is also integrated into the
representation. Thus, the model will not be a purely sensory
model anymore but a sensory-plus-context model. Specifically,
if during the sensory-only phase of development, the infant or
the song bird hears an utterance only in a specific context, then
the developing sensory-plus-context model may encode this rela-
tionship. Thereby, if the learner generates the behavior in the
same context, this will be particularly easy to encode for the
sensory-plus-context model. Conversely, if the behavior is pro-
duced in a different context, this will be less easy to encode for the

sensory-plus-context model, because there is a mismatch between
the context and the sensory input. Obviously, relevant contexts
are also perceived based on sensory, e.g., visual information. Thus
a strict separation of sensory information and context may not
always be possible. Interestingly, the context could be the pres-
ence of a certain object to which the infant pays attention. In
this case, an initial association between the visual appearance
of the object, it’s acoustic label, and the motor representation
for generating the acoustic label can be established. In this sit-
uation, the presense of the object would afford producing the
object’s name.

4. DEVELOPMENT OF MIRROR NEURONS

Mirror neurons are a class of neurons first observed in the pre-
motor cortex of monkeys (Gallese et al., 1996) whose defining
characteristic is that they can be activated if the monkey observes
another agent performing a certain behavior or if the monkey
plans and executes the same behavior. Because of this, they have
been implicated in action understanding, imitation, empathy and
language acquisition (Rizzolatti and Arbib, 1998; Gallese et al.,
2004; Rizzolatti and Craighero, 2004). While originally discovered
in monkeys, there is converging evidence for a mirror neuron sys-
tem in humans (Iacoboni et al., 1999) and song birds (Prather
et al., 2008). While the question how mirror neurons could sup-
port imitation has received much interest (Iacoboni et al., 1999;
Tacoboni, 2005, 2009), comparatively little work has investigated
how mirror neurons develop ontogenetically and what learning
processes drive this development (Heyes, 2010).

Complementary mechanisms have been proposed for the
development of mirror neurons based on generic learning prin-
ciples. The most popular one is that mirror neurons develop
through associative learning mechanisms such as Hebbian learn-
ing (Heyes and Ray, 2000; Keysers and Perrett, 2004; Heyes
et al., 2005; Catmur et al., 2007; Cooper et al., 2013). A second
mechanism is that mirror neurons could develop through reward-
dependent (instrumental, reinforcement) learning (Triesch et al.,
2007). We will take a look at both mechanisms before describ-
ing a new one based on IML for efficient coding, which combines
aspects of the other two.

4.1. HEBBIAN DEVELOPMENT OF MIRROR NEURONS

Hebbian accounts works as follows (Heyes and Ray, 2000; Keysers
and Perrett, 2004; Del Giudice et al., 2009). In the case of behav-
iors whose sensory consequences are easily observed such as
seeing one’s own reaching movement or hearing one’s own utter-
ances, it is assumed that Hebbian learning forms associations
between simultaneously active sensory and motor representations
for already learned skills. As a result, neurons involved in the
execution of a specific behavior receive strong excitatory connec-
tions from neurons representing its sensory consequences and
vice versa. When another agent is then observed performing the
same action, the same sensory representations will be triggered
due to their ability to generalize to similar sensory stimuli. It
has been argued that such generalization ability may stem from
maturational constraints of the visual system Nagai et al. (2011).
The activated sensory representation then excites the correspond-
ing motor representation via the associative connections learned
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through the Hebbian mechanism. Through this the motor rep-
resentation has obtained mirror properties: it is activated by
planning or executing a behavior and by merely observing it in
another agent.

The situation is more difficult for behaviors where the agent
cannot fully perceive the sensory consequences of its actions as
in the generation of facial expressions. For such “opaque” cases it
is assumed that the agent learns to imitate by first being imitated
by another agent—usually the caregiver. For example, when an
infant smiles and his mother imitates the smile, the infant can
learn to associate the visual representation of the mother’s smiling
face with her own motor representation for smiling. Again, the
motor representation assumes mirror properties due to Hebbian
learning. While overall the account appears plausible, a limitation
is that it only develops mirror representations for skills that have
already been learned. The learning of novel behaviors is left to
random exploration which is very inefficient when many motor
degrees-of-freedom are involved as is the case in speech or song
production, i.e., when learning takes place in a high-dimensional
space.

4.2. REWARD-DRIVEN DEVELOPMENT OF MIRROR NEURONS

In the reward-based learning account, the agent discovers that
performing a certain behavior is useful whenever it sees another
agent perform this behavior. For example, when a developing
monkey observes a conspecific grasping a peanut from a source,
the resulting sensory representation can become associated with
the monkeys own motor plan for grasping a peanut from the same
source, which is inherently rewarding—especially when hungry.
Note that this mechanism does not require the ability to observe
the sensory appearance of one’s own action, but only whether
it leads to a positive, i.e., reinforcing outcome. Circumstantial
evidence for the importance of reward-driven learning in the
development of mirror neurons comes from a recent finding that
mirror neurons in monkey premotor area F5 are modulated by
the value the monkey assigns to a grasped object (Caggiano et al.,
2012).

The reward-driven account was studied in greatest detail in the
context of gaze following, where an agent learns to look where
others are looking. This is an example of a behavior where the
sensory appearance of the behavior cannot be observed while
the agent performs it. Triesch et al. (2007) proposed a compu-
tational model for the development of gaze following and showed
that it produced mirror neurons for looking behaviors. It also
explained various other aspects of the development of gaze fol-
lowing (Jasso et al., 2012). The existence of mirror neurons was
the central prediction of the model and it was later confirmed
neurophysiologically (Shepherd et al., 2009).

Interestingly, the reward-driven learning mechanism also pre-
dicts the possibility of generalized mirror neurons (Triesch et al.,
2007). An agent may discover that it is useful to perform some
action A whenever another agent is observed performing an
action B. Gaze following represents a simple example of this:
when two agents face each other, proper gaze following requires
the learning agent to turn the head to his left if the model
is observed turning the head to its right. Thus, not the phys-
ical appearance of the movement matters, but the goal of the

action: where should I look? Through the reward driven learn-
ing mechanism an association can be learned from the sensory
representation corresponding to the observation of the other
agent performing action B and one’s own motor representation of
action A. This would lead to generalized mirror neurons for which
the observed action triggering them is not necessarily identical to
the action being generated.

4.3. INTRINSICALLY MOTIVATED DEVELOPMENT OF MIRROR
NEURONS

The proposed IML mechanism integrates ideas from the Hebbian
and the reward-based accounts. Like the Hebbian mechanism,
it requires that the sensory consequences of the actions can be
perceived. The development of mirror neurons could proceed
along the following steps. (1) During sensory-only learning, a
sensory model of various behaviors produced by the tutor is
learned. Associated with this model, we assume that there will be
populations of neurons specific to the perception of these differ-
ent behaviors. (2) During the sensory-motor phase, the learner
acquires motor representations that produce the same sensory
consequences by virtue of the proposed IML mechanism. This
involves the learner’s reward system, but the reinforcement signals
are internally generated. In the end, specific motor representa-
tions and the associated populations of neurons will code for
specific behaviors. (3) Since these motor representations trigger
specific sensory consequences, Hebbian learning mechanisms can
establish a bidirectional association between the motor represen-
tation and the sensory representation. Through this, the sensory
representation will acquire some motor properties and the motor
representation will acquire some sensory properties. The clear
distinction between sensory and motor representations dissolves
and neurons with mirror properties develop: They are active
when their sensory representation is triggered during observation
of the behavior of another agent and during planning and exe-
cution of the corresponding behavior. Note that, the three steps
could also overlap in time.

The computational benefit of the IML mechanism over the
Hebbian mechanism is that the discovery of new skills is not left to
random exploration, but occurs under guidance from the sensory
model. Exploration is focused on those behaviors that produce
similar sensory consequences as the behavior of conspecifics. The
computational advantage over the reward-based mechanism is
similar. The discovery of new skills does not require an external
reward such as the peanut in the above example, but guarantees
that matching one’s behavior with that of a conspecific is intrin-
sically rewarding. This seems to better reflect the true nature of at
least human imitation.

5. DISCUSSION

I have described how a recently proposed mechanism for IML
for efficient coding in active perception can be generalized to
support imitative learning. In addition, a corresponding account
for the development of mirror neurons was presented. It com-
bines previous proposals based on associative Hebbian learning
and instrumental or reinforcement learning in the framework
of IML. These mechanisms represent parallel pathways through
which mirror neurons can be acquired. Once established through
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either of these mechanisms, it is easy to see how mirror neu-
rons could contribute to various forms of imitation including
automatic imitation (Heyes, 2010) and vocal mimicry.

The IML mechanism proposed here is compatible with many
previous theoretical accounts and computational models of song
bird learning. A full review of these works is beyond the scope of
this article. Existing works typically assume that a reinforcement
signal is derived from matching auditory feedback to a stored
sensory template (Doya and Sejnowski, 1995; Troyer and Doupe,
2000). Here I have proposed that such a reward signal could be
derived from an evaluation of how well the auditory feedback is
encoded by a sensory model. This distinction is admittedly sub-
tle, but it connects the present approach to theories on efficient
coding and sparse coding models as we have used in our work on
the role of the same IML mechanism in active perception (Zhao
etal.,, 2012; Lonini et al., 2013). This may be important, since neu-
ral representations in certain parts of the song system are known
to be very sparse (Hahnloser et al., 2002).

The examples of human language acquisition and bird song
learning are special in that the sensory consequences of the behav-
ior are readily perceived. Obviously, the proposed mechanism can
be extended to other actions that are easily perceived such as man-
ual actions. For other actions such as facial expressions, this is not
straight forward (unless a mirror is available). Learning to imitate
facial expressions may require other mechanisms such as being
imitated by caregivers (Heyes, 2001) or rely on reinforcement
learning mechanisms and social feedback.

The presented mechanism is rooted in the efficient coding
hypothesis. As such, it somewhat downplays the importance of
social feedback during speech and song acquisition. But the social
context in which learning takes place is known to play a very
important role both in human language acquisition and bird song
learning Goldstein et al. (2003); Kuhl et al. (2003). In the words
of Goldstein and Schwade (2008): “infants’ prelinguistic vocaliza-
tions, and caregivers’ reactions to those immature sounds, create
opportunities for social learning that afford infants knowledge of
phonology”

The proposed IML mechanism also shares some aspects of
previous work on imitation in the developmental robotics litera-
ture. For instance, (Gaussier et al., 1998) and (Andry et al., 2001)
propose a robot where a mechanism of “cognitive homeosta-
sis” would give rise to imitative behaviors. Due to a “perceptual
ambiguity” the robot may mistake an optic flow field caused by
observing a moving agent with the flow field produced by its
own locomotion. The homeostasis drive would try to minimize
the mismatch between the sensory input stream and the robot’s
motor commands such that the robot will start moving. This is
suggested to lead to an immediate following behavior. They then
present experiments with a real robot that has a different prewired
following mechanism. It learns to store extended sequences of
movements resulting from following another robot or a human
if these sequences lead to a reward. In our case, imitation does
not emerge from a drive to reduce the mismatch between sensory
percepts and own motor commands or from a prewired following
mechanism but from a reinforcement signal that favors move-
ments whose sensory consequences can be encoded efficiently by
the sensory system.

Kaplan and Oudeyer (2007) have considered an intrinsic moti-
vation for maximizing learning progress and discussed its poten-
tial role in the development of imitation. After illustrating how
an intrinsic motivation for learning progress allows an agent
to tackle progressively more difficult learning problems by dis-
covering “progress niches,” they speculate that such an intrinsic
motivation may also contribute to the development of imitation.
Specifically, they argue that “(1) the meaningful distinctions nec-
essary for the development of imitation (self, others and objects
in the environment) may be the result of discriminations con-
structed during a progress-driven process and that (2) imitative
behavior can more generally be understood as a way of producing
actions in order to experience learning progress.” They specu-
late that at different stages of development infants may engage
in different kinds of imitative behaviors because they maximize
the infant’s current learning progress. Here we argue that imita-
tive behaviors are reinforced because their sensory consequences
can be encoded efficiently by the learner’s sensory model.

How could the proposed IML mechanism be tested experi-
mentally? In the context of human language learning, it suggests
that the babbling process might already reflect some aspects of the
statistical properties of the language to which the infant has been
exposed. This in turn predicts that the babbling process of infants
could be shaped by carefully controlling their language input. For
example, we may speculate that when caregivers intuitively reply
to babbling attempts by uttering “close” words from the target
language, they will affect the infant’s sensory model in such a way
that the correct pronunciation of the “close” word is reinforced
during future babbling attempts. In contrast, replying to infant’s
babbling attempts with arbitrary different-sounding words will
not produce this effect. Other aspects of child-directed speech
such as hyperarticulation are also thought to aid the infant in
learning a sensory model of the target language (Kuhl et al., 1997).
More research is needed to investigate if and how infants’ babbling
is shaped by their developing sensory model of the target language
through internally generated reinforcement signals.

In the context of bird song learning, the IML mechanism could
be tested most directly by recording from reward circuits in the
song bird brain as the animal is learning its song. The most obvi-
ous and direct prediction is that utterances sounding more similar
to the father’s song will generate a higher reward signal because
they are easier to encode for the bird’s auditory system, while
utterances sounding dissimilar from the father’s song will gen-
erate a lower reward signal because they are harder to encode.
By manipulating the auditory feedback the bird is receiving, the
causal role of this sensory feedback in learning can be tested. Note,
however, that disentangling whether a stronger reinforcement sig-
nal is due to an easier encoding of the sensory signals or a greater
similarity of the auditory feedback to a stored template may be
difficult. To this end, it may be important to consider song bird
species learning many different songs.

Next to testing the proposed mechanism and its possible neu-
ral implementation in biological experiments, it will also be
interesting to apply the idea in the context of robots. For example,
future work could try to exploit the proposed IML mechanism
for language learning in robots. This will help to identify possible
limitations or inconsistencies of the approach. The experiences
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gained would help to further develop and refine the current pro-
posal. In conclusion, it is intriguing that the venerable principle
of efficient sensory coding may play a central role in sophisticated
cognitive phenomena such as imitation and language acquisition.
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