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For many years controversy has surrounded the so-called “negative compatibility effect”
(NCE), a surprising phenomenon whereby responses to a target stimulus are delayed
when the target is preceded by an unconscious, response-compatible prime. According
to proponents of the “self-inhibition” hypothesis, the NCE occurs when a low-level self-
inhibitory mechanism supresses early motor activations that are no longer supported by
perceptual evidence. This account has been debated, however, by those who regard the
NCE to be a stimulus-specific phenomenon that can be explained without recourse to a
self-inhibitory mechanism. The present study used a novel reach-to-touch paradigm to test
whether unconscious response priming would manifest as motor activation of the opposite-
to-prime response (supporting mask-induced priming accounts), or motor inhibition of the
primed response (supporting the notion of low-level self-inhibition). This paper presents
new findings that show the emergence of positive and negative compatibility effects as
they occur in stimulus processing time. In addition, evidence is provided suggesting that
the NCE is not driven by the activation of the incorrect, “opposite-to-prime” response, but
rather might reflect automatic motor inhibition.
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INTRODUCTION
The masked priming paradigm has been widely used to study
the influence of unconscious information processing on behavior.
Typically, a briefly presented visual “prime” stimulus is masked by
a subsequent, spatially overlapping stimulus (the “mask”), such
that conscious awareness of the prime is suppressed. In spite of
this, responses to the subsequently presented target are faster (and
more accurate) when the target is compatible with the prime, and
slower (and less accurate) if the prime and target are incompatible
(Neumann and Klotz, 1994; Ansorge et al., 1998; Leuthold
and Kopp, 1998; Kiefer and Spitzer, 2000; Klinger et al., 2000;
Damian, 2001; Jaskowski et al., 2002; Schmidt, 2002). This is
known as the positive compatibility effect (PCE), and is believed
to reflect the overlap in prime- and target-induced activation
of motor pathways (Neumann and Klotz, 1994), and/or more
abstract “semantic” representations (Finkbeiner and Friedman,
2011). Eimer and Schlaghecken (1998) reported an intriguing
reversal of these effects when a delay is introduced between
the prime and target. With interstimulus intervals exceeding
∼100 ms, trials in which the prime and target are com-
patible produce slower responses than trials where the prime
and target are incompatible (Eimer and Schlaghecken, 1998;
Eimer, 1999; Schlaghecken and Eimer, 2000, 2001, 2002; Klapp
and Hinkley, 2002). According to the self-inhibition account,
this so-called negative compatibility effect (NCE) reflects a
low-level and automatic process of inhibitory motor control
(Schlaghecken et al., 2007).

The self-inhibition hypothesis was inferred from an early
electrophysiological study showing a specific sequence of

movement-related lateralized readiness potential (LRP) modula-
tions (see Figure 1). Eimer and Schlaghecken (1998) observed
that ∼200 ms following prime onset, the LRP showed an initial
tendency to prepare the response indicated by the prime. For com-
patible trials, this primed response tendency activated the correct
response relative to the upcoming target, whereas for incompatible
trials it overlapped with the incorrect response. Crucially, ∼350 ms
following prime onset the LRP signal reversed, resulting in the
inhibition of the primed response and the disinhibition of the
opposite response. Proponents of the self-inhibition account argue
that primes initially trigger their assigned response and simultane-
ously inhibit the competing response alternative. This imbalance
in response activation levels will produce a PCE if the target
appears immediately after the prime. Importantly, because sensory
evidence of the prime is suddenly removed by the mask, its associ-
ated response activation becomes obsolete. Therefore it becomes
supressed, and the competing response is released from inhibi-
tion. If the target appears during this second phase, self-inhibition
of the primed response (and disinhibition of its competitor) will
produce an NCE (Schlaghecken and Eimer, 2006). This sequence
of response activation followed by inhibition proved to be repli-
cable (Eimer, 1999; Eimer and Schlaghecken, 2003; Verleger et al.,
2004; Praamstra and Seiss, 2005), and is consistent with behavioral
findings showing PCEs at short prime-target intervals, and NCEs
at long prime-target intervals. Taken together this evidence has
been used to build a case for unconsciously triggered inhibitory
control.

This interpretation has attracted much attention, primar-
ily because it challenges traditional views of control processes
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FIGURE 1 | Lateralised readiness potentials for compatible and

incompatible trials from Experiment 2 of Eimer and Schlaghecken

(1998).

being volitional and hence dependent upon conscious awareness
(Egner, 2010). Consequently, several alternative interpretations
have been offered that, on the whole, provide an account for the
NCE without invoking an automatic, self-inhibitory mechanism
(Lleras and Enns, 2004, 2006; Verleger et al., 2004; Jaskowski and
Przekoracka-Krawczyk, 2005; Jaskowski, 2008). Typically, the NCE
is elicited in an experimental paradigm that employs arrows as
the prime and target stimuli. These stimuli are presented at fixa-
tion, and the masks are constructed from potentially task-relevant
elements (e.g., diagonal lines). According to mask-induced prim-
ing accounts, when a mask contains such “arrow-like” features
these can interact with those of the preceding prime to pro-
duce a second prime that points in the opposite direction, and
thereby primes the opposite response. Lleras and Enns (2004)
and Verleger et al. (2004) claim that self-inhibition plays no role
in the NCE. Instead, they suggest that the reversal of priming
effects – from PCEs at short prime-target intervals to NCEs at
long prime-target intervals – reflects a sequence of two pos-
itive priming events of opposite direction. The first of these
is characterized by the initial, prime induced activation of the
response associated with the prime. The second priming event
occurs when the mask itself triggers the activation of the oppo-
site response. These authors propose that the opposite peak of the
LRP at 350 ms might therefore reflect the activation of the oppo-
site response rather than the inhibition of the primed response.
Although other explanations have been offered regarding the
mechanisms underlying the NCE (c.f. Jaskowski, 2008), in the
present study we will focus specifically on the predictions made
by Lleras and Enns (2004) “object-updating” and Verleger et al.
(2004) “active mask” hypotheses. Although these two accounts
differ in several ways, they both emphasize that perceptual inter-
actions between the prime and mask can produce inverse priming
effects when both stimuli are comprised of common features.
Henceforth, this account will be referred to as mask-induced
priming.

The mask-induced priming account has received considerable
support, with studies showing that the use of an irrelevant mask
that does not contain arrow-like features substantially decreases
(if not eliminates) the magnitude of the NCE (Lleras and Enns,
2004; Verleger et al., 2004; Jaskowski and Przekoracka-Krawczyk,

2005). Even though it was later shown that the NCE can indeed
be obtained with irrelevant masks (Klapp, 2005; Schlaghecken and
Eimer, 2006; Schlaghecken et al., 2007), it is now generally accepted
that when a prime and mask do share common elements the NCE
can be attributed to perceptual interactions between the two stim-
uli rather than self-inhibition (Klapp, 2005; Schlaghecken and
Eimer, 2006). Just like the self-inhibition account, mask-induced
priming predicts PCEs at short prime-target intervals and NCEs
at long prime-target intervals. The difference between the two
theories is in the mechanisms driving this effect. Specifically, at
long prime-target intervals mask-induced priming predicts two
instances of “positive” priming: the first triggered by the prime,
and the second by its interaction with the mask.

The present study was designed to specifically test this pre-
diction. In our view, the best way to determine that prime-mask
interactions can produce the NCE would be to show that prime-
mask similarity leads to the activation of the opposite-to-prime,
incorrect response. However, because reaction times (RTs) reflect
only the endpoint or culmination of target processing, we can-
not conclude with certainty that slower RTs during compatible
conditions are in fact caused by the activation of the incorrect
response (rather than inhibition of the primed response). Nor
can existing LRP findings shed light on the matter. In Eimer and
Schlaghecken’s (1998) study, the upward-going (incorrect) LRP
deflection observed for compatible trials in the 300–400 ms inter-
val following prime onset cannot be (necessarily) interpreted as
activation of the incorrect response (Eimer and Schlaghecken,
2003). As emphasized by the authors, LRPs reflect the rela-
tive, not the absolute, activation level of response tendencies
and thus cannot reveal whether the incorrect response became
selectively activated at any stage during processing. Although
previous attempts have been made to shed light on this spe-
cific matter by comparing EEG signals between relevant and
irrelevant masks (Verleger et al., 2004), and by combining transcra-
nial magnetic stimulation (TMS) with motor evoked potentials
(MEPs) (Verleger et al., 2006), due to various methodological
issues these studies were unable to provide conclusive results (see
General Discussion, Verleger et al., 2006). Therefore, the ques-
tion remains whether, when a prime and mask share common
elements, the empirical NCE is driven by an interaction between
these two stimuli that results in the activation of the incorrect
response.

Our aim was to test the directional claims of the mask-induced
priming account using a novel methodological approach recently
put forth by Finkbeiner et al. (2013). Rather than pressing a
button to indicate their response, subjects in the present study
classified the direction of a target arrow by reaching to touch
the left or right side of the computer monitor. A motion cap-
ture device (Polhemus Lyberty) was used to sample the position
of the hand during the reaching response, resulting in a high
resolution continuous dataset on each trial. The use of such
continuous movement measures in the cognitive psychology liter-
ature is growing (Spivey et al., 2005; Dale et al., 2007; Song and
Nakayama, 2009; Chapman et al., 2010; Quek and Finkbeiner,
2013), primarily due to their purported ability to capture dynamic
interactions between cognitive processes and motor output. The
main advantage of reaching responses in this study is that they
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allowed us to quantify how quickly subjects moved their hand in
the correct vs. incorrect direction upon perceiving the target stim-
ulus. This was achieved by calculating “x-velocity” (described in
further detail below), a signed value that is positive when subjects
moved in the correct direction and negative when they moved
in the incorrect direction. As such, x-velocity represents a much
more informative measure than nominal accuracy rates or RTs,
which range from “fast” to “slow” in a single positive direction
(Finkbeiner et al., 2013).

In our experimental paradigm, we employed prime and mask
stimuli that contained common arrow-like elements and we used
a long prime-target stimulus-onset asynchrony (SOA) of 150 ms.
Under these circumstances, the mask-induced priming account
predicts that the newly emergent features contained within the
mask will resemble an arrow pointing in the opposite direction
to the prime. We therefore expected that on trials where the sub-
sequent target was compatible with the prime, initial x-velocities
would be negative, reflecting an early tendency for subjects to
move in the opposite-to-prime, incorrect direction. If, however,
x-velocities for compatible trials are simply slower than those for
incompatible trials (but not negative), then we could not conclude
with certainty that prime-mask interactions produce the NCE.

Using the reach-to-touch paradigm, we also set out to map the
onset and growth of both PCEs and NCEs using a single prime-
target interval. With this goal in mind, we asked subjects to initiate
their movement within 300 ms of an imperative go signal, defined
as the final beep in a sequence of three beeps. The final “go” beep
was randomly positioned on each trial to occur at different time-
points relative to the onset of the target. This allowed us to elicit
movements that commenced across a wide set of target-viewing
times, ranging from before target onset to ∼400 ms thereafter.
The time (in milliseconds) from target onset to movement onset
will henceforth be referred to as movement initiation time (MIT).
Based on LRP demonstrations of a bi-phasic activation-inhibition
sequence, we reasoned that reaching movements initiated very
early on during stimulus processing (i.e., at short MITs) should
occur when the prime-evoked motor response is still active, and
thus be characterized by a PCE. Conversely, at longer MITs ini-
tial primed activations should have been overridden by the mask,
which in turn should activate the incorrect response. Here, we
expected a NCE.

MATERIALS AND METHODS
PARTICIPANTS
Twenty volunteers (6 male) aged 18–25 years participated in the
experiment. All were right-handed, and had normal or corrected-
to-normal vision. One participant was excluded from further
analysis because of excessive error rates (more than 20% errors).
The Human Research Ethics Committee of Macquarie Univer-
sity approved the experiment, and written informed consent was
obtained from all participants.

STIMULI
Target stimuli were blue arrows pointing either left or right, sub-
tending a visual angle of approximately 1.4◦ × 2.4◦. Primes were
identical in size, and consisted of double-headed arrows that also
pointed right or left. Masks were composed of oblique lines of the

FIGURE 2 | Stimulus and trial-structure.

same orientation as the lines in the prime stimuli (see Figure 2).
Primes and masks appeared in black. All stimuli were presented
on a white background at the center of the screen. Note that in this
study, the target arrow was physically dissimilar to the prime arrow.
This was done to limit the role of learned stimulus-response map-
pings (Finkbeiner and Friedman, 2011) and to better isolate the
source of the NCE to the integration of the prime and backward
mask.

EQUIPMENT
The experiment was run on a Dell Optiplex GX990 running 64-
bit Windows. A Samsung S27SA950 LED monitor was used at a
resolution of 1920 × 1080, which allowed a screen refresh rate of
120 Hz. Stimulus presentation was controlled using Presentation
software (Neurobehavioural Systems), and custom software was
written to interface the stimulus display with the motion capture
device (Pohlemus Liberty). This electromagnetic device recorded
participants’ reaching trajectories by sampling the position of a
small sensor taped to the tip of the right index finger at a rate of
240 Hz. Subjects wore headphones (Sennheiser 280 Pro) which
were used to present the sequence of beeps.

PROCEDURE
Subjects were seated in a dimly lit room, facing a computer screen
at a viewing distance of 50 cm. Two lateral response boards
(30 cm × 9 cm) were positioned on either side of the com-
puter monitor, 75 cm apart and 50 cm from the table edge.
Subjects initiated a trial by moving their right index finger to
the “start” position, which was located in the middle of the desk
and close to its front edge. Each trial began with a fixation dot,
during which the sequence of beeps began. Then, the prime
arrow was presented for 30 ms, followed immediately by the
mask for 100 ms. After mask offset, the screen remained blank
for 50 ms, then a target was presented for 100 ms. Primes were
either compatible with the target (both pointing in the same
direction), or incompatible (each pointing in opposite direc-
tions). To respond, subjects reached out and touched the left
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response board when the target arrow pointed to the left, and
the right response board when it pointed to the right. Subjects
initiated their responses when they heard the last of the three
sequentially presented beeps, which either co-occurred with tar-
get onset (40% of the time; 0 ms SOA), or appeared sometime
thereafter (SOAs of 150 or 250 ms, 40 and 20% of the time
respectively). The response window opened 100 ms before the
go signal (third beep) and closed 200 ms after the go signal. If
movement was not initiated within this timeframe, the trial was
terminated with a buzz and the appropriate visual feedback (e.g.,
“Too Early!” or “Too Late!”) was presented. Trials that were ter-
minated due to a response window failure were re-presented at a
later point in the experiment. Upon initiating a movement, sub-
jects were required to maintain a continuous forward movement
over the first 50 recorded samples (∼208 ms) and trials were ter-
minated with a buzz and visual feedback if this criterion was not
met.

After a practice block of 20 trials, subjects completed a total
of 360 experimental trials. At the conclusion of the experiment,
we assessed subjects’ awareness of the primes by asking them to
complete 140 trials of a two-alternative forced choice prime iden-
tification task. They were informed of the prime’s presence and,
following classification of the target stimulus, they were instructed
to indicate for each trial which of two arrows appeared as the prime
by pressing a right or left button.

DATA ANALYSIS AND RESULTS
Reaching trajectories were time-normalized prior to analysis by re-
sampling each to produce 101 evenly spaced increments between
the point corresponding to 10% of peak tangential velocity and
the point at which the finger touched the response board. As
a first step in this analysis, we applied a two-way lowpass But-
terworth filter to the position data using a frequency of 7 Hz.
Derivatives (velocity/acceleration) were then calculated through
numerical differentiation. We employed two separate analyses to
test whether (a) both PCEs and NCEs could be observed within
a single experimental context, and (b) the NCE was character-
ized by movements in the incorrect direction (as predicted by the
mask-induced priming account).

PATHOFFSET
The first goal of our analysis was to establish that PCEs and NCEs
could be elicited by varying target-viewing time. Ideally, we would
compare reaching trajectories initiated purely on the basis of prime
processing to those initiated following the processing of all (prime,
mask and target) stimuli. As this is impossible to determine, we
referred to the ERP data reported by Eimer and Schlaghecken
(1998). Here, LRP waveforms indicated that the response assigned
to the prime was elicited ∼200 ms after prime onset. In our
paradigm this corresponds to 50 ms following target onset. We rea-
soned that reaching movements initiated within 50 ms following
target onset should reflect processing of the prime and thus show
PCEs. Reaching movements initiated after 50 ms following target
onset, on the other hand, should represent the “reversed polarity”
found in LRP waveforms at around 300 ms post prime onset, and
produce NCEs. Therefore, before computing the“pathoffset”anal-
ysis described below, we segregated our data based on how long

subjects viewed the target for prior to initiating their response
(MIT). Trials with MIT values <50 were classified as “pure
prime trials,” and trials with MIT values >50 as “prime + target
trials.”

Pathoffset, or “curvature,” is a measure referring to the perpen-
dicular distance between the hand and the linear path connecting
the first and last positions of the reaching movement (Finkbeiner
et al., 2013). Typically, masked primes influence the finger’s initial
flight path such that pathoffset values are larger in incompatible
than in compatible prime conditions (Finkbeiner and Friedman,
2011). To get an overall impression of the effect of prime type on
the reaching response, we computed pathoffset at each recorded
sample, and then calculated the maximum pathoffset value for
pure prime and prime + target trials. Based on the LRP findings
mentioned above, we expected pathoffset values in pure prime
trials to be larger for incompatible than for compatible prime
conditions. Conversely, pathoffset for prime + target trials was
expected to be smaller for incompatible than for compatible prime
conditions.

Subjects’ accuracy rates are very high in the reach-to-touch
paradigm. Presumably, this is due to the relatively long dura-
tion of the reaching response, which allows subjects to recognize
and correct mistakes they may have made at the beginning
of their movement. Therefore, accuracy rates were at ceiling
(99.9% correct), and they were not modulated by prime-target
compatibility.

Paired-samples t-tests were used to compare pathoffset val-
ues between compatible and incompatible trials. This was done
separately for pure prime and prime + target trials because nat-
urally, a smaller number of trials (10%) were initiated within
50 ms after target onset. Results revealed that pure prime trials
were characterized by significantly larger pathoffset values when
the prime and target were incompatible than compatible [df(18),
t = −3.51, p < 0.01; see Figure 3]. The opposite result was found
for prime+target trials, however, with larger pathoffset values
for compatible compared with incompatible conditions [df(18),
t = 2.57, p = 0.02]. These results support our claim that both
PCEs and NCEs can be observed using a single prime-target inter-
val and a continuous behavioral measure. Specifically, they are in
line with our prediction that reaching movements initiated within
50 ms following target onset would reflect processing of the prime
stimulus, whereas reaching movements initiated after 50 ms fol-
lowing target onset would represent the “reversed polarity” found
in LRP waveforms ∼300 ms post prime onset. However, it could
be argued that the fewer number of trajectories in the pure prime
condition resulted in insufficient power. To determine that trials
with early MITs are indeed characterized by a PCE, we will refer to
the results of our second analysis described below. Crucially, this
analysis ensures an equal proportion of trials in each decile of the
MIT distribution.

INITIAL X-VELOCITY
The primary objective of this experiment, and the goal of this
second analysis, was to investigate how the NCE would manifest
in behavior during early stages of stimulus processing. This was
achieved by employing a dependent measure that exploited the
fact that subjects reached left for left arrows, and right for right
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FIGURE 3 | Average pathoffset by prime type and trial type.

arrows. X-velocity refers to the velocity of the hand as it moves
along the task-relevant, left-right dimension. Because x-velocity
is calculated so that it is positive for movements in the correct
direction and negative for movements in the incorrect direction, it
renders an analog value of the subjects’ ability to correctly classify
the target stimulus. Compatibility effects with this measure are
typically reflected in higher (more positive) x-velocities on com-
patible trials at earlier points in time (Quek and Finkbeiner, 2013).
In our paradigm, we expect the direction of congruency effects to
vary as a function of MIT. Recall that MIT is defined as the time
from target onset until the participant released the start button and
began their reaching response. Because MIT reflects the amount
of time the participant had to accumulate evidence about the tar-
get prior to commencing their classification response, it serves
as a proxy for target-viewing time. Therefore, trials with short
MITs were predicted to show a PCE, with higher x-velocities dur-
ing compatible vs. incompatible prime conditions. On the other
hand, trials with longer MITs were expected to exhibit a NCE
characterized by positive x-velocities during incompatible prime
conditions, and negative x-velocities during compatible prime
conditions.

To explore this possibility, we used a modified version of
Woestenburg et al. (1983) orthogonal polynomial trend analysis
(OPTA; for a detailed description of this analysis, see Finkbeiner
et al., 2013, and Karayanidis et al., 2011). Trials with correct
responses in each individual cell of the experimental design (i.e.,
compatible and incompatible trials) were ranked according to their
MIT. The trial with the fastest MIT was assigned the covariate
value “1,” the next fastest a “2,” all the way up to the trial with the

slowest MIT, which was assigned the covariate value “N,” corre-
sponding to the total number of correct trials in that cell of the
design. Next, a polynomial regression model was fitted to the x-
velocities using MIT rank as the covariate and polynomial terms
up to the 6th order. Terms that failed to explain significant vari-
ance were removed and the remaining coefficients were then used
to generate predicted velocity profiles, one for each trial for each
subject. To visualize the effect of target-viewing time on reaching
responses, predicted trajectories were averaged into semi-decile
intervals, resulting in 10 predicted trajectories per experimental
condition, per subject. The first of these “percentiles” represents
those trials corresponding to the fastest 10% of MIT latencies; the
second represents the next fastest 10% MITs, and so forth. This
was done first within subjects and then across subjects to obtain
a group mean. For statistical analyses, we computed the mean
x-velocity value from the first 50 samples of the predicted trajec-
tories (i.e., the first 50% of the trajectory), which reduced each
trial to a single value referred to as initial x-velocity. By limiting
our dependent measure to the initial portion of the reaching tra-
jectory, we were able to quantify how much the subject knew about
the target at the time of movement initiation. Once compiled, ini-
tial x-velocity values were analyzed across all levels of prime-target
compatibility (compatible vs. incompatible) and MIT percentile
(1 through to 10) using a repeated-measures ANOVA. The OPTA
procedure was implemented using custom software written in R
(www.r-project.org).

The repeated-measures ANOVA revealed a significant main
effect of MIT percentile (F(1,9) = 48.78, p < 0.01), and a significant
interaction between MIT percentile and prime-target compatibil-
ity (F(1,9) = 8.97, p < 0.01). Figure 4A clearly depicts the main
effect of MIT percentile, in that the initial x-velocity of reaching
responses increases with longer MITs. In other words, the longer
subjects take to view the target before they initiate their response,
the faster their finger travels in the correct direction.

To examine the nature of the interaction, we conducted a series
of paired t-tests (FDR-corrected) between compatible and incom-
patible conditions, at each MIT percentile. Results revealed that,
for MIT percentiles 1, 2 and 3, the initial x-velocity of responses
during compatible conditions was significantly greater compared
with incompatible conditions (p = 0.003, 0.003, 0.03). This com-
patibility effect was reversed for percentiles 6, 7 and 8, where
initial x-velocities were significantly greater during incompatible
compared with compatible conditions (p = 0.02, 0.01, 0.003).
As demonstrated in Figure 4A, movements initiated within the
first 3 MIT percentiles (first 30% of the movement initiation
distribution) were directly influenced by the prime arrow. Specif-
ically, they moved in the correct direction (positive x-velocity)
when the upcoming target was compatible, and in the incorrect
direction when it was incompatible (negative x-velocity). When
subjects had more time to view the target stimulus before begin-
ning their movement (i.e., MIT percentiles 6–8), they were better
at classifying the target arrow when it followed an incompati-
ble prime. For simplicity, we will refer to MIT percentiles 6–8
as “NCE percentiles,” given that they show response costs dur-
ing compatible prime conditions, and response benefits during
incompatible prime conditions. Interestingly, within our NCE
percentiles subjects’ responses did not exhibit a net movement
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FIGURE 4 | (A) Initial x-velocity shown as a function of target-viewing time. (B) Distribution of initial x-velocities for MIT percentiles 6–8.

in the wrong direction. Even though initial x-velocity was slower
for compatible versus incompatible trials, it remained positive
(i.e., in the correct direction) in all percentiles exhibiting an
NCE.

The results reported above suggest that perceptual interac-
tions between the prime and mask did not activate the “incorrect”
response relative to the target. However, it was necessary to estab-
lish that our NCE percentiles were not comprised of a greater
proportion of negative x-velocity trials in the compatible condi-
tion compared with the incompatible condition. For example, the
NCE observed in these percentiles could be driven by (a) smaller
x-velocity values in the compatible condition, or (b) a larger per-
centage of negative x-velocity trials. The former would indicate
that the correct response had been inhibited because subjects sim-
ply take longer to move in the correct direction, whereas the
latter would suggest that the incorrect response had been selec-
tively activated on some trials. To distinguish between these two
possibilities, we examined the distribution of x-velocities in the
NCE percentiles. The results of our FDR corrected t-tests were
used to separate the data into two subsets: one PCE subset (cor-
responding to MIT percentiles 1, 2, and 3) and one NCE subset
(corresponding to MIT percentiles 6, 7 and 8). Should a larger
proportion of negative x-velocity trials drive the NCE in the com-
patible condition, the distribution of initial x-velocities in our
NCE percentiles should be bimodal. This is because while most
x-velocities will be positive (we know this because average x-
velocity is always positive), a proportion of trials should have
x-velocity values that fall below 0. On the other hand, if the
distribution of x-velocities is unimodal, it would indicate that
the difference between compatible and incompatible conditions
is being driven by smaller x-velocity values in the compatible con-
dition. Figure 4B shows the distribution of initial x-velocities
for our NCE percentiles. Hartigans’ dip test, which is a test for
multimodality, failed to reveal any evidence for multimodality in
either the compatible or incompatible distributions, suggesting
they were both unimodal (D = 0.0864, p = 0.2646; D = 0.0676,
p = 0.6953, respectively). These results suggest that the NCE we
have observed is due to smaller x-velocities overall, not a mixture of

positive and negative x-velocities (i.e., movements in the incorrect
direction).

PRIME DETECTION
The test of prime visibility revealed that our masking procedure
was effective in preventing visual awareness of the prime stimuli.
On average, subjects’ ability to correctly classify the prime was at
chance (50% hit rate). This yielded a d’ score of 0.008, which was
not significantly different from 0 (p = 0.82).

DISCUSSION
There is an ongoing debate in the literature regarding the nature
of the NCE. Of particular interest to us was whether, as predicted
by the mask-induced priming account, the NCE is indeed driven
by the activation of the opposite-to-prime, incorrect response
when prime and mask stimuli share perceptual features. We com-
bined a continuous behavioral measure with a response signal
technique that allowed us to obtain an index of when positive
and negative compatibility effects emerge, and how they mani-
fest in behavior. LRP findings suggest that the modulatory effects
of the prime stimulus on behavior should occur within two dis-
tinct and sequential phases following prime onset (Eimer and
Schlaghecken, 1998). The first of these is an activation of the
prime-induced motor response, and the second is characterized
by its inhibition. We thus elicited reach-to-touch responses across
a wide set of target-viewing times under the premise that pos-
itive and negative compatibility effects would emerge naturally
depending on which stage (prime-activation or prime-inhibition)
response initiation began. We report two key findings relat-
ing to the impact of unconscious information processing on
behavior, which taken together encourage us to question exist-
ing conceptualisations regarding the mechanisms underlying the
NCE.

Firstly, our pathoffset analysis confirmed that positive and
negative compatibility effects could be elicited by varying target-
viewing time. Responses initiated during the first “prime-
activation” phase (i.e., pure prime trials) were characterized by a
PCE, with smaller pathoffset values when the target was preceded
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by a response-compatible compared with a response-incompatible
prime. Conversely, responses initiated during the second “prime-
inhibition” phase (i.e., prime + target trials) had larger pathoffset
values when targets were preceded by compatible compared with
incompatible primes. These results are in line with previous behav-
ioral studies that employed two prime-target SOAs to elicit PCEs
and NCEs, and demonstrate that the emergence of these effects
is driven by target-viewing time rather than specific experimental
conditions.

In a separate analysis, we used velocity in the task-relevant
(left/right) dimension to ascertain whether subjects’ response cer-
tainty during the first portion of their reaching trajectory was
related to the amount of time they had spent viewing the target
prior to movement onset. Consistent with our pathoffset results,
this analysis revealed an interaction between target-viewing time
and subjects’ ability to correctly classify the target arrow. When
reaching movements were initiated very close to target onset,
we found evidence of a PCE such that initial x-velocity was
negative (i.e., in the incorrect direction) when the prime was
incompatible, and positive (i.e., in the correct direction) when
the prime was compatible. Longer target-viewing times resulted
in an NCE, where subjects were faster at correctly classifying
the target when it was preceded by an incompatible compared
with a compatible prime. These findings are consistent with
previous studies that examined the temporal dynamics of posi-
tive and negative compatibility effects using response-distribution
analyses. This method involves ordering button-press responses
from fast to slow, and then analysing the resulting response-
time distribution by deciles. Using this approach, it has been
shown that slow responses are typically characterized by an NCE,
whereas faster responses exhibit a PCE (Eimer, 1999). Further-
more, when prime-target SOA is explicitly manipulated, the
NCE becomes larger as the SOA is increased from 0 to 96 ms
(Schlaghecken and Eimer, 1997, 2000; Aron et al., 2003). Our
findings extend upon this previous work by revealing the ana-
log unfolding of positive and negative compatibility effects as they
occur in stimulus processing time, all within a single experimental
context.

More importantly, our results provide behavioral evidence that
in situations where the prime and mask are comprised of common
features, the NCE does not appear to be driven by an activation
of the incorrect response. If, as put forward by Lleras and Enns
(2004), the NCE in our study was produced by a newly emer-
gent percept resembling an opposite-to-prime arrow, we should
have observed one of two possible scenarios. The first is that
in the compatible condition, the initial direction of movements
should have been made in the wrong direction. However, our
results clearly show that while subjects were slower to classify the
target arrow during compatible compared with incompatible con-
ditions, reaching movements were always in the correct direction.
The second possibility is based on the principle that prime-mask
interactions may not always interact in such a way as to produce
a new “opposite-prime.” In this case, the NCE would be driven
by a subset of trials in which subjects did indeed misperceive
the prime, and thus moved in the incorrect direction. To address
this possibility we analyzed the distribution of initial x-velocities.
Recall that x-velocity values are positive when the subject moves

in the correct direction and negative when they move in the wrong
direction. We found that x-velocities in the compatible condition
were generally positive and formed a unimodal distribution, con-
firming that our NCE overall was driven by slower movements in
the correct direction rather than a mixture of movements in the
correct and incorrect direction. Our findings therefore challenge
the accepted view that when a prime and mask share perceptual
features, the NCE is driven by mask-induced activations of the
opposite response. Instead, we provide evidence in line with the
self-inhibition account of the NCE, which posits that the prime-
activated response is automatically inhibited at long prime-target
SOAs.

It is worth mentioning that the ideomotor principle that
perception and action are inextricably linked can provide an alter-
native account for the present results. It has been shown that
information processing can “work backwards” from action to per-
ception, such that planning and executing a goal-directed action
can impair the concurrent perception of action-compatible stim-
uli (Musseler and Hommel, 1997a,b). According to Hommel et al.’s
(2001) two-phase model, making a left keypress in response to,
say, the word “left” requires the initial activation of a so-called
“feature code” (in this case, LEFT), and the subsequent inte-
gration of that code into a coherent action plan. Importantly,
the second “integration phase” is also characterized by the self-
inhibition of the feature code LEFT below baseline activity until
the appropriate action is carried out. As such, this code would
become temporarily unavailable for coding purposes, so that “left”
objects (e.g., a left-pointing arrow) would be more difficult to code
than “right” objects. This model predicts that during the activa-
tion phase, feature overlap between action plans and perceptual
objects should yield positive priming effects because an already
activated feature code should facilitate feature coding. Once a code
has been integrated, however, it becomes “occupied” and should
thus result in an impaired ability to interpret perceptually similar
objects.

If we were to treat our prime and target arrows as two per-
ceptually similar objects that share a common code (i.e., as being
ideomotor compatible), this theory would predict the results of
the present study. In this scenario, the prime stimulus (e.g., left-
pointing arrow) would activate a relevant feature code, which
includes a propensity for “leftward” action. If a response to a
subsequent, left arrow target is initiated during this initial feature-
activation phase, PCEs should occur. Responses initiated later on
in time, however, might occur during the second phase wherein
the feature code activated by the prime has been integrated. At
this point the “LEFT” code has been occupied and responses to
left arrow targets should be impeded (the NCE). Although this
interpretation is feasible, the issue of conscious awareness is prob-
lematic. Stoet and Hommel (1999) argued that the integration
phase is likely to be associated with the specific preparation of a
particular action. That is, performance costs during the classifica-
tion of perceptually relevant stimuli should only occur when such
stimuli appear while an action is being intentionally planned and
held in readiness (or while it is being executed). But in the present
study, participants could not consciously perceive the prime arrow.
It is therefore questionable whether the prime would have trig-
gered a specific plan to execute its associated motor response,
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leading to the occupation of its associated feature code. Neverthe-
less, this is an interesting new perspective from which to consider
the present findings and the NCE in general.

Traditionally, on-line control processes responsible for ter-
minating incorrectly activated response programs were assumed
to be (at least) highly correlated with consciousness and effort
(Norman and Shallice, 1986; Johnson and Proctor, 2004). The
NCE has challenged this widely held view by suggesting that
inhibitory control can occur on the basis of bottom-up sensory
processing. Mask-induced priming accounts have offered an alter-
native explanation for the effect using an established response
priming model that does not recruit an off-line inhibitory mech-
anism. In the present experiment we were able to document the
unfolding influence of masked prime stimuli on behavior. Con-
trary to the predictions made by mask-induced priming, the NCE
was not driven by a tendency to move in the incorrect direction
following the presentation of a compatible prime. We therefore
provide evidence in support of emerging views that challenge
the traditional dichotomy between low-level “automatic” pro-
cesses on the one hand, and high-level “control” processes on the
other (Wegner, 2002; Aarts et al., 2005; Hommel, 2007). Although
our findings cannot adjudicate between other hypotheses put
forth regarding the nature of the NCE (e.g., the mask-triggered
inhibition hypothesis put forward by Jaskowski and Przekoracka-
Krawczyk, 2005), they nevertheless prompt a further exploration
of the possibility that low-level self-inhibition processes may be
involved even in situations of prime/mask relevance.

CONCLUSION
The results reported here firmly establish that the non-conscious
processing of a prime arrow can yield two distinct congruency
effects within the same experimental context. Responding via a
reaching movement allows subjects to initiate their categorisa-
tion response very early in stimulus processing without penalty,
thereby allowing the researcher to observe experimental effects as
they emerge in stimulus processing time. Using this technique we
were able to show positive and negative compatibility effects as
a function of target-viewing time. Crucially, our reach-to-touch
paradigm allowed us to determine that the NCE was not produced
by movements in the incorrect direction but, rather, by move-
ments that traveled in the correct direction more slowly. This is
consistent with the notion of an automatic inhibitory mechanism
whose role is to dampen motor activations elicited by stimuli that
are no longer supported by perceptual input (Schlaghecken et al.,
2007).
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