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Connectionist models have had a profound impact on theories of language. While most
early models were inspired by the classic parallel distributed processing architecture, recent
models of language have explored various other types of models, including self-organizing
models for language acquisition. In this paper, we aim at providing a review of the latter
type of models, and highlight a number of simulation experiments that we have conducted
based on these models. We show that self-organizing connectionist models can provide
significant insights into long-standing debates in both monolingual and bilingual language
development. We suggest future directions in which these models can be extended, to
better connect with behavioral and neural data, and to make clear predictions in testing
relevant psycholinguistic theories.
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INTRODUCTION
The parallel distributed processing (PDP) models have stimulated
tremendous interests in computational models of language and
led to intense debates regarding the nature and representation of
language. Today, more than a quarter century after the original
PDP volumes (McClelland et al., 1986; Rumelhart and McClel-
land, 1986), connectionism has become a powerful tool as well
as a conceptual framework for us to understand many impor-
tant issues in language learning, processing, and impairment.
According to the connectionist framework, many critical aspects
of human cognition are emergent properties, and language is an
example par excellence. Language as a hallmark of human behavior
thus received in-depth treatment in the original PDP volumes, and
connectionist language models have flourished in the last 25 years.
It is important to note that these models may involve significantly
different computational architectures, for example, with regard to
both representation structures (e.g., localist vs. distributed repre-
sentation) or learning mechanisms (supervised vs. unsupervised
learning). In this article, we focus on a type of unsupervised con-
nectionist learning models, the self-organizing maps (SOMs)1,
and illustrate ways in which SOM-based connectionist models can
be used effectively to study the acquisition and processing of both
first and second languages.

SELF-ORGANIZING MAPS
In contrast to the classic PDP learning models (e.g., of the
type learned via back-propagation), unsupervised learning mod-
els use no explicit error signals to adjust the weights between
input and output. These models span a wide range of learn-
ing algorithms, including the Adaptive Resonance Theory (ART;
Grossberg, 1976a,b; see Hinton and Sejnowski, 1999 for a col-
lection of unsupervised models). Here we focus on a particular

1There are other connectionist models that have neither PDP nor SOM architectures
that have been applied to language studies (see Davis, 1999; Bowers, 2002; see Li and
Zhao, 2012 for a bibliography).

unsupervised learning algorithm called SOM (Kohonen, 2001),
which has been widely used in modeling language learning and
representation (see Li and Zhao, 2012 for a bibliography).

A standard SOM consists of a two-dimensional topographic
map for the organization of input representations, where each
node is a unit on the map that receives input via the input-to-
map connections. At each training step of SOM, an input pattern
(e.g., the phonological or semantic information of a word) is ran-
domly picked out and presented to the network, which activates
many units on the map, initially randomly. The SOM algorithm
starts out by identifying all the incoming connection weights to
each and every unit on the map, and for each unit, compares the
weight vector with the input vector. If the unit’s weight vector and
the input vector are similar or identical by chance, the unit will
receive the highest activation and is declared the “winner” (the
Best Matching Unit or BMU, see Figure 1 for an example). Once a
unit becomes highly active for a given input, its weight vector and
that of its neighboring units are adjusted, such that they become
more similar to the input and hence will respond to the same or
similar inputs more strongly the next time. In this way, every time
an input is presented, an area of nodes will become activated on
the map (the “activity bubbles”) and the maximally active nodes
are taken to represent the input.

Equation 1 shows how the activations of the nodes on the map
are calculated. Considering a node k that has a vector mk associated
with it to represent the weights of the input connections to it. Given
an input vector x (e.g., the phonological or semantic information
of a word), the localized output response α of node k is computed
as:

αk =

⎧⎪⎨
⎪⎩

1 − ‖x − mk‖ − dmin

dmax − dmin
, if k ∈ Nc

0, otherwise
, (1)

where Nc is the set of neighbors of the winner c [for which
αc = maxk(αk) = 1], dmin and dmax are the smallest and the
largest Euclidean distances of x to node’s weight vectors within
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FIGURE 1 | An illustration of the learned semantic categories in a SOM model. Concepts with similar features/attributes are grouped together such as
horse and zebra.

Nc . Initially activation occurs in large areas of the map, that is,
large neighborhoods, but gradually learning becomes focused and
the size of the neighborhoods reduces to only one node (the win-
ner), which has an activation level of one. This process continues
until all the input patterns elicit specific response units in the map
(i.e., the BMUs).

As a result of this self-organizing process, the statistical struc-
ture implicit in the input is captured by the topographic structure
of the SOM. In this newly formed topographic structure (the new
representation), similar inputs will end up activating nodes in
nearby regions, yielding meaningful activity bubbles that can be
visualized on the 2-D space of the map. Equation 2 shows how the
weights of the nodes around a winner or BMU are updated:

mk(t + 1) = mk(t) + β(t) · [x − mk(t)] for all k ∈ Nc . (2)

Here, β(t) is the learning rate for the map, which changes with
time t. If the node k belongs to the nodes in the neighborhood
of the winner c, its weight should be adjusted according to this
equation; otherwise, it remains unchanged.

Self-organizing maps have several important properties that
make them particularly well suited to the study of language acqui-
sition. First, as unsupervised learning systems, SOMs require no
explicit teacher; learning is achieved by the system’s organization
in response to the input. Such networks provide computationally
relevant models for language acquisition, given that in real lan-
guage learning children do not receive constant feedback about
what is incorrect in their speech (such as the kind of error cor-
rections provided by supervised learning algorithms). Second,
self-organization in these networks allow for the gradual forma-
tion of structures as changes of activity bubbles on 2-D maps,
as a result of extracting an efficient representation of the com-
plex statistical regularities inherent in the high-dimensional input
space (Kohonen, 2001). In particular, the network organizes infor-
mation first in large areas of the map and gradually zeros in on
to smaller areas (decreasing neighborhoods); this zeroing-in is a
process from diffuse to focused patterns, as a function of the net-
work’s continuous adaptation to the input characteristics. Third,
the SOM can fall into a topography-preserving state once learn-
ing is achieved, which means nearby areas in the map respond
to inputs with similar features. This property is consistent with

known topographic features of certain areas of the brain where
topographic maps are formed, especially in the primary motor,
visual, and somatosensory cortical areas (Haykin, 1999; Spitzer,
1999; Miikkulainen et al., 2005). Although the association cortex
in the human brain may be much more dynamic and less topo-
graphically organized (see Sporns, 2010), the SOM architecture
does allow researchers to model the emergence of higher-level
cognitive processes (see Miikkulainen, 1993, 1997), including the
emergence of lexical categories as a gradual process and natural
outcome of language learning (see Li, 2003).

As in other computational models, training in a SOM involves
the use and manipulation of free parameters such as map size
(number of nodes in the network), neighborhood size (initial
radius of the training nodes), learning rate, etc. Appropriate values
of these parameters often lead to fast convergence of training or
better overall performance of the model, and decisions need to be
made by the modeler in advance, given the nature and complexity
of the modeling task. As a general yardstick, for example, the size
of the map should generally be three to four times the size of the
input units to be learned, whereas the size of the initial radius
should be sufficiently large (e.g., 1/4 of the map size) to allow
for reorganization of the map’s topography, depending on how
much plasticity the modeler wants to give to the network2. Both
neighborhood size and learning rate in most SOM models take a
linear decrease function (e.g., Miikkulainen, 1997), although some
studies have tied the change of neighborhood size to quantization
errors of the network (see Li et al., 2007 and discussion below). The
modeler must constantly evaluate the impact of different values of
the free parameters in affecting the performance of the model and
speed of convergence. As an example, Richardson and Thomas
(2008) systematically examined the influence of the free parame-
ters, along with some other factors, on SOM’s ability to simulate
critical periods in cognitive development.

HEBBIAN LEARNING RULE
A highly influential learning mechanism that has also been com-
putationally implemented in connectionist models is the Hebbian
learning rule, due to the Canadian neuroscientist Donald Hebb

2These are based on our modeling experience and the modeler needs to consider
their utility in light of the task and complexity of input–output relationships in each
simulation.
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(Hebb, 1949). In considering how biological neural networks
could work, Hebb hypothesized that when neuron A is persis-
tently and repeatedly engaged in exciting neuron B, the efficiency
of A in firing B will be increased due to some growth process or
metabolic changes taking place in one or both neurons. In other
words, the strength between A and B is increased as a result of
their frequent associations in neural activities. Hebb’s hypothesis
is the basis of the slogan “neurons that fire together wire together.”
It provides an important background for connectionism, as well
as a biologically plausible mechanism for how associative learning
and memory could occur at the neural level, as it is clearly related
to long-term potentiation (LTP) in biological systems (Munakata
and Pfaffly, 2004). Mathematically, the Hebbian learning rule can
be expressed as Eq. 3:

�wkl = β.αk .αl , (3)

where β is a constant learning rate, and �wkl refers to change of
weights from input k to l and αk and αl the associated activations
of neurons k and l. The equation indicates that the connection
strengths between neurons k and l will be increased as a function
of their concurrent activities.

Although the Hebbian learning rule itself is not explicitly
included in the SOM algorithm discussed above, it has been a
very useful mechanism for connectionist language models based
on SOM. In particular, several SOMs can be linked together
via associative connections trained by Hebbian learning (see
Miikkulainen, 1993, 1997 for this approach). As shown in several
models discussed next, when Hebbian learning is incorporated,
the SOM model has strong implications for language acquisition:
it can account for the process of how the learner establishes rela-
tionships between word forms, lexical semantics, and grammatical
morphology, on the basis of how often they co-occur and how
strongly they are co-activated in the representation.

SOM-BASED CONNECTIONIST MODELS OF LANGUAGE
MODELS WITH SINGLE SOMs
Many early SOM-based connectionist models include just one
layer of SOM, which usually only accounts for a particular aspect of
language in which the researchers are interested. A good example
is the classic work of Ritter and Kohonen (1989) that demon-
strates that SOM networks can capture the semantic structure of
words. These authors tested a single SOM with inputs represent-
ing the meaning of words that were generated from two methods.
The first method is a feature-based method, according to which
a word’s meaning is represented by a vector and each dimension
of this vector represents a possible descriptive feature or attribute
of the concept. The value of the dimension could be 0 or 1, indi-
cating the absence (0) or presence (1) of a particular feature for
the target word. For example, the representations of dove and
hen are very similar except one dimension representing the fly-
ing feature (dove = 1, hen = 0). Specifically, Ritter and Kohonen
(1989) generated a detailed representation of 16 animals based on
13 attributes, trained a SOM with the 16 animal words, and found
that the network was able to form topographically organized rep-
resentations of semantic categories associated with the 16 animal
words; see an example in Figure 1.

Ritter and Kohonen’s (1989) second method of represent-
ing meanings of words is a statistics-based method, according
to which the researchers generated a corpus consisting of three-
word sentences randomly formed from a list of nouns, verbs, and
adverbs (e.g., Dog drinks fast). A trigram window is applied to
the corpus, and the co-occurrence frequencies of the word in the
middle of the trigram with its two closest neighbors are calcu-
lated. This generates a co-occurrence matrix, which forms the
basis of each word’s “average context vector,” a combination of
the average of all the words preceding the target word and that
of all the words following it. The researchers then used these
vectors as input to the SOM, and training on the SOM again
indicated topographically structured semantic/grammatical cat-
egories on the map, like the example shown in Figure 1. Ritter
and Kohonen’s (1989) pioneering work clearly shows that cat-
egories implicitly in the linguistic environment (input streams)
can be extracted by the SOM3. The properties of a topographic-
preserving map as demonstrated by Ritter and Kohonen (1989)
provide the basis for SOM as a model to simulate empirical
findings regarding semantic representation and semantic prim-
ing (see Spitzer, 1999 and discussions of SEMANT and DevLex-II
below).

Silberman et al. (2007) introduced the SEMANT model to sim-
ulate the associations of words/concepts in a semantic network.
SEMANT includes one SOM that handles semantic information
that was extracted from large-scale corpora based on the method
of Li et al. (2000) using the CHILDES database (MacWhinney,
2000). SEMANT also integrates a component of episodic memory
simulated by the lateral connections among the units on the SOM.
The basic idea here was that the semantically related words tend to
occur together in a linguistic content, and therefore their episodic
associations tend to be strong. Simulation results for the model
showed that SEMANT was able to replicate the empirical findings
from psycholinguistics, such as effects of semantic priming that
indicate faster response to the related word than unrelated words
(e.g., faster lexical decision times for nurse than to bread upon
hearing doctor; Neely and Durgunoglu, 1985).

In addition to semantic learning, SOM networks have also
been used for simulating phonological development. For exam-
ple, Guenther and Gjaja (1996) introduced a single-layer SOM to
simulate the “perceptual magnet effect” (Kuhl, 1991) in infants’
phonetic learning. In particular, the authors first trained the
SOM (or “auditory map” as so named by the authors) with input
sound patterns which contained formant information of different
phonemic categories (such as /r/ and /l/ in American English).
They then presented the network with test sounds similar to the
phonemes that the network was trained on. When a test stimu-
lus was presented to the map, the activities of all nodes on the
map were calculated. Each node’s activity level was further used
to multiply its “preferred stimulus” (the input vector that acti-
vated the node most strongly), and the resulting products for all
the nodes were added together and normalized to serve as the
map’s “population vector.” Guenther and Gjaja (1996) measured

3Based on this method, Zhao et al. (2011) developed a software (Contextual
Self-Organizing Map Package) to derive corpus-based semantic representations in
multiple languages using word co-occurrence statistics.
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the population vectors that corresponded to each test stimulus,
and used these measures to represent the map’s overall percep-
tion of the particular test stimulus. Consistent with results from
empirical studies of human listeners, the SOM-based modeling
results showed a warpping of perceptual space, that is, the acoustic
patterns near the center/prototype of the learned sound categories
are perceived as more similar to each other than to those patterns
further away from the center, a trademark of “perceptual magnet
effect.”

MODELS WITH MULTIPLE SOMs
Although connectionist models with only one layer of SOM
have be successful in simulating different aspects of language
one at a time (e.g., semantic learning or phonological learning),
researchers have realized that in natural language contexts the user
or learner is engaged in a process in which phonological, lexical,
semantic, and orthographic information often occurs simultane-
ously. An integrated SOM-based model must be able to simulate
this process. Multiple SOMs that are interconnected have thus
been developed in response to this requirement.

One of the earliest attempts to construct a full-scale mul-
tiple SOM language model was Miikkulainen (1997; see also
Miikkulainen, 1993). He introduced the DISLEX model, which
includes different SOMs connected through associative links via
Hebbian learning. In DISLEX, each map is dedicated to a specific
type of linguistic information (e.g., orthography, phonology, and
semantics), and is trained as a standard SOM. In the training of
the network, an input pattern activates a node or a group of nodes
on one of the input maps, and the resulting activity bubble prop-
agates through the associative links and causes an activity bubble
to form in the other map. The activation of co-occurring lexi-
cal and semantic representations leads to continuous organization
in these maps, and most importantly, to adaptive formations of
associative connections between the maps. The DISLEX model
was successfully used to simulate certain impaired language
processes such as dyslexia and aphasia (Miikkulainen, 1997),
and has also been applied to simulate bilingual representation
(Miikkulainen and Kiran, 2009), bilingual aphasia (Kiran et al.,
2013), and the acquisition of Chinese reading by elementary school
children (Xing et al., 2004).

Using the basic idea of multiple SOMs connected via associa-
tive links, Li et al. (2004) developed the Developmental Lexicon
(DevLex) model to simulate children’s early lexical development.
Similar to DISLEX, DevLex is a multi-layer self-organizing model
with cross-layer links trained by Hebbian learning. Unlike DISLEX
that uses the standard SOM learning algorithm, it includes two
growing SOMs which recruit additional nodes in response to
task demands in learning, and these new nodes are inserted in
the topographic structure of the existing map as the network’s
learning progresses. The growth of new nodes is dependent upon
accuracy of learning (e.g., as more errors occur more nodes are
inserted). One growing maps handles the semantic representation
and another the phonological representation of words. DevLex
takes advantages of the SOM properties discussed earlier (see
Introduction). The Li et al. (2004) simulations showed that it
developed topographically organized representations for linguis-
tic categories over time, modeled lexical confusion as a function

of word density and semantic similarity, and displayed age-of-
acquisition effects in the course of learning a growing lexicon.
These results matched up with patterns from empirical studies of
children’s early lexical development. DevLex later evolved into the
DevLex-II model, which we will discuss in the next section (Li
et al., 2007).

Mayor and Plunkett (2010) introduced a self-organizing model
to account for fast mapping in early word learning. Their sim-
ulations particularly focused on the generalization property of
word–object associations based on the taxonomic/categorical rela-
tionship of objects. Their model included two SOMs with one
receiving visual input (the object) and another acoustic input (the
word). The connections of the two maps were adjusted by Heb-
bian learning rule, which emphasizes that the cross-layer weights
are reinforced as the object and the word are simultaneously pre-
sented to their model. Mayor and Plunkett (2010) pointed out
that this joint presentation of an object and its corresponding
name reflected the results of the development of infants’ joint-
attentional activities with their caregivers. Although the visual
inputs to this model were random dot matrices artificially gen-
erated, the model could simulate several interesting patterns in
children’s early lexical and category development, such as the tax-
onomic constraint that indicates children tend to give a new object
a known name in the same category (e.g., seeing a tiger for the first
time and immediately call it a cat, which they already learned).
The authors also argued that an efficient, pre-established catego-
rization capacity is a prerequisite to successful word learning. This
argument is highly consistent with data from other simulations
of early lexical development such as those based on DevLex-
II (see discussion under the Section “Modeling Vocabulary
Spurt”).

Recently, Kiran et al. (2013) presented data from the DISLEX
model that simulated patterns of bilingual language recovery in
aphasic patients. A distinct feature of the Kiran et al.’s (2013)
model was that they applied it to simulate empirical patterns
of, on a case-by-case basis, each of the 17 patients who under-
went treatment following injury. Their simulation results showed
a close match with real behavioral data from individual patients,
and this is a testimony that computational models can closely
reflect realistic linguistic processes from realistic language users
(rather than from simplified or idealized situations). In order to
do so, Kiran et al.’s (2013) model incorporated important variables
underlying patterns of behavior, including the patient’s language
history with regard to age of L1 and L2 acquisition, proficiency,
and the dominance of the treatment language. More impressive
was the model’s ability to predict the efficacy of rehabilitation
in each of the bilingual’s languages. In reality, each bilingual
patient underwent rehabilitation treatment for only one of their
languages (English or Spanish) due to empirical constraints, but
the computational model was trained for recovery in both lan-
guages following lesion, thus showing considerable advantage and
flexibility of the model as compared with examination of the
actual patient. It is important to note that in empirical stud-
ies the researcher, when faced with the injured patient, cannot
go back to study the patient’s pre-lesion condition, whereas in
computational modeling the researcher can examine the intact
model, lesion it, and track the performance of the same model
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before and after lesion, as was done by Kiran et al. (2013) in their
study.

DevLex-II: A SCALABLE SOM-BASED CONNECTIONIST
MODEL OF LANGUAGE
In this section, we present the details of the DevLex-II model (Li
et al., 2007), a SOM-based connectionist model designed to sim-
ulate processes of language learning in both the monolingual and
bilingual situations. In a number of studies (Zhao and Li, 2009,
2010, 2013), we have tested the model’s ability in accounting for
patterns of first (L1) and second (L2) language acquisition. We
say that the model is “scalable” because it can be used to simulate
a large realistic linguistic lexicon, in single or multiple languages,
and for various bilingual language pairs (such as Chinese–English,
Spanish–English, etc.). In what follows we will first discuss some
key features of the DevLex-II architecture and then discuss the
applications of the model to various L1 and L2 phenomena to illus-
trate how models based on multiple SOMs can be used effectively
to address critical issues in L1 and L2 acquisition.

ARCHITECTURE OF THE MODEL
Considering the features of previous models (DISLEX, DevLex),
the DevLex-II model builds on the basic structure as described
above: multiple SOMs which are connected via Hebbian learn-
ing. The architecture of the model is illustrated in Figure 2. The
model includes three basic levels for the representation and orga-
nization of linguistic information: phonological content, semantic
content, and the articulatory output sequence of the lexicon. The
core of the model is a SOM that handles lexical-semantic represen-
tation. This SOM is connected to two other SOMs, one for input
(auditory) phonology, and another for articulatory sequences of
output phonology. Upon training of the network, the semantic

FIGURE 2 | A sketch of the DevLex-II model. See text for explanation of
the architecture of the model.

representation, input phonology, and output phonemic sequence
of a word are simultaneously presented to the network. This
process can be analogous to that of a child hearing a word and
performing analysis of its semantic, phonological, and phonemic
information.

On the semantic and phonological levels, the network con-
structs the representations based on the corresponding linguistic
input according to the standard SOM algorithm. On the phone-
mic output level, DevLex-II uses an algorithm called SARDNET
(James and Miikkulainen, 1995), a SOM-based temporal sequence
learning network. The addition of the SARDNET algorithm to the
model is based on considerations that word production is a tempo-
ral sequence ordering problem, and that language learners face the
challenge to develop better articulatory control of the phonemic
sequences of words.

In this architecture, at each training step, phonemes are input
into the sequence map one by one, according their order of occur-
rence in a word. The winning unit of a phoneme is found and
the weights of nodes in its neighborhood are adjusted; meanwhile,
the activation levels of the winners responding to phonemes pre-
ceding the current phoneme will be adjusted by a number γd ,
where γ is a constant and d is the distance between the location of
the current phoneme and the preceding phoneme that occurred
in the word. This adjustment is intended to model the effect of
phonological short-term memory during the learning of artic-
ulatory sequences; the activation of the current phoneme could
be accompanied by some rehearsal of previous phonemes due to
phonological short-term memory, which deepens the network’s
or the learner’s knowledge of previous phonemes. The γ here is
chosen to be <1 (0.8 in our case), in order to model the fact that
phonological short-term memory tends to decay with time. For a
word with n phonemes, the output of the winner responding to
the jth phoneme will be 1 + γ + γ2 +. . .. . .+ γn−j , which is a
geometric progression, and can be written as:

αwinner(j) = (1 − γn−j+1)

1 − γ
. (4)

According to this equation, when the representation of all the
phonemes in a word is received by the output sequence map, the
activation of some nodes (e.g., the first winner) will be larger
than 1, so they need to be normalized to the range between 0 and
1. Thus, the node in response to the first phoneme of the word
will have the largest activation, followed by sequentially decaying
activations of other phonemes in the sequence of the word.

In DevLex-II, the associative connections between maps are
trained via the Hebbian learning rule, as in DevLex and DISLEX.
As training progresses, the weights of the associative connections
between the frequently and concurrently activated nodes on two
maps will become increasingly stronger. After the cross-map con-
nections are stabilized, the activation of a word form can evoke the
activation of a word meaning via form-to-meaning links, which
models word comprehension. If the activated unit on the seman-
tic map matches the correct word meaning, we determine that
the network correctly comprehends this word; otherwise the net-
work makes a comprehension error. Similarly, the activation of a
word meaning can trigger the activation of an output sequence
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via meaning-to-sequence links, which models word production.
If the activated units on the phonemic map match the phonemes
making up the word in the correct order, we determine that the net-
work correctly produces this word; otherwise the network makes
a production error.

PLASTICITY AND STABILITY IN THE MODEL
Since we aim at designing a scalable model that is suitable to sim-
ulate learning in different linguistic contexts (monolingual and
bilingual), we must consider a fundamental problem called “catas-
trophic interference” (see French, 1999 for a review). Keeping the
network’s plasticity for learning new words often causes it to lose
its stability for old knowledge; conversely, a network that is too
stable often cannot adapt itself very well to the new learning task.
This problem has been termed the “plasticity–stability” dilemma
in neural networks since the 1970s (Grossberg, 1976a,b). To resolve
this problem for our studies (in particular the bilingual learning
studies discussed below), we introduced two new features into
DevLex-II.

The first is a self-adjustable neighborhood function. In the stan-
dard algorithm of SOM, the radius of the neighborhood usually
decreases according to a fixed training timetable (see earlier dis-
cussion on SOM modeling parameters). This type of development
in the network, though practically useful, is subject to the criti-
cisms that (1) learning is tied directly and only to time (amount)
of training, but is independent of the input-driven self-organizing
process; and (2) the network often loses its plasticity for learn-
ing new inputs when the neighborhood radius becomes very
small. DevLex-II considered these potential problems by using
a learning process in which the neighborhood size is not totally
locked with time, but is adjusted according to the network’s learn-
ing outcome (experience). In particular, neighborhood function
depends on the network’s error level on each layer averaged across
all the input patterns. Here, a “quantization error” (as used in
Kohonen, 2001) of an input pattern is defined as the Euclidean
distances of the input pattern to the weight vector of its winner
or BMU.

A second way in which we have attempted to solve the plasticity–
stability problem is to manage the training process to be more
realistic for learning: for the input phonology map and the seman-
tic map, during each training epoch, once a unit is activated as
a BMU, it will become ineligible to respond to other inputs in
the current training epoch. In this way, the old words are kept
untouched in the training, whereas the new words can be repre-
sented by new units on the maps. A similar procedure is also used
for the output sequence map at the word level, where the same
phoneme in different locations of a word will be mapped to differ-
ent, but adjacent, nodes on the map. This mechanism resembles
DevLex’s growing map process in which new nodes are recruited
for novel inputs as computational resources become scarce (see
Li et al., 2004 for an algorithm in new node recruitment, as also
discussed earlier). The use of a different but adjacent unit for new
input is also empirically plausible: psycholinguistic research sug-
gests that when young children encounter a novel word they tend
to map it to a different category or meaning for which the child has
not yet acquired a name (Markman, 1994; Mervis and Bertrand,
1994).

LINGUISTIC REALISM OF THE MODEL
Many connectionist models of language are based on the use of
artificially generated lexicon that is often limited in size. Such
use of synthetic or highly simplified vocabularies provides cer-
tain modeling conveniences, but it lacks linguistic realism and
is out of touch with the learner’s true lexical experience. As a
step forward, we considered two methods in which our modeling
data was constructed. First, in all of our studies with DevLex-
II (Li et al., 2007; Zhao and Li, 2009, 2010, 2013), we used
input based on realistic linguistic stimuli. For example, in sev-
eral studies our simulation material was based on the vocabulary
from the MacArthur–Bates Communicative Development Inven-
tories (the CDI; Dale and Fenson, 1996), which allowed us to
model a lexicon size of up to 1000 words. Second, we coded
the input to our model as vector representation of the phone-
mic, phonological, or semantic information of words, extracted
in the following ways: (1) PatPho, a generic phonological rep-
resentation system, was used to generate the sound patterns of
words based on articulatory features of different languages (Li
and MacWhinney, 2002; Zhao and Li, 2010); (2) statistics-based
methods were used to generate semantic representations of train-
ing stimuli from large-scale corpus data (e.g., CHILDES database;
MacWhinney, 2000) or from computational thesauruses (e.g.,
WordNet database; Miller, 1990), as done in Li et al. (2007)
and Zhao and Li (2009, 2010, 2013; see also earlier discussion
about generating semantic representations in SOM-based mod-
els). Given the input representations constructed in the above
manner, the DevLex-II model receives each representation sequen-
tially in the training (i.e., one word at a time, in randomized
order of training), approximating the word learning process in the
realistic learning environment.

DevLex-II MODELS OF MONOLINGUAL LANGUAGE ACQUISITION
Many interesting empirical phenomena have been examined in
the field of monolingual language development; for example,
in the study of lexical development, researchers have investi-
gated patterns such as the vocabulary spurt, age of acquisition
(AoA) of vocabulary, relationship between comprehension and
production, motherese and role of input, word frequency effect,
lexical category development, fast mapping, lexical overextension,
U-shaped development, and so on (see Clark, 2009; Saxton, 2010).
Connectionist approaches have been fruitfully applied to study
these phenomena in the past two decades (see Westermann et al.,
2009 for a review; see Li and Zhao, 2012 for a bibliography). The
DevLex-II model was originally designed to account for several of
the phenomena listed above.

Modeling vocabulary spurt
Vocabulary spurt refers to a period of extremely rapid growth of
vocabulary starting around 18–24 months of age in children. A
large number of studies have examined vocabulary spurt in young
children (see Goldfield and Reznick, 1990; Bates and Carnevale,
1993 for example). Despite the empirical research in document-
ing the outcome of timing of vocabulary spurt, the underlying
mechanisms for when and how vocabulary spurt occurs has been
an issue of intense debate. To provide a computational account
of this phenomenon, Li et al. (2007) trained a DevLex-II model
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to learn 591 English words extracted from the toddler’s vocabu-
lary list of the English CDI. Their model incorporated several key
features of learning and representation for lexical development,
including the multiple SOMs that were used for simulating com-
prehension and production for the same items, along with realistic
phonological and semantic input patterns of the lexical items.

Figure 3 presents the average receptive and productive vocabu-
lary sizes across the course of DevLex-II training, averaged across
10 simulation trials. The simulation results show a clear vocabu-
lary spurt, preceded by a stage of slow learning and followed by a
performance plateau. On average, the model’s productive vocabu-
lary did not accelerate until about 35–40 epochs, one-third into the
total training time, reflecting the model’s early protracted learning
of the representations of word forms, meanings, and sequences,
and their associative connections. Once the basic organization of
the lexicon was acquired in terms of lexical and semantic cat-
egories and their associations, vocabulary learning accelerated,
which occurred quickly after 40 epochs of training.

Although the figure shows only the results of the associative
connections (form-to-meaning for comprehension, and meaning-
to-sequence for production), the hit rates for these connections
depended directly on the shape or precision of self-organization in
the separate feature maps (see Figure 3 on Li et al., 2007). In other
words, the period of rapid increase in vocabulary size may have
been prepared by the network’s slow learning of the structured
representation of phonemic sequence, word phonology, and word
semantics, as well as its learning of the mappings between these
characteristics of the lexicon. Once the basic structures were estab-
lished on the corresponding maps, the associative connections
between maps could be reliably strengthened to reach a critical
threshold through Hebbian learning.

Figure 3 also shows that the vocabulary spurt occurred for both
production and comprehension, rather than being restricted to
only one modality, consistent with empirical studies (Reznick and
Goldfield, 1992). Previous empirical studies have largely focused

FIGURE 3 | Vocabulary spurt in the learning of the 591 CDI words by

DevLex-II. Results are averaged across 10 simulation trials. Error bars
indicate standard error of the mean (figure adapted from Li et al., 2007,
reproduced with permission from Wiley and Sons, Inc.).

on children’s word production, but a few researchers have also
questioned whether a comprehension vocabulary spurt could
exist. Our DevLex-II model was able to simulate a spurt pat-
tern in both comprehension and production. Interesting, although
both types of spurt were present in our simulations, the compre-
hension spurt occurred earlier than the production spurt, which
is consistent with the argument that comprehension generally
precedes production (Clark and Hecht, 1983) and in the case
of lexical acquisition, a spurt in the receptive vocabulary could
start much earlier (e.g., from 14 months of age; see Benedict,
1979).

Our simulation results as shown in Figure 3 also indicated
that there were significant individual differences between different
simulation trials, even when all simulations had the same mod-
eling parameters. Most interestingly, the largest variations tended
to coincide with the rapid growth or spurt period. Examining
the individual trials in detail, we found that different simulated
networks could differ dramatically in the onset time of their
vocabulary spurt. In the 10 simulation trials, the rapid increase
of vocabulary size in production could begin from as early as
epoch 30, or from as late as epoch 60, but in each case there was
a clear spurt process. While some of these variations may be ran-
dom effects (due primarily to the network’s random initial weight
configurations and the random order of training words), others
were systematic differences as a function of learning the complex-
ity of the lexical input, especially the different stimulus properties
such as word frequency and word length. Our simulation results
clearly indicate the higher the word frequency, or the shorter the
word length, the earlier the vocabulary spurt (see discussions in Li
et al., 2007, Section 3.3).

Modeling early phonological production
DevLex-II is also able to simulate patterns in early phonologi-
cal production. Table 1 presents a list of typical examples from
the same network discussed above on word productions at dif-
ferent training times. These errors parallel children’s early word
pronunciations (Foster-Cohen, 1999), such as omission of con-
sonants at the end of a word (e.g., output for “bib” at epoch
50), deletion of a consonant from consonant clusters (e.g., out-
put for “smile” and “glue” at epoch 60), and substitution of
consonants with similar phonemes (e.g., producing /b/ for /d/
in “bird”). These errors can be attributed to (a) incomplete
meaning-to-phoneme links, and (b) incomplete sequence learning
of phonemes. Our modeling results showed clearly how children’s
early phonemic errors can arise from incomplete consolidation of
word sequences, amplified by limitations in the learner’s phonemic
memory.

An examination of Table 1 also indicates other interesting pat-
terns. For example, in two different simulation trials, responding
to the word sock, the network gave two different patterns of pro-
duction error, the deletion of consonant /k/, and the substitution
of it with /t/ (see Table 1 for the two cases of sock). Given that
the simulation trials had the same training parameters with the
only difference in initial weights and training order of words, this
difference reflects individual variations that are similar to those
found both within and across different developmental stages in
children (Menn and Stoel-Gammon, 1993).
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Table 1 | Sample production errors from DevLex-II in learning English vocabulary.

Words Epochs (training time)

30 40 50 60 80 100

Foot (/fυt/) /υu:/ /fυ/ /fυ/ /fυ/ /fυt/ /fυt/

Dog (/d�:g/) – /d/ /d/ /d�:/ /dg�:/ /d�:g/

Sock (/sa:k/) /∫d/ /su:/ /su:/ /sa:/ /sa:/ /sa:/

Bib (/bΙb/) /a:/ /br/ /bΙ/ /bΙ/ /bΙb/ /bΙb/

Apple (/æp�l/) – /æp/ /æp/ /æp/ /æp�/ /æp�l/

Cat (/cæt/) /a/ /cæ/ /cæ/ /cæ/ /cæt/ /cæt/

Brush (/br�∫/) /n/ /b�n/ /b�n/ /b�∫/ /b�∫r/ /br�∫/

Smile (/smaΙl/) /p�Ιi:/ /Ιma/ /Ιma/ /maΙl/ /maΙl/ /maΙl/

Glue (/glu:/) /Ι/ /g/ /g/ /gu:/ /gu:/ /gu:/

Sock (/sa:k/) /a/ /sa:t/ /sa:t/ /sa:t/ /sa:t/ /sa:t/

Hide (/haΙd/) /Ιb/ /Ιhb/ /haΙb/ /haΙb/ /haΙb/ /haΙb/

Bird (/b ε:d/) /υ(d;n)/* /bb/ /b ε:b/ /b ε:b/ /b ε:b/ /b ε:b/

Bottle (/ba:t�l/) /tæ/ /bta:�æ/ /bta:�æ/ /bta:�æ/ /ba:t�æ/ /ba:t�æ/

Glasses (/glæs�z/) /ts/ /æzi:n/ /gæzi:n/ /gæs�z/ /gæs�zl/ /glæs�z/

“–” indicates no unique output of the word since the word is confused with other words on the semantic map at the current time.
*Both the phonemes /d/ and /n/ on the phonemic map were the best matching units (BMUs) in response to the semantic representation of “bird.”

Finally, most of the examples in Table 1 also reflect a gen-
eral developmental shift in phonological pattern formation. At
the earliest stages of learning, the network’s productions were
highly simplified and often very different from the target pronun-
ciations. During the middle and late stages of learning, with the
emergence of self-organized phonemic structure and the devel-
oping associative links, correct productions increased gradually.
At these stages, the production errors, though still present, were
much closer to the target pronunciations but some also had typ-
ical error patterns as discussed above. The coexistence of correct
and incorrect word pronunciations corresponds to empirical pat-
terns in children’s phonological development from babbling to
word production (Menn and Stoel-Gammon, 1993; Foster-Cohen,
1999). The transition from incorrect sequences, omissions, and
substitutions to correct pronunciations indicates that our model
was able to capture developmental changes in early phonological
acquisition.

Modeling the acquisition of grammatical and lexical aspect
Linguists generally distinguish between two kinds of aspect, gram-
matical aspect and lexical aspect. Grammatical aspect is related to
aspectual distinctions which are often marked explicitly by lin-
guistic devices (e.g., English auxiliary be plus inflectional suffix
ing to mark ongoing activities). Lexical aspect, on the other hand,
refers to the characteristics inherent in the temporal meanings
of a verb, for example, whether the verb encodes an inherent
end point of a situation (e.g., telic verb like arrive vs. atelic verb
like run), or whether the verb is inherently stative or punctual
(stative verb like believe vs. punctual verb like break). Research
has shown that there is a strong interaction between these two
types of aspect in the process of children’s early lexical and
grammatical acquisition (see Li and Shirai, 2000 for a review);

for example, initially children’s use of grammatical inflections
is restricted to specific verbs (e.g., using -ed only with punc-
tual verbs), and only later on it approaches the adult linguistic
pattern.

We wanted to see whether a multi-layer SOM-based model is
able to capture the developmental patterns of child language in
the acquisition of lexical and grammatical aspect, and whether a
connectionist network void of pre-specified categories can acquire
verb aspectual categories that have been claimed to be innate
(cf. the “language bioprogram hypothesis” of Bickerton, 1984).
To simulate the acquisition of aspect, DevLex-II was trained on
184 English verbs across four growth age stages (or input ages:
13–18, 19–24, 25–30, and 31–36 months old). Each of the 184
verb types was chosen if it occurred in the parental speech of
CHILDES database (MacWhinney, 2000) for 50 or more times
within a certain age group mentioned above (see Zhao and Li,
2009 for details). We examined the network’s acquisition of imper-
fective/progressive aspect marker ing, habitual aspect markers -s
and perfective aspect marker -ed in connection with the acqui-
sition of three semantic categories of lexical aspects (activity,
telic, and stative verbs). Here, we defined the correct produc-
tion of the aspect form for any given verb in the same way
as done in Li et al. (2007): for example, if the word kicking is
shown to the semantic map, production is counted correct only
when the consecutively activated nodes on the output phone-
mic map are the BMUs for /k/ /I/ /k/ /I/ /η/ in the correct
sequence.

Table 2 presents a comparison of our simulation results with
empirical patterns from parental speech. First, looking at the simu-
lation data, we found that the network’s production of inflectional
markers across the four input ages are highly consistent with the
empirical patterns: the use of imperfective aspect (-ing) is closely
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Table 2 | Percentage of use of tense-aspect suffixes with different verb types across input age groups in DevLex-II’s production and in input data

based on parental speech (adapted from Li and Zhao, 2009, reproduced with permission from Mouton de Gruyter).

Verbs Tense-aspect suffixes

Age 1;6 Age 2;0 Age 2;6 Age 3;0

-ing -ed -s -ing -ed -s -ing -ed -s -ing -ed -s

Network production

Activity 73 0 29 69 27 33 61 24 35 62 30 37

Telic 27 75 14 21 53 28 32 62 27 31 62 26

Stative 0 25 57 10 20 39 7 14 38 7 8 37

Parental input data

Activity 63 23 29 62 26 26 63 22 33 60 29 35

Telic 31 62 29 31 58 26 29 66 25 32 59 24

Stative 6 15 43 7 16 48 8 12 42 8 12 41

associated with activity verbs that indicate ongoing process, while
the use of perfective aspect (-ed) is closely associated with telic
verbs that indicate actions with endpoints or end results. In par-
ticular, in early child English, -ing is highly restricted to activity
verbs, -ed restricted to telic verbs, and -s restricted to stative
verbs, as demonstrated by Bloom et al. (1980). Our network, hav-
ing received input patterns based on parental speech from the
CHILDES database, behaved in the same way as children do. For
example, at input age 1;6, the network produced -ing predomi-
nantly with activity verbs (73%), -ed overwhelmingly with telic
verbs (75%), and -s with stative verbs (57%). Such associations
were observed at all four stages (especially for -ing and -ed), but
they became attenuated over time.

Second, we analyzed the input dataset to our network (based
on child-directed parental speech), and found that there was also
a clear consistency between the input and the network’s pro-
duction. In the input data there are clear associations between
-ing and activity verbs, -ed and telic verbs, and that these asso-
ciations are strong throughout the four input ages, as shown
also by Shirai (1991) in an empirical analysis. The degree to
which the network’s production matches up with the input pat-
terns indicates that DevLex-II was able to capture the statistical
co-occurrences relationship between lexical aspect (verb types)
and grammatical aspect (verb morphology) in the input. While
this is hardly surprising for a connectionist model, our results
also indicate that DevLex-II’s productions were not simply ver-
batim mimics of what’s in the input by recording individual
words and suffixes and their co-occurrence. This is important
in that our network has derived (but not simply reproduced)
the type–suffixes association patterns from the linguistic input.
The simulation results showed that the associations between
verb types and suffixes were stronger in the network’s produc-
tions than they were in the input data received by the network,
particularly for the early training stages (i.e., more restrictive
associations between verb semantics and inflectional suffixes,
for example, between telic verbs and -ed). DevLex-II at early
stages behaved more restrictively than what is in the language
input with respect to the correlations between lexical aspect

and grammatical aspect, which matches up well with empirical
observations from child language (see Li and Shirai, 2000 for
review).

DevLex-II MODELS OF BILINGUAL LANGUAGE ACQUISITION
While the above discussion highlighted two domains (vocabulary
and grammatical morphology) in which DevLex-II was applied to
first language (L1) acquisition (see Zhao and Li, 2013 for a full list
of DevLex-II applications), the utility of the model as a general
model of language acquisition has also been tested further in the
study of second language (L2) acquisition. Below we discuss how
DevLex-II has been applied to examine a range of key issues in
bilingualism.

Modeling age-of-acquisition effects
Much of the current debate about the nature of L2 learning
and how it differs from L1 learning stems from the “critical
period” hypothesis. Indeed, interests in the critical period hypoth-
esis have led Science magazine in its 125th anniversary issue to
designate the understanding of critical periods of language acqui-
sition as one of the top 125 big science questions in all scientific
domains of inquiry for the next quarter century (Science, vol.
309, July 1, 2005). Recent studies, however, have argued against
the original account of Lenneberg (1967) that there is a biolog-
ically based critical period for language acquisition due to brain
lateralization; instead, the evidence points to cognitive and lin-
guistic mechanisms underlying the AoA effects seen with both
L1 and L2 acquisition (see MacWhinney, 2012; Li, in press).
For example, Johnson and Newport (1989) suggested that lan-
guage learning in childhood confers certain cognitive advantages
precisely because of the child’s limited memory and cognitive
resources (the “less is more” hypothesis; see also Elman, 1990).
Hernandez and Li (2007) suggested that different sensorimotor
processing and control characteristics could underlie child vs.
adult learning and processing differences (the “sensorimotor inte-
gration hypothesis”; see also Bates, 1999). Finally, MacWhinney
(2012) suggested that certain risk factors (e.g., entrenchment of
L1, negative transfer, and social isolation) with late learners but
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not early learners could be responsible for the age-related learning
effects in language acquisition (the “unified competition model”
hypothesis).

In an effort to provide computational insights into the AoA
effects, Zhao and Li (2010) applied the DevLex-II model to 1000
words, 500 in Chinese as L1 and 500 in English as L2, selected
from the CDI database (Dale and Fenson, 1996). These words were
presented to the model systematically in three different learning
scenarios: simultaneous learning of L1 and L2; early L2 learning;
and late L2 learning. For simultaneous learning, the two lexicons
were presented to the network and trained in parallel (see Li and
Farkaš, 2002 for a previous example in this training regime). For
early L2 learning, the onset time of L2 input to the model was
slightly delayed relative to that of L1 input, that is, training on L2
vocabulary occurred at a point after 1/5 of the entire L1 vocabu-
lary had been presented to the network. For late L2 learning, the
onset time of L2 input was significantly delayed relative to that of
L1, that is, training on L2 vocabulary occurred at a point after 4/5
of the entire L1 vocabulary had been presented to the network.
Specifically, the simultaneous learning situation is analogous to
a situation in which children are raised in a bilingual family and
receive linguistic inputs from the two languages simultaneously
(e.g., Li and Farkaš, 2002 used input based on the two parents’
different language input). The early learning situation could be
compared to the situation in which bilinguals acquired their L2
early in life (e.g., in early childhood) while the late learning situ-
ation to that of a bilingual’s learning of L2 later in life (e.g., after
puberty).

One key pattern from our simulations is illustrated in Figure 4,
which shows how lexical representations from the two languages
are distributed differently in the three different learning condi-
tions. Here, black regions indicate those nodes that represent
the L2 (English) words whereas white regions the L1 (Chinese)
words learned by the model. Specifically, if a unit’s weight vec-
tor is the closest to the input vector of an English word, the
unit is marked in black. If a unit’s weight vector is most simi-
lar to the input pattern of a Chinese word, the unit is marked in
white.

It is clear from Figure 4 that the relative onset time of L2 vs.
L1 plays an important role in modulating the overall represen-
tational structure of the L24. For the simultaneous acquisition
situation (Figures 4A,B), DevLex-II showed clear distinct lexi-
cal representations of the two languages at both the phonological
and semantic levels and within each language. The results suggest
that simultaneous learning of two languages allows the system to
easily separate the lexicons during learning, consistent with the
simulation patterns from Li and Farkaš (2002). In the case of
sequential acquisition, if L2 was introduced into learning early on,
the lexical organization patterns were similar (though not iden-
tical) to those found in simultaneous acquisition, as shown in
Figures 4C,D. The differences were in terms of the slightly smaller
spaces occupied by the L2 words (English) as compared to the

4At this point we consider such segregations in the representation between L1 and
L2 at the lemma level rather than a deeper semantic level, given the complexity
associated with semantic and conceptual relations across languages (see Pavlenko,
2009 for a discussion).

FIGURE 4 | Bilingual lexical representation of semantics and

phonology respectively as a function of age of acquisition (AoA). Dark
areas correspond to L2 (English) words. (A,B) Simultaneously learning;
(C,D) early L2 learning; (E,F) late L2 learning.

lexical space occupied by L15. The L2 lexicon was still able to
establish its separate territory of lexical representation. However,
if L2 was introduced to learning at a late stage, the lexical orga-
nization patterns were significantly different from those found
in simultaneous acquisition, as shown in Figures 4E,F. No large
independent areas for the L2 representation appeared this time.
Indeed, the L2 representations appeared to be parasitic or auxil-
iary to those of L1 words: compared with L1 words, the L2 words
occupied only small and fragmented regions, and were dispersed
throughout the map. There were small L2 chunks that were isolated
from each other, and interspersed within L1 regions. Interestingly,
the parasitic nature of the L2 representation is also reflected in
the locations of the L2 words in the map, which was determined
by the similarity of the L2 words to the established L1 words
in meaning (for semantic map) or in sound (for phonological
map).

The biologically based account of a critical period as origi-
nally put forth by Lenneberg (1967) is intuitively appealing, but
the modeling results presented here indicate that we can simulate

5Similar results were obtained when English was trained as the L1 and Chinese
the L2.
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critical period-like effects without invoking any significant changes
in the architecture or mechanisms in the network. A signifi-
cant contribution of connectionist models to the understanding
of development, according to Elman et al. (1996), is that these
models do not involve pre-determined or pre-specified categories
or underlying differences, and yet the simulated data show that cat-
egories or differences in these models emerge as a result of learning
itself across a developing learning history. The “age” effects that
were simulated in our model may reflect the changing dynamics
inherent in learning and the interactions between the two lan-
guages across different types of learning situation. The idea that
the learning process itself can lead to differences in the dynamics
and outcomes of development is not new (see Elman et al., 1996;
Thomas and Johnson, 2008).

What is new from our studies is that the age-related effects, tra-
ditionally attributed to inherent properties of the learner, emerged
in our models as a result of learning the same L2 targets at differ-
ent time points of learning. The effects of dynamic interactions
in the two competing languages clearly speak for the perspec-
tive of competition, entrenchment, and plasticity in accounting
for critical period effects (see General Discussion for more
discussion).

Modeling cross-language priming
One important goal of simulation is to provide a mechanistic
account of the observed behavioral phenomena found in empir-
ical studies (see, for example, Richardson and Thomas, 2008 for
discussion). Capitalizing on the above findings of the impact of
simulated age effects on bilingual lexical organization, Zhao and
Li (2013) extended DevLex-II to simulate cross-language seman-
tic priming in connection with the AoA effect. Cross-language
priming has been a vital empirical method in the literature for
testing semantic representations in bilinguals, and many studies
have shown that in such a paradigm bilinguals respond faster to
translation equivalents or semantically related words across lan-
guages than to unrelated pairs of words from the two languages
(named as translation priming and semantic priming, respec-
tively). Zhao and Li (2013) implemented a spreading activation
mechanism in DevLex-II so that cross-language priming could
be modeled. This mechanism involves two parts: (1) nodes on a
map were fully connected with each other via lateral connections,
and their weights were trained via Hebbian learning, triggered
by the joint presentations of translation equivalents. This type
of associative connections was added to DevLex-II specifically
for modeling priming effects; (2) spreading activation from a
prime word to a target word could occur via two paths, one
through the lateral connections and one within the semantic
map6.

Figure 5 presents the basic results of our simulations. The
model clearly displayed both translation priming and semantic
priming effects, although translation priming was always stronger
than semantic priming, consistent with patterns from empirical
studies (Basnight-Brown and Altarriba, 2007). Another important

6Zhao and Li (2013) also developed a mechanism to capture the time elapses in
lexical decision tasks so that differences in reaction time (RT) could be modeled for
cross-language priming (see technical details in that paper).

FIGURE 5 | Cross-language priming and priming asymmetry effects

shown in DevLex-II: (A) late L2 learning; (B) early L2 learning. Priming
effects are calculated by subtracting the RTs of related word pairs from the
RTs of unrelated word pairs. SOA represents the stimulus onset
asynchrony. The p values indicate the significance level of the priming
asymmetry under the different conditions (paired-samples t -test of the 20
simulations under each condition: **significant priming asymmetry; n.s.,
not significant) (adapted from Zhao and Li, 2013, reproduced with
permission from Cambridge University Press).

simulated pattern was the “priming asymmetry”: in the empir-
ical literature (see Dimitropoulou et al., 2011 for a review), it
has been observed that priming effects are stronger if partici-
pants are presented with L1 words as primes and L2 words as
targets (i.e., the L1-to-L2 direction of priming), as compared with
the situation in which participants are presented with L2 words
as primes and L1 words as targets (i.e., the L2-to-L1 direction
of priming). As seen in Figure 5, the priming effects from L1
(Chinese) to L2 (English) were always larger than those from L2
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to L1. More interestingly, such “priming asymmetry” decreased
as a function of the effect of AoA; for example, it was larger
in the late L2 learning situation than in the early L2 learning
situation.

DevLex-II provided a mechanistic account for this asymmetry,
following the ideas discussed above regarding AoA effects, by ref-
erence to the richness of semantic representation of the L2 in our
model (i.e., the number of activated semantic features that will
lead to different degrees of priming from L2 primes to L1 targets).
This account is particularly significant in light of the DevLex-
II’s emphasis on cross-language lexical competition. Specifically,
the richness of semantic representation and the potential lexical
competition are inversely related: the richer or more elaborated
the representation of a word, the less competition (and hence less
confusion) the learner may experience between the word and other
lexical items in the memory. If the priming is from the L2 to L1
direction, due to the dense representation of L2 (thus strong com-
petition), a brief exposure to L2 may not trigger initial activations
strong enough to spread to the target L1 items not directly adjacent
in the representation. In contrast, activations of L1 items could be
much stronger given that they are more sparsely represented. If the
priming is from the L1 to L2 direction, it will be always larger than
the reverse, due to distinct (and richer) semantic representations
of the L1 words (thus having less competition). Consequently, the
amount of priming from L2 to L1 (and L1 to L2) may be enhanced
or decreased, depending on a bilingual’s L2 level as a function of
AoA or proficiency, thereby giving rise to the different amount
of “priming asymmetry.” If the L2 is acquired at an early stage,
its semantic representations are more enriched, and more distinct
from L1 representations (rather than depending or being parasitic
on L1 representations, as discussed earlier). In this case, the L2 to
L1 priming effects are more comparable to the L1 to L2 priming
effects given the similar representations of the two lexicons, thus
cause a less salient priming asymmetry. Such an account has found
empirical support in the semantic priming literature, in both the
L1 and the L2 context (see discussions in Wang and Forster, 2010;
Dimitropoulou et al., 2011).

GENERAL DISCUSSION
In this article, we first reviewed previous connectionist mod-
els based on SOMs, and discussed the significant implications
that SOM-based models have for understanding language rep-
resentation and acquisition. We then described a specific model
using SOM in the study of language acquisition, the DevLex-
II model. We presented an overview of how this model can
be successfully used to address a number of important issues
in monolingual and bilingual language acquisition, and illus-
trated its properties and applications in several psycholinguistic
domains, including the modeling of vocabulary spurt, aspect
acquisition, AoA effects, and cross-language semantic priming. We
demonstrated that DevLex-II is a scalable model that can account
for a variety of linguistic patterns in child and adult language
learning.

We can highlight here a few key features of DevLex-II for
the study of language acquisition. First, in contrast to previous
computational models, DevLex-II is based on unsupervised learn-
ing (specifically SOM) and Hebbian learning, two powerful and

biologically plausible principles of computation. These princi-
ples have allowed us to simulate the dynamics underlying both
monolingual and bilingual lexical representations and interac-
tions. Second, DevLex-II relies on the use of large-scale realistic
linguistic data as the input. By simulating actual lexical forms and
meanings, we are able to achieve developmental and lexical real-
ism in our models. Third, DevLex-II incorporates computational
learning properties (e.g., self-adjustable neighborhood functions,
spreading activation, lateral connection) against the context of
realistic language learning so that it can be used to simulate both
language acquisition and language processing, in both L1 and L2
contexts.

To scholars of monolingual language acquisition, connectionist
learning models are no new beasts. The original Rumelhart and
McClelland (1986) past tense model and the subsequent debates,
the Elman et al. (1996) book on rethinking innateness, and the
more recent special issue edited by MacWhinney (2010) have all
popularized the utility of connectionist models. Most researchers
in L1 studies can appreciate the distinct advantages of connec-
tionist learning models in allowing us to manipulate variables of
interest flexibly and to study their interactions in a more system-
atic way (e.g., input quantity and quality, word frequency, word
length in affecting error patterns). However, to scholars of bilin-
gual language acquisition, the utility of connectionist models has
yet to be fully appreciated.

The most popular computational model in bilingualism, the
Bilingual Interactive Activation (BIA) model (Dijkstra and van
Heuven, 1998), was based on the interactive activation (IA) model
of McClelland and Rumelhart (1981). IA-based models typically
lack a learning mechanism, and as such, they tend to focus on
capturing representation and processing states of mature bilin-
gual speakers and listeners (which is important in its own right).
Computationally implemented learning models of bilingualism,
however, remain scarce. It is important for researchers to develop
connectionist learning models to capture the acquisition and inter-
action of multiple languages. This is because through modeling we
can systematically identify the interactive effects of the two lan-
guages in terms of L2 onset time, L2 input frequency, amount of
L1 vs. L2 input, order of L1 vs. L2 learning, and how these variables
may separately or jointly impact both the learning trajectory and
the learning outcome.

In a recent special issue edited by Li (2013) on computational
modeling of bilingualism, a number of studies have attempted
to fill the gap by taking advantage of the features of connectionist
models to study bilingual acquisition and processing (e.g., Cuppini
et al., 2013; Monner et al., 2013; Zhao and Li, 2013). These studies
not only attempted to address specific problems and disentangle
the effects of entrenchment, proficiency, memory resources, and
lexical semantic distances, but also provided mechanistic accounts
of important theoretical issues. For example, Monner et al. (2013)
tested specifically the “less is more” hypothesis (Johnson and New-
port, 1989) in a connectionist model, in which the increase of
working memory was simulated by the use of new cell assem-
blies in the model, whereas L1 entrenchment was simulated by
the training of the network with variable-length exposure of L1
before the onset of L2. In this way, the modeling results allowed
the researchers to dissociate effects due to the increase of memory
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and the increase of age, which are confounded in natural learning
settings.

Monner et al.’s (2013) model illustrates the important role that
connectionist modeling can play in second language learning, and
at the same time speaks to the possibility that age-related learn-
ing differences as prescribed by the critical period hypothesis may
be accounted for by the interactive effects of entrenchment of L1
and computational resources, which is highly consistent with the
simulation results from DevLex-II as discussed above (see also
Hernandez et al., 2005). The degree of entrenchment is a result
of how well established the network has the L1 representation
structure: the more consolidated the representation (as in late L2
learning), the more resistant to change the topographic structure
becomes in the model. New items from the L2 have to use existing
structures built from the L1, and any further learning is only able
to result in what we call “parasitic” representations. By contrast,
when learning occurs early, fewer L1 words may have become fully
consolidated in the representation and the network may be less
committed to L1 representations, and therefore the system is still
open to adaptation in the face of new input from L2 so as to be
able to continually reorganize and restructure the L2 representa-
tions. It is important to note that timing itself is not the cause, but
time of learning is accompanied by different dynamics of inter-
actions between the two languages for learning. Simulations from
Monner et al.’s (2013) model and from DevLex-II suggest that the
nature of bilingual representation is the result of a highly dynamic
and competitive process in which early learning constrains later
development, therefore shaping the time course and structure of
later language systems. To what extent early learning impacts later
learning, and to what extent extensive later learning can soften or
even reverse early-learned structure, will remain the key research
questions in the years to come.

What would be the future for SOM-based connectionist lan-
guage models, in particular the DevLex-II model? One issue to bear
in mind as we move forward is that we must bridge computational
modeling results with a variety of other behavioral, neuropsycho-
logical, and neuroimaging findings, especially given the neurally
plausible architectures of multiple SOM models (e.g., DevLex-II
or DISLEX). As discussed earlier, Kiran et al. (2013) provided an
excellent example in this regard, in which the investigators con-
structed a model to simulate neuropsychological patterns of each
of 17 bilingual patients following traumatic brain injury and sub-
sequent treatment. A second dimension to explore SOM-based
models for language acquisition is to further identify the relation-
ship between map organizations developed at different stages of
learning and the impact that these different organizations may
have on the behavior of learning (e.g., in terms of speed and
outcome of learning success). DevLex-II has made some efforts
in this regard, for example, in simulating vocabulary spurt and
cross-language semantic priming, by linking the representational
structure and semantic richness of the representation to the per-
formance (e.g., word learned or priming effects) in the model,
but more needs to be done. A third dimension to extend SOM-
based models of language may be to study how syntactic structures
can be acquired in both L1 and L2. Given the status of syntax in
linguistic theories, connectionist models have yet to demonstrate
their utility in learning syntactic structures. Elman (1990) showed

that the simple recurrent network (SRN) can learn the hierarchical
recursive structure of sentences. One could consider to introduce
mechanisms into SOMs to capture temporal order information in
language representation by using recursive SOMs (see Tiňo et al.,
2006 for an example).

As we think ahead we also must develop SOM models of lan-
guage that can make distinct predictions in light of the simulations
and empirical data. In some cases, the empirical data may have
not yet been obtained, or cannot be obtained (e.g., as in the
case of brain injury, one cannot go back to pre-lesion con-
ditions), and this is the occasion where modeling results will
be extremely helpful. Not only should computational model-
ing verify existing patterns of behavior on another platform,
it should also inform theories of L1 and L2 acquisition by
making distinct predictions under different hypotheses or con-
ditions. In so doing, computational modeling will provide a new
forum for generating novel ideas, inspiring new experiments, and
helping formulate new theories (see McClelland, 2009 for a dis-
cussion of the role of modeling in cognitive science). Finally,
computationally minded researchers in language science should
follow a recent call by Addyman and French (2012) to make
an effort to provide user-friendly interfaces and tools to non-
modelers, so that many more students of language acquisition can
test computational models without fearing the technical hurdles
posed by programming languages, source codes, and simulating
environments.

ACKNOWLEDGMENTS
This research was supported by a grant from the National Science
Foundation (BCS-0642586, and in part BCS-1057855) to Ping
Li and by a Faculty Development Grant of Emmanuel College
to Xiaowei Zhao. We thank Julien Mayor, Colin Davis, Michael
Thomas, and Brian MacWhinney for comments and suggestions
on an earlier draft of this article.

REFERENCES
Addyman, C., and French, R. M. (2012). Computational modeling in cognitive

science: a manifesto for change. Top. Cogn. Sci. 4, 332–341. doi: 10.1111/j.1756-
8765.2012.01206.x

Basnight-Brown, D., and Altarriba, J. (2007). Differences in semantic and translation
priming across languages: the role of language direction and language dominance.
Mem. Cogn. 35, 953–965. doi: 10.3758/BF03193468

Bates, E. (1999). “Plasticity, localization and language development,” in The Chang-
ing Nervous System: Neurobehavioral Consequences of Early Brain Disorders, eds S.
Broman and J. M. Fletcher (New York: Oxford University Press), 214–253.

Bates, E., and Carnevale, G. (1993). New directions in research on language
development. Dev. Rev. 13, 436–470. doi: 10.1006/drev.1993.1020

Benedict, H. (1979). Early lexical development: comprehension and production. J.
Child Lang. 6, 183–200. doi: 10.1017/S0305000900002245

Bickerton, D. (1984). The language bioprogram hypothesis. Behav. Brain Sci. 7,
173–188. doi: 10.1017/S0140525X00044149

Bloom, K., Lifter, K., and Hafitz, J. (1980). Semantics of verbs and the development
of verb inflection in child language. Language 56, 386–412.

Bowers, J. S. (2002). Challenging the widespread assumption that connectionism
and distributed representations go hand-in-hand. Cogn. Psychol. 45, 413–445.
doi: 10.1016/S0010-0285(02)00506-6

Clark, E. V. (2009). First Language Acquisition, 2nd Edn. Cambridge: Cambridge
University Press. doi: 10.1017/CBO9780511806698

Clark, E. V., and Hecht, B. F. (1983). Comprehension, production, and lan-
guage acquisition. Annu. Rev. Psychol. 34, 325–349. doi: 10.1146/annurev.
ps.34.020183.001545

www.frontiersin.org November 2013 | Volume 4 | Article 828 | 13

http://www.frontiersin.org/
http://www.frontiersin.org/Language_Sciences/archive


υ “fpsyg-04-00828” — 2014/1/20 — 20:43 — page 14 — #14

υ

Li and Zhao SOM-based language models

Cuppini, C., Magosso, E., and Ursino, M. (2013). Learning the lexical aspects of a
second language at different proficiencies: a neural computational study. Biling.
Lang. Cogn. 16, 266. doi: 10.1017/S1366728911000617

Dale, P. S., and Fenson, L. (1996). Lexical development norms for young children.
Behav. Res. Methods Instrum. Comput. 28, 125–127. doi: 10.3758/BF03203646

Davis, C. (1999). The Self-Organising Lexical Acquisition and Recognition (SOLAR)
Model of Visual Word Recognition. Unpublished doctoral dissertation, University
of New South Wales, Kensington.

Dijkstra, T., and van Heuven, W. J. B. (1998). “The BIA model and bilingual word
recognition,” in Localist Connectionist Approaches to Human Cognition, eds J.
Grainger and A. M. Jacobs (Mahwah, NJ: Erlbaum), 189–226.

Dimitropoulou, M., Duñabeitia, J. A., and Carreiras, M. (2011). Two words, one
meaning: evidence of automatic co-activation of translation equivalents. Front.
Psychol. 2:188. doi: 10.3389/fpsyg.2011.00188

Elman, J. (1990). Finding structure in time. Cogn. Sci. 14, 179–211. doi:
10.1207/s15516709cog1402_1

Elman, J., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., and Plunkett,
K. (1996). Rethinking Innateness: A Connectionist Perspective on Development.
Cambridge, MA: MIT Press.

Foster-Cohen, S. H. (1999). An Introduction to Child Language Development.
London: Longman.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends
Cogn. Sci. 3, 128–135. doi: 10.1016/S1364-6613(99)01294-2

Goldfield, B. A., and Reznick, J. S. (1990). Early lexical acquisition: rate,
content, and the vocabulary spurt. J. Child Lang. 17, 171–183. doi:
10.1017/S0305000900013167

Grossberg, S. (1976a). Adaptive pattern classification and universal recoding: I.
Parallel development and coding of neural feature detectors. Biol. Cybern. 23,
121–134. doi: 10.1007/BF00344744

Grossberg, S. (1976b). Adaptive pattern classification and universal recoding: II.
Feedback, expectation, olfaction, illusions. Biol. Cybern. 23, 187–202. doi:
10.1007/BF00340335

Guenther, F. H., and Gjaja, M. N. (1996). The perceptual magnet effect as an
emergent property of neural map formation. J. Acoust. Soc. Am. 100, 1111–1121.
doi: 10.1121/1.416296

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, 2nd Edn. Upper
Saddle River, NJ: Prentice Hall.

Hebb, D. (1949). The Organization of Behavior: A Neuropsychological Theory. New
York: Wiley.

Hernandez, A., and Li, P. (2007). Age of acquisition: its neural and computational
mechanisms. Psychol. Bull. 133, 638. doi: 10.1037/0033-2909.133.4.638

Hernandez, A., Li, P., and MacWhinney, B. (2005). The emergence of
competing modules in bilingualism. Trends Cogn. Sci. 9, 220–225. doi:
10.1016/j.tics.2005.03.003

Hinton, G. E., and Sejnowski, T. J. (1999). Unsupervised Learning: Foundations of
Neural Computation. Cambridge, MA: The MIT press.

James, D., and Miikkulainen, R. (1995). “SARDNET: a self-organizing feature map
for sequences,” in Advances in Neural Information Processing Systems, Vol. 7,
eds G. Tesauro, D. S. Touretzky, and T. K. Leen (Cambridge, MA: MIT Press),
577–584.

Johnson, J. S., and Newport, E. L. (1989). Critical period effects in second lan-
guage learning: the influence of maturational state on the acquisition of English
as a second language. Cogn. Psychol. 21, 60–99. doi: 10.1016/0010-0285(89)
90003-0

Kiran, S., Graesman, U., Sandberg, C., and Miikkulainen, R. (2013). A computa-
tional account of bilingual aphasia rehabilitation. Biling. Lang. Cogn. 16, 325. doi:
10.1017/S1366728912000533

Kohonen, T. (2001). Self-Organizing Maps, 3rd Edn. Berlin: Springer. doi:
10.1007/978-3-642-56927-2

Kuhl, P. K. (1991). Human adults and human infants show a “perceptual mag-
net effect” for the prototypes of speech categories, monkeys do not. Percept.
Psychophys. 50, 93–107. doi: 10.3758/BF03212211

Lenneberg, E. H. (1967). Biological Foundations of Language. New York, NY:
Wiley.

Li, P. (2003). “Language acquisition in a self-organising neural network model,”
in Connectionist Models of Development: Developmental Processes in Real
and Artificial Neural Networks, ed. P. Quinlan (Hove: Psychology Press),
115–149.

Li, P. (in press). “Bilingualism as a dynamic process,” in Handbook of Language
Emergence, eds B. MacWhinney and W. O’Grady (Boston: John Wiley & Sons,
Inc.).

Li, P. (2013). Computational modeling of bilingualism. Biling. Lang. Cogn. 16,
241–366. doi: 10.1017/S1366728913000059

Li, P., Burgess, C., and Lund, K. (2000). “The acquisition of word meaning through
global lexical co-occurrences,” in Proceedings of the Thirtieth Annual Child Lan-
guage Research Forum, ed. E. V. Clark (Stanford, CA: Center for the Study of
Language and Information), 167–178.

Li, P., and Farkaš, I. (2002). A self-organizing connectionist model of bilingual
processing. Adv. Psychol. 134, 59–85. doi: 10.1016/S0166-4115(02)80006-1

Li, P., Farkaš, I., and MacWhinney, B. (2004). Early lexical development
in a self-organizing neural network. Neural Netw. 17, 1345–1362. doi:
10.1016/j.neunet.2004.07.004

Li, P., and MacWhinney, B. (2002). PatPho: a phonological pattern generator
for neural networks. Behav. Res. Methods Instrum. Comput. 34, 408–415. doi:
10.3758/BF03195469

Li, P., and Shirai, Y. (2000). The Acquisition of Lexical and Grammatical Aspect.
Berlin: Mouton de Gruyter.

Li, P., and Zhao, X. (2009). “Computational modeling of the expression of time,”
in The Expression of Time, eds W. Klein and P. Li (Berlin: Mouton de Gruyter),
241–271.

Li, P., and Zhao, X. (2012). “Connectionism,” in Oxford Bibliographies
Online: Linguistics, ed. M. Aronoff (New York, NY: Oxford University
Press). Available at: http://www.oxfordbibliographies.com/view/document/obo-
9780199772810/obo-9780199772810-0010.xml

Li, P, Zhao, X., and MacWhinney, B. (2007). Dynamic self-organization
and early lexical development in children. Cogn. Sci. 31, 581–612. doi:
10.1080/15326900701399905

MacWhinney, B. (2000). The CHILDES Project: Tools for Analyzing Talk. Hillsdale,
NJ: Lawrence Erlbaum.

MacWhinney, B. (2010). Computational models of child language learning:
an introduction. J. Child Lang. 37, 477–485. doi: 10.1017/S03050009100
00139

MacWhinney, B. (2012). “The logic of the unified model,” in Routledge Hand-
book of Second Language Acquisition, eds S. Gass and A. Mackey (New York, NY:
Routledge), 211–227.

Markman, E. M. (1994). Constraints on word meaning in early language acquisition.
Lingua 92, 199–227. doi: 10.1016/0024-3841(94)90342-5

Mayor, J., and Plunkett, K. (2010). A neurocomputational account of taxonomic
responding and fast mapping in early word learning. Psychol. Rev. 117, 1–31. doi:
10.1037/a0018130

McClelland, J. (2009). The place of modeling in cognitive science. Top. Cogn. Sci. 1,
11–28. doi: 10.1111/j.1756-8765.2008.01003.x

McClelland, J., and Rumelhart, D. (1981). An interactive activation model of context
effects in letter perception: part 1. An account of basic findings. Psychol. Rev. 88,
375–407. doi: 10.1037/0033-295X.88.5.375

McClelland, J., Rumelhart, D., and the PDP Research Group. (1986). Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 2.
Cambridge, MA: MIT Press.

Menn, L., and Stoel-Gammon, C. (1993). “Phonological development: learning
sounds and sound patterns,” in The Development of Language, 3rd Edn, ed. J. B.
Gleason (New York, NY: Macmillan), 65–113.

Mervis, C. B., and Bertrand, J. (1994). Acquisition of the novel name-nameless
category (N3C) principle. Child Dev. 65, 1646–1663. doi: 10.2307/1131285

Miikkulainen, R. (1993). Subsymbolic Natural Language Processing: An Integrated
Model of Scripts, Lexicon, and Memory. Cambridge, MA: MIT Press.

Miikkulainen, R. (1997). Dyslexic and category-specific aphasic impairments in a
self organizing feature map model of the lexicon. Brain Lang. 59, 334–366. doi:
10.1006/brln.1997.1820

Miikkulainen, R., Bednar, J. A., Choe, Y., and Sirosh, J. (2005). Computational Maps
in the Visual Cortex. New York: Springer.

Miikkulainen, R., and Kiran, S. (2009). “Modeling the bilingual lexicon of an
individual subject,” in Lecture Notes in Computer Science 5629: Proceedings of
the Workshop on Self-Organizing Maps (WSOM’09, St. Augustine, FL) (Berlin:
Springer), PMC2767190.

Miller, G. A. (1990). WordNet: an on-line lexical database. Int. J. Lexicogr. 3, 235–312.
doi: 10.1093/ijl/3.4.235

Frontiers in Psychology | Language Sciences November 2013 | Volume 4 | Article 828 | 14

http://www.frontiersin.org/Language_Sciences/
http://www.frontiersin.org/Language_Sciences/archive


υ “fpsyg-04-00828” — 2014/1/20 — 20:43 — page 15 — #15
υ

Li and Zhao SOM-based language models

Monner, D., Vatz, K., Morini, G., Hwang, S., and DeKeyser, R. (2013). A
neural network model of the effects of entrenchment and memory devel-
opment on grammatical gender learning. Biling. Lang. Cogn. 16, 246. doi:
10.1017/S1366728912000454

Munakata, Y., and Pfaffly, J. (2004). Hebbian learning and development. Dev. Sci. 7.
141–148. doi: 10.1111/j.1467-7687.2004.00331.x

Neely, J. H., and Durgunoglu, A. (1985). Dissociative episodic and semantic priming
effects in episodic recognition and lexical decision tasks. J. Mem. Lang. 24, 466–
489. doi: 10.1016/0749-596X(85)90040-3

Pavlenko, A. (2009). “Conceptual representation in the bilingual lexicon and
second language vocabulary learning,” in The Bilingual Mental Lexicon: Inter-
disciplinary Approaches, ed. A. Pavlenko (Tonawanda, NY: Multilingual Matters),
125–160.

Reznick, J. S., and Goldfield, B. A. (1992). Rapid change in lexical development in
comprehension and production. Dev. Psychol. 28, 406–413. doi: 10.1037/0012-
1649.28.3.406

Richardson, F. M., and Thomas, M. S. (2008). Critical periods and catastrophic
interference effects in the development of self-organizing feature maps. Dev. Sci.
11, 371–389. doi: 10.1111/j.1467-7687.2008.00682.x

Ritter, H., and Kohonen, T. (1989). Self-organizing semantic maps. Biol. Cybern. 61,
241–254. doi: 10.1007/BF00203171

Rumelhart, D., and McClelland, J. (1986). “On learning the past tenses of english
verbs,” in Parallel Distributed Processing: Explorations, in the Microstructure of
Cognition, Vol. 2, in Psychological and Biological Models, eds L. J. McClelland, D.
E. Rumelhart, and PDP Research Group (Cambridge: MIT Press), 216–271.

Saxton, M. (2010). Child Language: Acquisition and Development. London: SAGE
Publications.

Shirai, Y. (1991). Primacy of Aspect in Language Acquisition: Simplified Input and
Prototype. Ph.D. dissertation, Applied Linguistics, University of California at Los
Angeles.

Silberman, Y., Bentin, S., and Miikkulainen, R. (2007). Semantic boost on episodic
associations: an empirically-based computational model. Cogn. Sci. 31, 645–671.
doi: 10.1080/15326900701399921

Spitzer, M. (1999). The Mind within the Net: Models of Learning, Thinking, and
Acting. Cambridge, MA: MIT Press.

Sporns, O. (2010). Networks of the Brain. Cambridge: The MIT Press.
Thomas, M. S. C., and Johnson, M. H. (2008). New advances in understanding

sensitive periods in brain development. Curr. Dir. Psychol. Sci. 17, 1–5. doi:
10.1111/j.1467-8721.2008.00537.x
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