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For the surface reflectance of an object to be a useful cue to object identity, judgments of
its color should remain stable across changes in the object’s environment. In 2D scenes,
there is general consensus that color judgments are much more stable across illumination
changes than background changes. Here we investigate whether these findings generalize
to real 3D objects. Observers made color matches to cubes as we independently varied
both the illumination impinging on the cube and the 3D background of the cube. As in
2D scenes, we found relatively high but imperfect stability of color judgments under
an illuminant shift. In contrast to 2D scenes, we found that background had little effect
on average color judgments. In addition, variability of color judgments was increased
by an illuminant shift and decreased by embedding the cube within a background.
Taken together, these results suggest that in real 3D scenes with ample cues to object
segregation, the addition of a background may improve stability of color identification.
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1. INTRODUCTION
For the surface reflectance of an object to be a useful cue to
object identity, judgments of its color should remain relatively
stable across changes in the object’s environment. This stability
is known as color constancy. Achieving color constancy between
scenes poses a difficult problem for the visual system because the
sensory signal that reaches the eye from a scene confounds the
surface reflectance of objects within the scene and the illumi-
nation impinging on the scene. For example, imagine moving a
coffee mug from the kitchen counter to a patio table outside. Both
the illumination and the sensory signal reaching the eye from
the mug and the area surrounding it will change. The reflectance
properties of the mug have not changed, but the reflectance prop-
erties of its surrounding surfaces have. The challenge for the
visual system is to correctly parse the changing sensory signal in a
fashion that supports color identification.

A complete theory of color vision would characterize behav-
ior in real-world color tasks for objects in scenes where both
the illumination and surrounding objects change. We are still far
from this goal, both because the characterization of such real-
istic stimuli is currently a computationally intractable problem
and because typical laboratory tasks diverge from real-world tasks
in a number of ways (see Brainard and Radonjic, in press, for
discussion).

There are several approaches available as we seek to move
toward a more complete theory of color vision. One general
approach is to simplify from the complexity of realistic stimuli
and tasks to more carefully controlled tasks and stimuli, with
the goal of uncovering principles that govern the relationship
between stimuli, task, and color judgments. The hope is that
such principles will generalize well to more complex tasks and
stimuli. Experiments in this vein have achieved success in demon-
strating relationships between early physiological mechanisms

and judgments of color appearance (Werner and Walraven, 1982;
Webster and Mollon, 1994; Engel and Furmanski, 2001) and have
guided the development of computational models that can pre-
dict color appearance judgments (McCann et al., 1976; McCann,
2004). However, an important question is whether such princi-
ples in fact generalize to color judgments of more realistic stimuli
and in more ecologically relevant tasks. Indeed, recent work high-
lights the difficulty of linking early physiological mechanisms
to the later cortical mechanisms that presumably underlie func-
tional color judgments in complex scenes (Gegenfurtner, 2003;
Solomon and Lennie, 2007; Witzel and Gegenfurtner, 2013).
Thus, a complementary class of experimental approach is to
measure color judgments that employ more realistic tasks and
stimuli. Because the critical variables underlying perception of
such realistic stimuli are not yet amenable to a clear computa-
tional characterization, this approach has the disadvantage that
the data are not obviously applicable to known physiological
mechanisms and models. However, such experiments can pro-
vide important guidance about ecologically relevant variables as
we develop increasingly complex models of human color vision.

Here we take the second approach with the goal of measur-
ing color judgments in 3D scenes with a real-world color task. In
the remainder of the introduction we outline the principles that
might be expected to generalize from simpler scenes to govern
such color judgments.

In many cases it is now possible to predict successfully color
judgments of a uniformly illuminated flat test stimulus sur-
rounded by other flat stimuli. For example, one can start with
the responses of cones in the retina, and compute color esti-
mates explicitly using computations grounded in the opponent
chromatic and luminance responses of cells early in the visual
system (Land and McCann, 1971; McCann et al., 1976; McCann,
1992a; Zaidi et al., 1992; Nayatani, 1997). Although a vigorous
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debate continues about the exact mapping between local contrast
and color appearance (McCann, 1992b; Singer and D’Zmura,
1994; Brown and MacLeod, 1997; Zaidi et al., 1997; Blakeslee and
McCourt, 2001; Rudd and Zemach, 2004; McCann, 2006; Ekroll
and Faul, 2012), local contrast in some form is central to many
theories. Such local contrast mechanisms in principle support
color constancy under illumination shifts, but yield poor color
constancy under background shifts. Consistent with this, a large
body of work suggests that color constancy in 2D scenes is rela-
tively high under illuminant shifts (Smithson, 2005; Shevell and
Kingdom, 2008; Foster, 2011; Brainard and Radonjic, in press)
but relatively poor under background shifts (McCann, 1992b;
Kraft et al., 2002; Werner, 2006).

As we move from 2D scenes with uniform illumination to 3D
scenes with non-uniform illumination, an important question is
whether these consistent findings of high constancy under illu-
mination shifts and poor constancy under background shifts will
generalize. There are at least two reasons to be cautious about
such generalizations.

First, as scenes become more complex, the local contrast rela-
tionships between object and background likewise become more
complex. For example, the light reaching the eye from an object of
one surface reflectance may vary because object pose with respect
to the illuminant introduces illumination gradients or shadows,
because of variation in the illumination itself, because of the tex-
ture of the object, or because of specular highlights (Brainard and
Radonjic, in press).

Thus far, the empirical research is mixed. In support of gen-
eralization, some recent work suggests that, as in 2D scenes,
observers adjust color matches to compensate partially for illu-
mination gradients (Boyaci et al., 2003, 2004; Ripamonti et al.,
2004; Allred and Brainard, 2009; Xiao et al., 2012). Also as in 2D
scenes, constancy is less stable when the surfaces surrounding an
object change than when the illuminant changes, and constancy is
particularly poor when both are manipulated together (Delahunt
and Brainard, 2004; Allred and Brainard, 2009). Similarly, Kraft
et al. (2002) found that reducing cues to depth in a real scene had
little effect on color constancy, suggesting that at least in some
cases, depth is not a critical variable.

In contrast, other research suggests a more complicated pic-
ture. For example, Xiao et al. (2012) reported interactions
between illuminant cues and object form, and perceived color
can be strongly influenced by the perceived shape of a test stimu-
lus (Adelson, 1993; Bloj et al., 1999) or the region of the scene
with which a test stimulus is perceptually grouped (Gilchrist,
1977; Schirillo and Shevell, 2000). And it is clear that the geo-
metric structure of a scene can exert effects on color judgments
beyond those that can be explained by local contrast. For example,
Radonjić and Gilchrist (2013) found that perceived depth modu-
lates perceived lightness even when local luminance ratios remain
constant, and Werner (2006) demonstrated that the addition of
depth cues alone improves color constancy.

A second reason to be cautious about generalization is that the
task facing the observer may also be complicated by increasing
scene complexity. For example, consider again the mug moved
from inside to outside. An observer might notice subtle differ-
ences in the appearance of the mug—one surface might appear

shadowed, for example—while simultaneously recognizing that
the reflectance properties of the mug itself are uniform and
unchanged from indoors. Although observers may make distinct
appearance and reflectance judgments in 2D scenes (Arend and
Reeves, 1986; Troost and de Weert, 1991; Arend and Spehar,
1993a,b; Bäuml, 1999; Blakeslee and McCourt, 2001), the greater
physical complexity of 3D scenes may exacerbate those distinc-
tions. Many previous studies in 2D scenes either explicitly or
putatively rely on proximal or appearance judgments (Brainard
and Radonjic, in press). However, many real-world color tasks
require us to identify objects between scenes rather than make
exact appearance matches (Zaidi, 1998; Abrams et al., 2007). For
example, when picking out a thread at the store to match a button
at home, we seek to match the reflectance properties of thread
and button, not the color appearance between home and store
illumination. Thus, to the extent that observers make reflectance
rather than appearance judgments in 3D scenes, results from
2D scenes may fail to generalize. We do note that the literature
surrounding appearance and reflectance instructional effects is
somewhat murky (Brainard et al., 1997; Blakeslee and McCourt,
2001; Ripamonti et al., 2004; Allred and Brainard, 2009; Allred,
2012; Brainard and Radonjic, in press), and we return to this topic
in the discussion.

To summarize, here we measured color identification of real
3D objects. Observers made color matches for real cubes pre-
sented in an unevenly illuminated three-dimensional scene in
which we independently manipulated both the illumination
impinging on the scene and a three-dimensional background
in which the cube was embedded. To examine real-world task
constraints, observers matched the reflectance of the object.

2. MATERIALS AND METHODS
Observers were 122 college students who participated for course
credit. All experimental procedures were approved by the Rutgers
IRB (Protocol #E10-410) and written informed consent was
acquired from all observers. Observers had normal or corrected-
to-normal visual acuity and normal color vision as assessed by
the Ishihara Color plates. Observers entered a room and viewed
two adjacent 4′ × 4′ × 4′ gray flat matte booths. Illumination in
the room was provided separately for each booth (chromaticity
in CIE uvY space; Booth A: u = 0.27, v = 0.53, CCT ∼2600K;
Booth B: u = 0.22, v = 0.50, CCT ∼4000K ).

Observers sat in a rolling chair and were free to move positions.
Mounted 4.5′′ from the front of each booth was a book of 1022
commercial paint chips (Sherwin-Williams, 2010) which served
as a matching palette (Figure 2). The palette mount allowed
observers to rotate individual palette strips into the booth, but
a stopper prevented the palette strips from rotating out of the
booth illuminant. Each palette strip contained either 7 or 8 paint
chips. Experimenters monitored observers to make sure that they
did not climb into the booths or move the cubes. Observers
were instructed in each condition to choose the paint chip that
matched the paint of the cube under study, and observers were
instructed to make their final chip selection when the palette
strip was aligned with the stopper (see Figure 2). The instruc-
tions were intended to evoke reflectance rather than appear-
ance matches. Sixteen 3′′ × 3′′ × 3′′ cubes (subtending 4.5◦–6.5◦
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at usual viewing distances), painted with different colors of
flat matte paint chosen to approximately span color space (see
Figure 1) served as stimuli.

Observers made color matches by inspecting the paint palette
and writing the number corresponding to the paint chip that
best matched the paint on the cube. In the baseline condition,
which served as the comparison for all other conditions, observers
viewed the cubes and matching chips in the same booth (Figure 2,
Trial 1, right cubes). In the illumination condition, observers
looked between booths while viewing cubes in one booth and
matching chips in the other booth (Figure 2, Trial 2, right cubes).
The background condition differed from the that the cube was
embedded in a three-dimensional background (Figure 2, Trial 1,
left cubes). The joint condition combined manipulations, so that
cubes were embedded in the background in one booth and the
matching chips were viewed in the other booth (Figure 2, Trial 2,
left cubes).

Each observer performed two trials (see Table 1), one each on
two different days. On each trial, observers viewed four different
cubes, two in each booth. One cube in each booth was embedded
in a background (see Figure 2). This yielded eight color matches
per observer, two in each condition. Thus, each observer made
color matches for 8 of the 16 cubes. On Trial 1, color matches
were made from the palette mounted in the booth in which the
cube was viewed (baseline and background conditions) and on
Trial 2, color matches were made from the palette in the oppo-
site booth (illumination and joint conditions, see Table 1). To
prevent order effects, we counterbalanced between observers to
achieve color matches for each cube in each of the four conditions;
thus, observers never viewed an individual cube in more than
one condition. We did not counterbalance the booth in which
cubes were seen; thus, in the illumination condition, half the

0.2 0.3 0.4
0.5

0.55

u 

v 

FIGURE 1 | Chromaticity in CIE uv coordinates of the 16 cube stimuli

(colored squares), 1022 paint chips (black dots), and illumination for

Booth A (black x) and Booth B (black +). Luminance information was
discarded. Plotted measurements were made in Booth A. The square’s
color is an approximation of the cube’s apparent color.

cubes were viewed in Booth A and matched in Booth B, and the
other half were viewed in Booth B and matched in Booth A (see
Table 2). There were a total of eight different backgrounds. Each
cube was seen with only one background. Background paints
were chosen by eye to be approximately color-opponent while
remaining in a different color category from any other stimu-
lus (cube or background) present within a particular trial. The
category restriction sometimes resulted in non-opponent color
pairings. The color categories and chromaticities for each cube
and its background are enumerated in Table 2, and illustrated in
Figure 3. Implications of cube/background pairings are addressed
in the discussion.

Color specifications were made using a Spectrascan PR-655
spectral radiometer (Photo Research Inc., Chattsworth, CA).
Conversions between color spaces (wavelength to CIE uvY)
were made using standard equations implemented in Matlab’s
Psychophysics Toolbox (Brainard, 1997). The white point was
taken as the illuminant, measured with a reflectance standard
(PhotoResearch, Inc. RS-2, Mg0 standard). In all analyses, we
discard luminance and use only chromaticity values.

To specify the cube chromaticity, we measured each cube in
the location where it was experimentally presented. The radiome-
ter was positioned to approximate the average observers’ eye
point; however, there is considerable variability in this eye point
since observers ranged in height and were free to move out-
side the booths. For each cube, measurements were from the
top surface of the cube, in the corner closest to the observer.
Repeat measurements were taken over the course of the exper-
iment and showed very small deviations in chromaticity and
somewhat larger variations in luminance. Chromaticity measures
of the background were made on the bottom surface of the
background closest to the observer, nearly below the location
of the cube measurement. Radiometer measurements for each
paint chip in each booth were made near the center of the paint
chip. Although each cube and each background were painted
uniformly, the 3D structure of the scene elicited considerable vari-
ations in luminance across each surface. This variation is seen
easily in Figure 2. In this experiment, we made no attempt to
control for or manipulate luminance. Radiometer measurements
confirmed that chromaticity was relatively stable across surfaces.

2.1. DATA ANALYSIS
We discarded data from 11 of 122 observers for failure to under-
stand the task as indicated by not recording a response for
more than half the cubes, or for systematically recording cube
color in the wrong location. From the remaining 888 trials (111
observers × 8 cubes), we discarded a further 105 trials for the
following reasons: indecipherable or non-existent card notation
(82/888 trials, 9%), missing radiometer data (7/888 trials, <1%)
or color match of a clearly different, non-adjacent color category
(15/888, 2%). To determine which matches fell into the last group,
two lab members independently examined each color match and
rated it as either within normal limits or of a clearly different
category. Lab members were provided a list of matches for each
cube but were not informed about the condition in which the
match was chosen. Only matches judged as the wrong category
by both lab members were discarded. In most cases (12/15), the
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FIGURE 2 | Photograph of experimental setup for one example trial. On
each trial, observers viewed four cubes, two cubes each in Booth A (left
images) and Booth B (right images) that were separately illuminated. On each
trial, one cube in each booth was embedded in a 3D background (for this
condition, left cubes in each image). The matching palette (booklet in the
front of each booth) contained 1022 paint chips. The palette in each booth
rotated freely on a long screw mounted into palette, and the wooden stopper
prevented observers from pulling palette strips out of the booth. Observers
were permitted to flip freely through the book, but were instructed to choose

a match only when the palette strip was aligned with the stopper. On Trial 1
(baseline and background conditions) observers chose color matches from
the palette mounted in the same booth as the cubes. To illustrate this, the
palette is open to the green section (Trial 1, Booth A) and the purple section
(Trial 1, Booth B). On Trial 2 (illumination and joint conditions) observers chose
color matches for a cube from the palette mounted in the other booth. As
illustrated, the color match for the green cube (Booth A) was selected from
the palette in Booth B, and the color match for the purple cube (Booth B) was
selected from the palette in Booth A.

Table 1 | Trial description.

Trial 1 Trial 2

Cube Condition Booth Cube Condition Booth

see/match see/match

Loc 1 Baseline A / A Loc 1 Illumination A / B

Loc 2 Background A / A Loc 2 Joint A / B

Loc 3 Baseline B / B Loc 3 Illumination B / A

Loc 4 Background B / B Loc 4 Joint B / A

On each trial, observers viewed four cubes in different locations (left column).

The cubes are placed in these four locations (from left to right) in Figure 2.

The second column indicates the condition of each cube. The third column indi-

cates the booth where the cube was viewed (See) and the booth in which the

color match was chosen from the paint palette (Match). Each cube was viewed

in only one location. To achieve color matches for each cube in each condition

between observers, we counterbalanced the location of the background and the

trial (1 or 2) in which the cube was presented.

discarded match seemed to match another cube on that trial,
and thus probably reflects an observer recording the paint chip
in the wrong location. For example, observers recorded a pink
match for the blue cube and a blue match for the pink cube.
Overall, similar numbers of color matches were discarded in each
condition: baseline (21), illumination (30), background (26),
joint (27).

In all cases where significance levels are reported for a family
of statistical tests, we report the p-value without the Bonferroni
correction. We do so because the assumptions underlying the
uncorrected p-value are relatively transparent, whereas the cri-
teria for including a test within a specific family are not always
clear.

2.1.1. Color constancy index
Many different metrics are used to describe color constancy (e.g.,
Foster, 2011). We described color matches across an illuminant
shift by computing a color constancy index based on a modified-
Brunswick ratio (mBR). This index describes the extent to which
observers alter the chromaticity of color matches in the direction
expected by color constancy. Values near 1 indicate high color
constancy, such that observers selected a paint chip with chro-
maticity equal to that of the cube measured under the matching
illuminant. Values closer to 0 indicate failure to compensate for
the illuminant shift, and values of greater than 1 indicate over-
compensation for the illuminant shift. We calculated the mBR as
follows:

mBR =
(

proj �phys
�perc

|| �phys ||

)
(1)

where �perc is the perceptual shift caused by the illuminant shift,
taken as the average color match in the illumination condition.
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Table 2 | Description of 16 cube stimuli (left half) and backgrounds (right half).

Cube name Booth u v cd/m2 Background name u v cd/m2

1 Ice blue A 0.27 0.53 62.54 Red 0.43 0.53 14.27

2 Dull green A 0.25 0.54 21.77 Dull blue 0.23 0.51 7.19

3 Orange B 0.36 0.54 45.06 Surf green 0.22 0.53 12.01

4 Dark brown B 0.32 0.54 16.61 Yellow 0.30 0.55 58.64

5 Dark green A 0.23 0.54 13.74 Red 0.43 0.53 14.27

6 Plum A 0.30 0.53 13.48 Dull blue 0.23 0.51 7.19

7 Peach B 0.31 0.54 59.50 Surf green 0.22 0.53 12.01

8 Purple B 0.30 0.52 28.01 Yellow 0.30 0.55 58.64

9 Gold A 0.30 0.54 41.82 Purple 0.29 0.51 18.47

10 Aqua A 0.24 0.53 67.15 Hyper blue 0.17 0.46 3.62

11 Gray B 0.28 0.54 48.80 Peach 0.35 0.54 32.38

12 Red B 0.42 0.53 19.93 Green 0.14 0.55 5.62

13 Yellow A 0.30 0.55 71.38 Purple 0.29 0.51 18.47

14 Doeskin A 0.29 0.53 48.75 Hyper blue 0.17 0.46 3.62

15 Secure blue B 0.24 0.52 19.69 Peach 0.35 0.54 32.38

16 Pink B 0.38 0.53 36.15 Green 0.14 0.55 5.62

Names refer to the apparent color of the cubes and backgrounds. Each row gives one cube/background pairing. Cubes were always paired with the same background.

Radiometer measurements are under Booth A illumination. Booth indicates where the cube was seen (see Table 1).

0.2 0.3 0.4

0.46

0.5

0.54

u 

v 

0.2 0.3 0.4

0.46

0.5

0.54

u 

FIGURE 3 | Illustration of cube (squares) and background

(diamond) chromaticity as measured in Booth A. Stimuli are
divided into panels to aid visualization. Square color indicates the
apparent color of the cube; diamond color illustrates the apparent

color of the cube with which the background was paired and not
the apparent color of the background. Color specifications for cubes
and backgrounds are in Table 2. Black + indicate illuminant
chromaticity.

In this index, �phys is the chromaticity of the illuminant shift.
Calculating �phys is non-trivial; the illumination impinging on the
cube in both booths is non-uniform, both because of the loca-
tion of the illuminant and the 3D structure of the cubes. This
is seen clearly in Figure 2, where the top of the cube reflects
more light than the sides. Because �phys varies across the booth,
and because we had no way of knowing which portions of the
cube the observers utilized for their matches, we calculated �phys
as follows: First, we made the assumption that the area of the
booth observers utilize in making color matches is independent
of condition. If this is a secure assumption, then a perfectly color
constant observer would pick the same palette chip as a match in
the overall and joint conditions as in the baseline condition. We
took the palette chips chosen in the baseline condition, measured
their chromaticity in the illumination condition, and took this

as �phys. Both �perc and �phys require a reference chromaticity. For
the reasons just described, the reference was defined as the chro-
maticity of the average match in the baseline condition, rather
than the chromaticity of the cube measured under the baseline
illuminant. Thus, the constancy indices as calculated here are
best described as relative constancy indices: the mBR measures
the concordance between color matches in the baseline condi-
tion and color matches in each experimental condition, rather
than the concordance between color match chromaticity and cube
chromaticity.

2.1.2. Error index
To compare directly constancy in the illumination and back-
ground conditions, it would be useful to have a measure of con-
stancy in the background condition. However, such a constancy
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index requires a definition of what constitutes a failure of con-
stancy. In simple 2D scenes, one can estimate these failures
using algorithms that equate cone contrasts between the base-
line and background conditions. It is less obvious how such
algorithms should be applied to our 3D stimuli, both because
the cone contrast between cube and background varies sub-
stantially with scene location, and because we lack an empir-
ical characterization of which parts of a 3D scene should be
incorporated.

Thus, to avoid subscribing to a particular theoretical approach,
we chose a relatively atheoretic error index (eI) to compare
matches in the baseline and experimental conditions. To compute
the eI, we took the distance in color space between the average
color match and the color constant match, as described above.
We defined the eI in the baseline condition as the split-half error,
calculated by randomly dividing the baseline data into two groups
and computing the distance between the average color match in
each of the two groups.

2.1.3. Central tendency
We characterized the average color match of the data in each con-
dition in two ways: First, after discarding luminance information,
we took the mean u and v chromaticites across all matches in
a condition as the average color match. Second, we determined
the ellipse that best-fit the color matches in a least-squares sense
(Fitzgibbon et al., 1999), and used the center of the ellipse as a
measure of the average color match. The pattern of results is qual-
itatively the same with both measures of central tendency. Here we
report the mean chromaticity as the average color match.

3. RESULTS
The main goal of this paper is to investigate the effect of illumina-
tion and background shifts on color matches. To that end, we first
show color matches for all observers for representative individual
cubes, and then turn to quantitative comparison across all cubes.

3.1. INDIVIDUAL CUBES
Color matches for all observers and all conditions for four of the
sixteen cubes are shown in Figure 4. From these plots, several
salient points can be made.

First, in the baseline condition, observers chose many differ-
ent paint chips (unfilled blue diamonds, Figure 4). This range
of color matches in the baseline condition was a common fea-
ture across all cubes (median number of paint chips chosen in
baseline condition = 7, min = 4, max = 10; median number
of observers per cube = 12). The trend of variability in baseline
color matches is reassuring. The basic task employed here, choos-
ing a flat paint chip from a commercial palette book to match a
three-dimensional cube located at a distance from the palette, is
somewhat non-traditional. Thus, the baseline data provide a use-
ful sanity check: the paint palette was sufficiently discretized to
provide a reasonable estimate of between-observers variability in
color perception.

Although observers chose many paint chips for each cube, the
region of color space spanned by the individual matches varies
between cubes. For example, the paint chips chosen for plum in
the baseline condition span a larger region of color space than

do the chips chosen for aqua, yellow and doeskin. These differ-
ences could reflect true differences in color perception between
cubes, or they could reflect the non-uniformity of the paint chips
in color space seen in Figure 1. For the moment, we do not
attempt to disentangle inherent inhomogeneities in color per-
ception between cubes from palette inhomogeneities; rather, we
seek in the subsequent analyses to ask how background and
illumination affect color matches for a given cube.

Second, for each cube shown, observers exhibited relatively
high but imperfect degrees of color constancy under a change in
illumination. If observers were perfectly color constant; that is,
if the observers chose the same paint chips under the illuminant
shift as they did in the baseline condition, then individual data
points (brown squares) would cluster near the constancy predic-
tion (see Materials and Methods) indicated by the black crosses
(Figure 4). If, on the other hand, observers matched the sen-
sory signal reaching the eye in the baseline condition and failed
to account for the change in illumination, the brown squares
should overlap the color matches in the baseline condition (blue
diamonds). Most of the brown squares are shifted toward the
black crosses, but not identical to them, indicating that observers
showed high but imperfect color constancy. Again, observers
showed considerable variability in the number of distinct paint
chips chosen (median number of paint chips chosen = 8, min =
5, max = 12).

Third, embedding the cubes in a background had little effect
on color matches (magenta circles in Figure 4), in contrast to the
relatively large effect elicited by a change in the illumination. In
most panels, the matches made when the cube was embedded
in a background were nearly identical to the blue diamonds of
matches made to the cubes in the baseline condition.

Fourth, combining the addition of the surround with an illu-
mination shift seems to have an effect similar to that of the
illumination shift alone (green triangles similar to brown squares
in Figure 4).

Lastly, inspection of the four panels reveals considerable vari-
ability in the extent of color space spanned by individual matches
in a given condition. For example, the region of chromaticity
space spanned by paint chip choices for the plum cube in each
condition seems larger than for the yellow cube. Additionally,
for each cube, the region of chromaticity space spanned by the
brown and green symbols (illumination and joint conditions)
seems larger than the region of chromaticity space spanned by the
blue and magenta symbols (baseline and background conditions).

In the remainder of the paper, we quantify the extent to which
the effects of experimental condition on both average color con-
stancy and variability noted in the individual panels in Figure 4
are consistent in the entire dataset.

3.2. AVERAGE COLOR CONSTANCY
As with the data for the individual cubes (Figure 4), aver-
age color constancy across all cubes under an illumination
shift, shown in Figure 5, was generally high but imperfect.
To quantify the degree of constancy, it is standard to com-
pute a color constancy index. Such indices seek to frame the
data with respect to their position between the constancy and
no-constancy predictions, where 1 indicates perfect constancy,
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FIGURE 4 | Color matches in all four conditions (baseline, blue

diamonds; background, magenta circles; illumination, brown squares;

joint, green triangles) for four of the sixteen cubes. Each unfilled data
point represents one paint chip chosen; the size of the data point represents

the number of observers who chose that chip. Filled data points represent
average color matches, and black solid crosses show constancy predictions.
The x- and y-axis ranges are consistent between plots, though the starting
point shifts to accommodate the relevant chromaticity range.
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FIGURE 5 | (A) Color constancy indices in the illumination condition.
Each bar shows the average color constancy index for one cube,
with perfect constancy indicated by the red horizontal line. Indices are
modified-Brunswick ratios (see Materials and Methods) averaged across
observers. Error bars are s.e.m across observers; the average number

of observers per cube was 12. (B) Average constancy indices in the
joint condition (with background; y-axis) and the illumination condition
(no background; x-axis). Black diagonal line indicates no effect of
background. Bar height (A) and symbol color (B) approximate apparent
cube color.

0 indicates a complete failure of constancy, and indices greater
than 1 indicate that observers overcompensated for the illu-
minant shift. From the constancy predictions (illustrated for
the four cubes in Figure 4), we computed such an index (see

Materials and Methods). Briefly, the color constancy prediction
was derived using the assumption that color constant observers
would choose the same paint chips in the baseline condi-
tion as in the illumination condition; that is, their matches
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would reflect consistency in surface reflectance, rather than
chromaticity.

Consistent with other color constancy studies of illumina-
tion changes in relatively realistic scenes, color constancy indices
were quite high, averaging 0.88 ± 0.03. Constancy indices are dis-
played for all cubes in Figure 5A. Although average constancy
indices were relatively high, there was substantial variability
between cubes, reflected in the varying bar heights in Figure 5A.
Indices ranged from 0.61 (orange) to 1.04 (brown). Within a
cube, indices were relatively consistent between observers, where
the standard error averaged about 6% of the constancy index.

How does embedding a cube in the background affect color
matches? The individual data suggest that the effect of back-
ground is small. To compare illumination and background con-
ditions, it would be useful to calculate a background constancy
index that frames the data between the constancy and no-
constancy predictions. However, since we lack a complete charac-
terization of both the theory and low-level computations involved
in color constancy in three-dimensional scenes, it is not obvious
how to compute the no-constancy prediction for the background
condition. In scenes that consist of uniformly illuminated flat
stimuli embedded in backgrounds, a simplifying assumption that
is based on early processing in the visual system is that a match-
ing surface will appear the same as a study surface when the
cone-excitation ratio between the match and its surround equals
the cone-excitation ratio between the study surface and its back-
ground. Although we computed such local-contrast predictions
(not shown), their dependence on luminance meant that the
the no-constancy match varied substantially depending on what
radiometer measurements were utilized.

To avoid potentially spurious relationships that might either
hide or exaggerate the effect of the background, we compared illu-
mination and background matches to baseline matches using a
less theoretically motivated error index (eI). We defined the eI
as the distance in color space between the chromaticity of the

average match and the constancy prediction. Unlike a constancy
index, the eI compares the magnitude of experimental effects and
is agnostic about cause or directionality of effects. Such an index
is particularly useful in the background condition, where a color
constancy index may be influenced heavily by theoretical assump-
tions and there is less consensus about the size or direction of
expected effects.

For a majority of cubes, errors in the background condition
were smaller than errors in the illumination condition, as evi-
denced by the majority of points being below the identity line
in Figure 6B. Aggregated across cubes, this difference was signif-
icant (paired two tailed t-test, p < 0.05; second and third bars,
Figure 6A). To provide context for the size of these errors, we
compared them to a split-half baseline error (first bar, Figure 6A).
Although illumination errors were significantly different than
baseline (paired two tailed t-test, p < 0.05), errors elicited by the
addition of a background were no different than baseline errors
(paired two tailed t-test, p = 0.43). Thus, background errors were
comparable in size to the variability within the baseline data.
Thus, in contrast to the robust phenomenon of color induction
in flat stimuli with uniform surrounds, embedding a cube in a
background has little effect on color judgments.

Next we asked how the effects of background and illumina-
tion combine. Real world color constancy tasks often involve both
changes in surrounding surfaces and changes in the illumination,
and previous research has suggested that constancy is particu-
larly poor when both changes are made simultaneously (Delahunt
and Brainard, 2004). Although we found little effect of embed-
ding cubes in backgrounds without an illuminant shift, it remains
possible that there is an interaction between background and
illumination.

However, we found that constancy indices were no different
in the joint condition than in the illumination condition (two-
tailed, paired t-test, p = 0.57), as demonstrated in Figure 5B,
where color constancy indices remained close to the diagonal. The
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FIGURE 6 | Error index (eI) in each of the four labeled experimental

conditions (A) and cube-by-cube comparison in the illumination

(x-axis) and background (y-axis) conditions (B). In the background,
illumination, and joint conditions, the eI is defined by calculating the
distance in color space between the chromaticity of the color
constancy prediction and the actual average chromaticity of paint chips

chosen in that experimental condition. In the baseline condition, error is
split-half: paint chips for each cube were randomly divided into two
groups, and error was defined as the distance in chromaticity space
between the means of the two groups. Error bars are s.e.m. across
cubes. In (B), symbol color approximates apparent cube color, and black
diagonal line is the identity.
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variability of color constancy between cubes in the joint condi-
tion was similar to the baseline condition (range with background
0.75–0.99; range without background 0.61–1.04) and marginally
correlated (r = 0.45, p = 0.082) between conditions. Similarly,
error indices in the joint condition were no different than in
the illumination alone condition (two tailed paired t-test, p =
0.82, third and fourth bars in Figure 6A). Further consistent with
the idea that background elicits no more errors than the base-
line condition and the illumination shift elicits the same pattern
of errors with or without a background, a Three-Way ANOVA
showed no main effect of background, a main effect of illumi-
nation and no interaction between illumination and background
(Table 3).

3.3. VARIABILITY IN COLOR MATCHES
In addition to average color matches, we also investigated the
effect of background and illumination on the variability of color
matches. In all conditions, observers chose a variety of paint chips

Table 3 | ANOVA for errors in color matches.

Source df F p

Cube 15 1.72 0.08 (n.s.)
Illumination 1 14.19 <0.001
Background 1 0.39 0.54 (n.s.)
Interaction (ill-back) 1 0.09 0.77 (n.s.)
Error 45

Total 63

The table shows the results of a Three-Way ANOVA on the errors for color

matches averaged across observers for each cube in each experimental con-

dition. Cube was coded as a random effects variable, while surround and

illumination were coded as fixed effects. The ANOVA modeled all main effects

and the surround by illumination interaction.

as color matches (see Figure 4). For each experimental condi-
tion, we defined variability as the distance between each color
match and the average color match in that condition. Thus, cubes
with matches that span a larger region of color space have higher
variability.

We compared variability in the baseline condition to variability
in each experimental condition (Figure 7). If the basic processes
underlying color matching are not altered by either the illumina-
tion shift or the addition of a background, then the data should
fall along the identity line. However, we found that variability in
the illumination condition was significantly different than in the
baseline condition (brown squares above the line in Figure 7A,
two-tailed paired t-test, p < 0.005). In contrast, adding a back-
ground significantly decreased the between-observers variability
in color matches (magenta circles below the line in Figure 7A;
two-tailed, paired t-test, p < 0.05).

As with average color matches, cubes within an experimental
condition elicited a wide range of variability in color matches.
Given the non-uniformity of the palette chip chromaticities in
color space, we cannot distinguish whether variability between
cubes within a given condition results from increased percep-
tual variability for that particular color or the non-uniformity
with which paint chips sample color space. However, within-
cube variability was highly correlated between experimental
conditions (baseline-illumination: r = 0.73, p < 0.005; baseline-
background: r = 0.65, p < 0.01), as it was with color constancy
indices, indicating that this variability is related to some property
of the cube or palette itself and is not an artifact of differences
between observers.

3.4. RELATIONSHIP BETWEEN AVERAGE COLOR MATCHES AND
VARIABILITY

Here we have separately analyzed average color matches and
variability of color matches, but it is possible that both judg-
ments arise from a common representation. We investigated their
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FIGURE 7 | (A) Variability of color matches in the illumination (brown
squares), background (magenta circles) and joint (green triangles)
conditions (y-axis) as a function of variability in the baseline condition
(x-axis). Colored lines are best-fit to data in the least-squares
sense. Black diagonal line indicates identity. (B) Variability in the

labeled experimental condition averaged across cubes. Error bars are
s.e.m. across cubes (n = 16). In both (A) and (B) variability was
defined as the average distance in color space space between each
observer’s match and the average chromaticity of matches in that
condition.
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FIGURE 8 | Relationship between variability in color matches (x-axis)

and color constancy index (y-axis) in illumination (unfilled circles) and

joint (filled circles) conditions. Solid black line is best fit line through all
data.

independence by plotting variability of matches as a function of
color constancy in Figure 8. If, for example, increased variability
necessarily led to decreased constancy, we would expect a negative
correlation. If, on the other hand, color constancy and variabil-
ity were unrelated, we would expect no correlation. There was no
significant correlation between variability of color matches and
degree of color constancy in either the illumination (r = −0.10,
p = 0.71) or joint condition (r = −0.03, p = 0.91).

A related question is whether the palette non-uniformity is
related to within-condition constancy or variability. The between-
condition experimental effects are unlikely to be artifacts of
palette non-uniformity; for example, the palette discretization is
the same for the orange cube in the baseline condition and in
the illumination condition. However, of interest is whether the
degree of constancy or variability within a condition is predicted
by palette density. For example, can palette density account for
the relatively high color constancy and low variability of doeskin
compared to plum in the illumination condition (Figure 4)?

This relationship is examined in Figure 9, where we plot color
constancy (blue squares) and variability (red circles) as a func-
tion of number of palette chips in the cube region. Cube region
was calculated as a circle with its center defined by the average
color match in the baseline condition and its radius defined as
the average variability of color matches in the baseline condition.
The number of palette chips will clearly increase with cube region,
and this increase may also be non-uniform. We confirmed that a
wide range of radius values yielded the same pattern of results. To
aid in visualization, both constancy indices and variability values
were normalized to their respective maxima, but statistical tests
were completed on the non-normalized data.

Color constancy under a change in illumination was unre-
lated to palette density, either in the joint condition (filled blue
squares, p = 0.84 ) or in the illumination condition (unfilled blue
squares, p = 0.19). In contrast, there was a negative correlation
between variability of color matches and palette density (red sym-
bols), although this correlation was stronger in the joint condition
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FIGURE 9 | Relationship between palette density (x-axis) and color

constancy (blue symbols, y-axis) and variability (red symbols, y-axis)

in the illumination (unfilled circles) and joint (filled circles) conditions.

To aid in visualization, color constancy indices (red symbols) and variability
values (blue symbols) were normalized to their respective maxima. All
statistical tests in text were performed on non-normalized values. Lines are
best fit to data collapsed across experimental condition.

(filled red circles, r = −0.59, p < 0.05 ) than the illumination
condition (unfilled red circles, r = −0.48, p = 0.06). Thus, in
regions of color space with fewer possible matches, observers
chose matches that spanned a wider range of color space.

4. DISCUSSION
The main goal of this paper was to compare the effects of back-
ground and illumination on color matches in real objects to the
large body of data on background and illumination effects in
more simplified scenes. We found that the effects of illumina-
tion on average color matches generalized well from 2D to 3D,
while the effect of background did not. In addition, both manip-
ulations affected variability of color matches. Below, we discuss
both findings as well as the implications of the specific task we
employed.

4.1. AVERAGE COLOR MATCHES
We found that color constancy across a change in the illumination
was very good (Figure 5), with an average color constancy index
of about 90%, although the degree of constancy varied with cube.
This is consistent with previous results in both 2D and 3D scenes
with ample cues to the illuminant (Shevell and Kingdom, 2008;
Brainard and Radonjic, in press).

That surfaces surrounding a colored surface or test patch
affect its appearance is a well-known phenomenon: simultane-
ous contrast or color induction has been widely reported in a
variety of different stimulus configurations (Shevell, 1978; Ware
and Cowan, 1982; Chichilnisky and Wandell, 1995; Rinner and
Gegenfurtner, 2002; Hurlbert and Wolf, 2004). Explanations of
such background effects typically invoke some form of local
contrast-coding, such as von Kries adaptation (Brainard et al.,
1993). An implicit assumption is that a color constant visual sys-
tem ought to attribute changes in the background color signal to
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a change in illumination, rather than a change in background
reflectance. In simulated or simplified scenes, such as the clas-
sical patch/surround display, color signal changes are ambigu-
ous. However, in real scenes where such color signal changes
are in fact due to reflectance changes, local contrast is not a
valid cue to surface reflectance; in such circumstances, con-
stancy indices are typically much lower, around 20%, (Delahunt
and Brainard, 2004; Allred and Brainard, 2009; Brainard and
Radonjic, in press). An important question is whether such back-
ground effects, endemic in 2D scenes or for flat test stimuli and
backgrounds embedded in 3D scenes, also exist for 3D objects and
backgrounds.

The extent to which scene geometry affects color constancy
is currently a topic of active research (Boyaci et al., 2003, 2004;
Bloj et al., 2004; Delahunt and Brainard, 2004; Ripamonti et al.,
2004; Boyaci et al., 2006; Allred and Brainard, 2009; Xiao et al.,
2012). Though early work focussed on the importance of color
contrast in determining color perception, more recent research
has emphasized the importance of scene geometry. For example,
Gilchrist demonstrated that the apparent lightness of a con-
stant luminance test patch is influenced heavily by the depth and
associated illumination with which it is grouped (Gilchrist, 1977).

The principle governing such reasoning is that the visual
system segregates the scene into objects and regions of illumi-
nation/frameworks, and then applies color or lightness-mapping
rules within each framework (for different theoretical implemen-
tations of these general principles, see Adelson, 2000; Gilchrist
et al., 1999). Perceptual organization is thus of crucial impor-
tance: in this view, failures of constancy in classic simultane-
ous contrast illusions result from the failure of the visual sys-
tem to segregate a test object from its surround or the incor-
rect assignment of a test stimulus to the appropriate region of
illumination. From the anchoring/framework perspective, then,
we might expect that any cues that increase the accuracy of
object segregation or illuminant estimation would increase color
constancy.

In contrast with the large body of research on flat, matte stim-
ulus collections, we found that embedding a test cube in a 3D
background had little effect on average color matches: errors in
the background condition were similar to the split-half error in
the baseline condition and background errors were significantly
smaller than illumination errors (Figure 6). Further, in contrast
to previous research (Delahunt and Brainard, 2004; Allred and
Brainard, 2009), we also found that adding a background change
to an illuminant shift (joint condition) did not substantially
reduce color constancy indices (Figure 6). Thus, our data are con-
sistent with the principles of anchoring or framework theories
which postulate that local contrast cues can be silenced when the
visual system is provided with sufficient evidence for perceptual
segregation and illuminant estimation.

4.2. VARIABILITY OF COLOR MATCHES
Generally, scene complexity is thought to improve color con-
stancy (Shevell and Kingdom, 2008), although there are notable
exceptions (see Foster, 2011, for discussion). Under one view
of color constancy, scene complexity is postulated to do so
by increasing the accuracy of the illuminant representation.

Under this view, the visual system arrives at a reflectance esti-
mate by combining a variable estimate of the illuminant (either
implicitly or explicitly) with the incoming sensory signal (see
Brainard and Maloney, 2011, for review). In such a view, failures
of constancy are interpreted as mis-estimations of the illumi-
nant. Although color constancy research typically focuses on
the extent of average mis-estimation under the rubric of color
constancy, it may be that an illumination shift also alters the
overall uncertainty in the illuminant representation, and this
could manifest itself as increased variability in color matches
as well as the more traditionally reported decreased constancy.
Although past research has generally focused on average con-
stancy, a growing body of research seeks to understand the rela-
tionship between variability of responses and average responses in
both color (Rinner and Gegenfurtner, 2000; Hillis and Brainard,
2005; Abrams et al., 2007; Hillis and Brainard, 2007a,b) and
other visual domains (Weiss et al., 2002; Stocker and Simoncelli,
2006).

Two features of our data are consistent with this view. First, we
found that the variability of color matches increased in the illu-
mination condition (Figure 7). If illuminant estimation is indeed
involved in achieving constancy in this task, then the illumination
condition required observers to estimate the illuminant in both
booths; this presumably increased uncertainty compared to the
baseline condition. We also found an increase in matching errors
in this condition (Figure 6).

Second, embedding a cube in the background decreased vari-
ability compared to the baseline condition (Figure 7). To under-
stand this, consider that overall errors in this condition were
relatively low, similar to split-half errors in the baseline condition
(Figure 6). This suggests that the 3D cues present in the scene,
cube, and background allowed the visual system to successfully
segregate the background from the cube. If this is the case, then
the background could be thought of as another nearby object in
the scene that allows a second estimate of the same illuminant,
thereby reducing the overall uncertainty in the illuminant estima-
tion within the booth and the subsequent variability in the color
matches. This view is further supported by noting that variabil-
ity in the joint condition, where the background is added to the
illumination shift, is less than in the illumination alone condition
(Figure 7).

Interestingly, although conditions with higher constancy over-
all also tend to have less variability, we failed to find any within-
condition correlations between color constancy for individual
cubes and variability of color matches for that cube.

Although we have cast our interpretation of average con-
stancy and variability in terms of illuminant estimation, we
note that the available evidence suggests that observers do not
explicitly represent the illuminant (Rutherford and Brainard,
2002; Amano et al., 2006; Granzier et al., 2009). Despite this,
the language of illuminant estimation implicit in discussions
of perceptual segregation may be functionally useful. Still, we
note that there are alternative interpretations of our data for
those reluctant to view perceptual segregation as either criti-
cally important or theoretically useful. For example, our scenes
are relatively rich scenes with non-uniform illumination; thus,
the local contrast relationships are more complex than they are

www.frontiersin.org November 2013 | Volume 4 | Article 821 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Allred and Olkkonen Color of real 3D objects

in uniformly illuminated, 2D scenes. Previous work has sug-
gested that with such information, low-dimensional linear mod-
els are in theory able to unambiguously recover both surface
reflectance and illumination without resorting to higher level
perceptual segmentation (Zmura and Iverson, 1994). However,
such low-dimensional models have not yet been able to suc-
cessfully predict human color judgments (see Foster, 2011, for
dicussion).

4.3. TASK
The discretized matching task employed here is very different
than many other color constancy tasks. Many studies employ
asymmetric matching, where observers adjust a matching stim-
ulus under a test illuminant until it appears to match a stan-
dard under a standard illuminant (Kuriki and Uchikawa, 1996;
Brainard et al., 1997; Faul et al., 2008; Kulikowski et al., 2012)
or achromatic adjustment, where observers adjust the stimulus
until it appears gray (Brainard, 1998; Boyaci et al., 2004; Hansen
et al., 2006). Although some studies have employed discretized
palettes, they typically use Munsell chips or papers (McCann,
2004; Olkkonen et al., 2010; Allred et al., 2012) or NCS papers
(Hedrich et al., 2009). Such color spaces and palettes are used
because they are thought to uniformly sample perceptual color
space, and thus avoid potential artifacts due to uneven stimulus
sampling.

Such palettes and tasks have proved fruitful in explaining lab-
oratory color matching. However, palettes encountered in the real
world, such as thread, fabric, or paints, are unlikely to uniformly
sample color space. In addition, typical laboratory tasks often
involve appearance matches, and there is considerable debate
both about whether and when such matches may differ from
reflectance matches (Troost and de Weert, 1991; Bäuml, 1999;
Ripamonti et al., 2004; Brainard and Radonjic, in press). We chose
here to focus on reflectance matches because they arguably under-
lie many behaviorally important tasks (Zaidi et al., 1992; Allred,
2012; Brainard and Radonjic, in press), but we acknowledge that
others may have a different perspective on the functionality of
appearance judgments.

With respect to these concerns, two of our findings are par-
ticularly relevant to the task demands. First, color constancy
indices in the illumination condition were very similar to those
reported in a variety of other studies employing relatively realistic
stimuli, but using different tasks. Our observers were instructed
to make a reflectance match; the nature of the task also sup-
ports a reflectance identification strategy. Furthermore, the lack
of correlation between palette density and color constancy sug-
gests that, at least for average constancy indices, the palette
choice is not critical. Together, these findings provide support
for the common assumption that the results from asymmet-
ric matching and achromatic adjustment tasks in simulated
scenes will generalize to more complex scenes and more realistic
tasks.

Although the concordance between our findings and previous
studies are encouraging, we recognize that several complications
may arise from using a non-standard color task and palette.
First, if the color palette is insufficiently discretized, then con-
stancy indices could be artificially inflated. However, observers

chose many different palette chips. On average there were 7.7
chips chosen for the 11.3 observers per cube. The raw num-
ber of paint chips chosen per cube was much higher than in
some other studies using discretized chips (Hedrich et al., 2009),
indicating that insufficient discretization is likely not a potential
confound.

Second, non-uniformity of the matching palette makes it diffi-
cult to compare variability of color matches between cubes. For
example, the greater variability in color matches for red than
green (see Figure 7) could result either from more perceptual
variability or from a less densely sampled palette. Indeed, we
reported a negative correlation between palette density and vari-
ability of color matches (Figure 8). Since there was no correlation
between palette density and average color constancy (Figure 9),
palette non-uniformity is less likely to affect the interpretation of
constancy for individual cubes.

5. CONCLUSIONS
As noted in the introduction, there are two broad classes of
approach as we seek to move from relatively simple, para-
metrically manipulated stimuli and tasks to the full complex-
ity of realistic scenes. One approach takes incremental steps,
predicting and then testing the effect of manipulating one par-
ticular stimulus aspect such as object slant (Bloj et al., 2004)
or cues to depth (Werner, 2006). Here we took the comple-
mentary approach of utilizing as realistic a scene and task as
possible. We do not view our data as endorsing a specific theo-
retical view or mechanistic model of constancy; rather, we have
the much more modest goal of providing some empirical con-
straints as we elaborate further theories of color vision. Our
results suggest that average color constancy across illumination
should remain high but variability should increase. Furthermore,
the addition of a background either with or without an illu-
mination change should introduce relatively few errors in aver-
age matches and should decrease matching variability. However,
there are several limitations to our approach that caution against
over-generalization.

First, although our stimuli and matching palette were real,
relatively rich scenes, many real world scenes contain variables
that our scenes did not. For example, real objects may not be
uniformly colored, or they may contain textures or specular high-
lights that provide additional information to the visual system.
Second, although the illumination varied within booths, real-
scenes may have both abrupt and gradual illumination changes,
and may vary over many orders of magnitude greater than ours
(Xiao et al., 2012). Third, although observers performed an iden-
tification task with a real matching palette, the matching palette
was not 3D. In some real-world identification tasks, observers
often have additional cues such as shape that combine with color
to guide behavior. Fourth, we note that although we chose a wide
variety of cube and background colors, (Figures 1, 3) we did not
parametrically manipulate either. As noted previously, there is a
complex and sometimes contradictory literature surrounding the
magnitude and direction of expected simultaneous contrast or
color induction effects (see Ekroll and Faul, 2012, for discussion).
Although in aggregate we found no effect of background, certain
cube/background pairs (e.g., dark green) had higher error indices,
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and it remains possible that there is a subset of stimuli where
backgrounds would have a larger effect. Lastly, we focused solely
on reflectance judgments, and the distinction between appear-
ance and reflectance judgments may be of particular importance
in scenes like those used here. For example, it is clear from visual
inspection of the cubes that each face of the cube appears differ-
ent in some way, even though it is also easy to see that the cube is
uniformly painted.

Taken together, these points suggest caution against over-
generalization of our results. An important avenue for future
research is to determine the relative importance of each of these
factors in the constraining our ability to generalize from color
matching in simplified laboratory tasks to the color tasks faced
by individuals in everyday experience.
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