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This research involves a novel apparatus, in which the user is presented with an illusion
inducing visual stimulus. The user perceives illusory movement that can be followed by
the eye, so that smooth pursuit eye movements can be sustained in arbitrary directions.
Thus, free-flow trajectories of any shape can be traced. In other words, coupled with
an eye-tracking device, this apparatus enables “eye writing,” which appears to be an
original object of study. We adapt a previous model of reading and writing to this context.
We describe a probabilistic model called the Bayesian Action-Perception for Eye On-Line
model (BAP-EOL). It encodes probabilistic knowledge about isolated letter trajectories,
their size, high-frequency components of the produced trajectory, and pupil diameter. We
show how Bayesian inference, in this single model, can be used to solve several tasks,
like letter recognition and novelty detection (i.e., recognizing when a presented character is
not part of the learned database). We are interested in the potential use of the eye writing
apparatus by motor impaired patients: the final task we solve by Bayesian inference is
disability assessment (i.e., measuring and tracking the evolution of motor characteristics
of produced trajectories). Preliminary experimental results are presented, which illustrate
the method, showing the feasibility of character recognition in the context of eye writing.
We then show experimentally how a model of the unknown character can be used to
detect trajectories that are likely to be new symbols, and how disability assessment can
be performed by opportunistically observing characteristics of fine motor control, as letter
are being traced. Experimental analyses also help identify specificities of eye writing, as
compared to handwriting, and the resulting technical challenges.
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INTRODUCTION
The context of this paper is multi-disciplinary, as it concerns
the computational study of writing in disabled patients. We use
a novel apparatus, based on a particular static display and an
illusory motion, which enables participants to generate smooth-
pursuit movement at will and in the direction of their choice,
without any external target. Coupled with an eye-tracking device,
the system allows participants to “write” cursive letters with their
eyes (Lorenceau, 2012). Figure 1 shows an example alphabet
written using the apparatus by author Jean Lorenceau.

The mere possibility to write with the eyes requires a way to
overcome the inherent limitations encountered when attempting
to voluntarily generate eye movements, smooth movements in
particular. In everyday life, smooth pursuit eye movements serve
to maintain the image of a moving target,—e.g., a flying bird, a
moving car—on the fovea, where visual acuity is best. They are
reputed impossible without a target to track and, indeed, any
attempt to smoothly move the eyes against a static background
results in a sequence of fast saccadic eye movements interrupted
by fixations (Lisberger et al., 1987). Since smooth eye move-
ments resemble cursive hand writing in many ways, pursuit eye

movements appear best adapted to eye writing. A visual illu-
sion, derived from the “reverse-phi” illusion first described by
Anstis (1970), helps to overcome the above-mentioned limita-
tions. This illusion occurs when a static display made of hundreds
of disks distributed over a gray background change luminance
over time. In this situation, the whole display appears to move
in the same direction as the eyes, thus providing a visual mov-
ing substrate against which smooth pursuit can develop and,
with training, be generated at will to write letters, digits, or
words.

Cursive eye writing is, to the best of our knowledge, an orig-
inal research topic. Therefore, tools need to be adapted to this
situation. For instance, the task of character recognition is usually
considered as an offline problem, which is to say that a completed,
printed mark is assumed as input, from which letter identity
has to be recovered (Rehman and Saba, 2012). The context of
eye writing, however, naturally leads to consider the online vari-
ant of character recognition: the system records the user’s eye
movements, so that letters can be recognized as they are being
written (Tappert et al., 1990; Wakahara et al., 1992; Plamondon
and Srihari, 2000). Input is typically a matrix of pixels in the
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FIGURE 1 | Example of letters and digits written with his eyes by

author JL (note that a spurious character, between the “9” and “a,”

appears in this example, and was manually removed before further

treatment).

offline case, and an ordered sequence of x, y coordinates in the
online case.

A careful study of the characteristics of trajectory produced by
the eye, using this novel apparatus, is also required. For instance,
the noise characteristics of eye movements and hand movements
are different. In handwriting, involuntary pen-ups during letter
tracing are seldom observed in adults, whereas their analog in
eye writing that is to say, spurious saccades, have an unknown
frequency and incidence on character recognition. Another open
question concerns the impact of ocular microtremor (OMT)
superposed to pursuit trajectories: it might make the drawing of
smooth curves difficult, or might, on the other hand, easily be fil-
tered from the input trajectory (Sheahan et al., 1993; Bolger et al.,
1999; Martinez-Conde et al., 2004).

In this context, our objectives are two-fold. The first concerns
adapting the Bayesian Action-Perception (BAP) model of read-
ing and handwriting (Gilet et al., 2010, 2011) to the task of eye
writing. We will call this new model of “eye reading” and “eye
writing” the Bayesian Action-Perception for Eye On-Line model
(BAP-EOL).

Our main goal is for the BAP-EOL model to show the feasibil-
ity of character recognition, in an online manner; that is to say, as
the eye writes the character. Because the model internally repre-
sents letters using both relative position and velocity information,
and because it is based on Bayesian inference, it is well-suited to
this task; it provides and refines probabilistic estimates, as data
evidence is accumulated, even in the case of missing and noisy
information. Also, the BAP-EOL model is based on experimen-
tal learning and probability distributions, and is thus well-suited
to deal with novelty detection that is to say, detect when a new
symbol is to be added to the database of learned symbols.

The second objective is to adapt the BAP model to the spe-
cific context of writing in disabled patients. Many systems are
already commercially available for this purpose. They usually
consist in displays where common words, letters, and sentence
fragments are presented visually; the user usually has to sac-
cade to and fixate the desired item, and then blink to validate
the selection. It is probably not the case that cursive eye-writing

would compete, in terms of communication throughput, with
commercially available solutions of this kind, using virtual key-
boards and sophisticated word prediction. Therefore, at this stage
of the project, we mostly focus on a proof-of-concept system that
includes character recognition, as a scaffold to further explore
alternative tasks specific to the context of cursive eye writing.

The first of these tasks is novelty detection. Indeed, contrary to
these systems, eye writing based on smooth pursuit offers a means
to communicate in a less constrained manner, since arbitrary
trajectories can be drawn or written. Personality and creativity
can be preserved, and conveyed in written messages, along with
semantic content. Also, usual motor programs for letter trac-
ing can be used while eye writing: this may bring ease of use
and comfort to disabled patients. This is also a means toward
code convergence: the user can add symbols to the vocabulary
of known characters, which can be variants of usual motor pro-
grams (e.g., simplified letters), or new, arbitrary trajectories with
semantic content (e.g., iconic drawings). These trajectories have
to be automatically detected as new symbols by the system.

The second auxiliary task, specific to the context of eye writing,
is disability assessment. In the BAP-EOL model, and assuming the
eye writing apparatus is used by disabled patients, we describe
the way the model can be used, as letters are being traced, to
measure and track the evolution of motor characteristics in the
produced movements. In other words, we consider eye writing as
an opportunistic observation window into the fine motor con-
trol capabilities of disabled patients. To extend the model in this
direction, we leverage the computational flexibility of probabilis-
tic models: instead of providing a function, a probabilistic model
encodes preliminary knowledge that can then be used in a vari-
ety of related tasks (Lebeltel et al., 2004; Colas et al., 2010; Diard
et al., 2010). For instance, the BAP model was used to perform
character recognition of course, but also writer recognition, letter
production, character copy, and even forgery (i.e., copying let-
ters using the writing style of another writer). Here, the BAP-EOL
model includes a model of disability levels, and can thus, while
recognizing characters, also assess the disability level of the user.

The rest of this paper is organized as follows. First, we present
the BAP-EOL model, define formally the probabilistic model at its
core, and show how Bayesian inference yields mathematical meth-
ods for letter recognition, novelty detection and disability assess-
ment. We then present preliminary experimental results for each
of these tasks, and discuss a roadmap for future developments.

MATERIALS AND METHODS
BAP-EOL MODEL
The model is in two parts. The first part consists of a determin-
istic algorithm that analyzes trajectories recorded by the system.
The second part is a probabilistic model that encodes knowledge
about the way letters are traced, according to the symbol being
traced and disability level of the user.

The first, algorithmic part of the model consists in extracting
information from the input signal. Trajectories are recorded by
the system in the form of a sequence of x, y positions, along with
pupil diameter d, from initial time step 0 to current time N. As
the trajectory is being traced, x and y velocities are computed by
a finite difference approximation.
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We summarize each trajectory as a sequence of via-points.
Via-points are particular points where either the x-velocity or y-
velocity is zeroed, or both [see Gilet et al. (2011) for a discussion
of this choice of feature]. Additionally, starting points and end
points of trajectories are via-points. Given a trajectory, we only
memorize via-points, where we record both position and velocity
information. Because there is no reference frame for writing when
using the eye writing apparatus (the user can write in any por-
tion of the screen displaying the illusion), absolute positions are
not meaningful. Instead, we record relative displacements along
the trajectory: the first via-point, which corresponds to the begin-
ning of the trajectory, is associated with position (0, 0). Via-points
other than the first are associated with Ck

�x, Ck
�y, the relative x and

y displacements performed since the preceding via-point. At each
via-point, we also record, Ck

ẋ and Ck
ẏ , the x and y velocities at the

k-th via-point.
A via-point is therefore four-dimensional, with two dimen-

sions for relative position information and two dimensions for
velocity information. For each trajectory, we memorize at most
15 via-points (which is more than enough, in practice). Figure 2
shows an example trajectory and the corresponding via-points.

When a trajectory is finished (either because a completed let-
ter was recognized or the user blinked to explicitly start the next
trajectory), its width Sx and height Sy are computed. To quantify
the effect of high-frequency components in eye movements dur-
ing trajectory production (undetected spurious saccades, OMT),
we compute the Fourier Transform of the velocities of the tra-
jectory. From the resulting frequency spectrum, we compute

FIGURE 2 | Example of a trajectory for the letter “h” and the

corresponding via-points positions. Via-points, where x and y velocities
are zeroed, perceptually corresponds to extremes portions of the
trajectories (i.e., bottom, top, left, and right borders of the local curvature).
Notice that, after the first point of the trajectory, a via-point appears to be
missing: it was filtered out by a geometric constraint that ensures that
via-points are not too close to each other. Notice also that via-points
sometimes appear out of the trajectory (and also in Figures 6, 7, 10, 14):
this is because we visualize here via-point positions in the low precision,
discrete domains of the corresponding probabilistic variables (see the
experimental Results section).

the overall spectral energy above some frequency threshold A =∫ ∞
f0

∣∣X(f )
∣∣2

df , where X represents the Fourier Transform. In
our preliminary experiments, and after inspection of typical fre-
quency spectra, we set the threshold at f0 = 2.6 Hz so to separate
smooth-pursuit movements from other components.

Finally, we record the mean μp and variance σp of pupil diam-
eters recorded during trajectory production. Pupil diameter is
mainly influenced by light exposure, emotional state, and atten-
tion level of the subject: these are assumed to be constant during
the production of isolated letters. In most eye-tracking system,
algorithms used for pupil detection affect measurement of eye
direction; errors due to this effect are cancelled out in our case,
since we only compute relative displacements. In other words,
pupil diameter mean sizes and variations will be assumed to be
independent of geometric information of traced trajectories, and
thus assumed to be irrelevant for character recognition and nov-
elty detection. They will, however, be useful for characterizing
and recognizing disability levels. Overall, the set of auxiliary vari-
ables Sx, Sy, A, μp, σp provide additional information to the local
geometry of the trajectory, represented by via-points variables.

This completes the description of the first part of the model:
it is implemented using a series of straightforward scripts. We do
not provide more details in this limited space.

The second part of the BAP-EOL model is probabilistic, and
includes two high-level variables of interest. Firstly, variable L
encodes the vocabulary of known symbols. It is an unordered
set of discrete values, L = {a, b, c, . . . , z, 1, 2, . . . , 9} (so far, the
database we treat does not include the digit 0). Note that the
symbols are labeled with letter alphabet and digits here to better
illustrate and make the example more concrete; in practice, the
system could handle and add to its vocabulary arbitrary symbols,
including punctuation marks, foreign alphabets, or even smiley
faces and geometric shapes, as long as the associated trajecto-
ries are geometrically reliably distinguishable from other symbols.
Secondly, the disability level H is encoded into a 3-level discrete
variable: H = {1, 2, 3}. Until we introduce disability level assess-
ment, for simplicity, we will consider the case [H = 1], i.e., a
healthy subject.

We define a joint probability distribution over previous vari-
ables, except the x, y, d input which is already pre-treated
in the first part of the BAP-EOL model. In other words, we

define P
(

C1:15
�x , C1:15

�y , C1:15
ẋ , C1:15

ẏ , Sx, Sy, A,μp, σp, L, H
)

, with

C1:15
�x as a shorthand for the sequence of variable Ck

�x between
index 1 and 15, i.e., C1:15

�x = C1
�x, C2

�x, . . . , C15
�x. This probabilis-

tic model is therefore 67-dimensional. To manage this dimen-
sionality, we decompose the joint probability distribution into a
product of low-dimensional terms, thanks to conditional inde-
pendence hypotheses:

P
(

C1:15
�x , C1:15

�y , C1:15
ẋ , C1:15

ẏ , Sx, Sy, A,μp, σp, L, H
)

= P(L) × P(H)

× P
(
C1:15

�x |L, H
) × P

(
C1:15

�y |L, H
)

× P
(
C1:15

ẋ |L, H
) × P

(
C1:15

ẏ |L, H
)

www.frontiersin.org November 2013 | Volume 4 | Article 843 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Diard et al. Bayesian modeling of eye writing

× P(Sx |L, H ) × P
(
Sy |L, H

) × P (A |L, H )

× P
(
μp |H ) × P

(
σp |H )

.

We now define each term of this product. The first, P (L), is a prior
probability distribution over letters, i.e., it encodes the likelihood
of each letter before it is traced. In the preliminary experiments
we describe below, we only consider isolated cursive letters so that
no linguistic context and information is available. We thus define
P (L) as a uniform probability distribution. Obvious improve-
ments would include replacing this by a distribution reflecting
frequency of letters in the user’s language (e.g., the probability
that an English speaking user would write an “e” would be high),
or even informing this by a top-down process driven by word
recognition and word completion (e.g., if the four previous let-
ters were “tabl,” the probability that the next letter is an “e” would
be high).

The second term, P(H), is a prior probability distribution
over the disability level of the user, which we set as a uniform
probability distribution.

The next four terms are each 15-dimensional, and of the form
P

(
C1:15

�x |L, H
)
. They are themselves decomposed into products

of simpler terms (with similar equations for the y, ẋ, and ẏ
dimensions):

P
(
C1:15

�x |L, H
) = P

(
C1

�x |L, H
) 15∏

i=2

P
(

Ci
�x

∣∣∣Ci − 1
�x , L, H

)
.

In other words, we record, for each letter and each disability level,
a series of probability distributions over the relative positions and
velocities at each via-point. Each of these distributions is a Laplace
succession law, i.e., a variant of a frequency histogram where
no value has 0 probability, even when unobserved (Murphy,
2006). The four probability distributions over via-points rela-
tive positions and velocities constitute a “probabilistic database:”
the model encodes and memorizes probabilistic descriptions of
geometry and dynamics of trajectories, and their association with
symbols. It can also be understood as a variation upon classi-
cal HMM models of online letter recognition (Hu et al., 1996;
Artières et al., 2007).

In a similar manner, the terms P(Sx |L, H ), P
(
Sy |L, H

)
, and

P(A |L, H ) memorize, for each letter and each disability level,
probabilities about the widths, heights, and amplitude of high
frequency components of the trajectory. Each is a truncated and
discrete normal probability distribution, so that probabilities of
negatives sizes and negative amplitudes are zero. Finally, the terms
P
(
μp |H )

and P
(
σp |H )

are also defined by truncated, discrete
normal probability distributions, but note that they are assumed
to be independent of the letter L, given the disability level H.
This completes the structural definition of the probabilistic model

P
(

C1:15
�x , C1:15

�y , C1:15
ẋ , C1:15

ẏ , Sx, Sy, A,μp, σp, L, H
)

.

PARAMETER IDENTIFICATION
The probabilistic model being structurally defined, we now
describe how its parameters are learned. The learning scenario
we consider here is a supervised method: we assume, as input,
a database of trajectories that are labeled. In other words, each

entry is a trajectory associated with the letter L it corresponds to,
the disability level H of the user that produced it, and the identity
of the user.

The deterministic scripts are applied on the trajectories, to
compute values for the via-point variables C1:15

�x , C1:15
�y , C1:15

ẋ ,

C1:15
ẏ and auxiliary variables Sx, Sy, A, μp, and σp. Therefore,

all variables of the model have associated values and the learn-
ing process is straightforward. For instance, concerning terms of

the form P
(

Ci
�x

∣∣∣Ci − 1
�x , L, H

)
, which are Laplace succession laws,

occurrence counting is performed. Denoting ni the number of
times that value cx has been observed for the i-th via-point in the
trajectory database, we have:

P
([

Ci
�x = c�x

] ∣∣∣Ci − 1
�x , L, H

)
= ni + α

N + αK
,

where N is the total number of observations, K the number of
possible cases for variable Ci

�x, and α a tuning parameter that
controls learning speed.

A technical issue concerns the probability distributions for the
i-th via-point learned from a trajectory that contains less than i
via-points. Since we do not explicitly represent trajectory lengths
with a probabilistic variable, we use instead special values, where
we concentrate the probability mass. These special values are
“outside” of the domains of Ci

�x, Ci
�y, Ci

ẋ, and Ci
ẏ. In other words,

they act as termination markers, and are used as a “well” of prob-
abilities. The via-points of already terminated sequences will be
associated with very high probabilities of these special values that
are geometrically meaningless.

Other probability distributions about via-points are also asso-
ciated with Laplace succession laws. The remaining terms over
auxiliary variables are associated with discrete probability distri-
butions, which approximate Normal distributions: their means
and standard deviations are computed in the usual manner.

USING THE MODEL FOR ONLINE CHARACTER RECOGNITION
Having defined both model components and learned the param-
eters of the probabilistic part, we turn to showing how it is used
to solve tasks. The first is the task of online character recogni-
tion: as a trajectory is being traced, the algorithmic portion of
the model will detect and provide via-point information as they
occur. When the trajectory is finished, it also outputs information
about the auxiliary variables (width, height, etc.).

The learned BAP-EOL probabilistic model can be used
to compute, as via-points are detected, probability distribu-
tions over letters. In other words, the initial knowledge about
letters is the prior probability distributions P(L), which is
uniform. When the first via-point is detected, we compute

P
(

L
∣∣∣C1

�x, C1
�y, C1

ẋ, C1
ẏ

)
, when the second via-point is detected

we compute P
(

L
∣∣∣C1:2

�x, C1:2
�y, C1:2

ẋ , C1:2
ẏ

)
, etc. Finally, when the

trajectory is completed and auxiliary variables become available,

we compute P
(

L
∣∣∣C1:15

�x , C1:15
�y , C1:15

ẋ , C1:15
ẏ , Sx, Sy, A, μp, σp

)
.

The BAP-EOL model being given, Bayesian inference dictates
how these probability distributions are computed. We first show
the symbolic probabilistic inference for the general case when the
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i-th via-point has been detected:

P
(

L
∣∣∣C1:k

�x, C1:k
�y, C1:k

ẋ , C1:k
ẏ

)

∝ ∑
h ∈ H

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P
(
C1

�x |L, H
) × P

(
C1

�y |L, H
)

×P
(
C1

ẋ |L, H
) × P

(
C1

ẏ |L, H
)

×
k∏

i = 2

(
P
(

Ci
�x

∣∣∣Ci − 1
�x , L, H

)

×P
(

Ci
�y

∣∣∣Ci − 1
�y , L, H

)

×P
(

Ci
ẋ

∣∣∣Ci − 1
ẋ , L, H

)

× P
(

Ci
ẏ

∣∣∣Ci − 1
ẏ , L, H

))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Prior probability distributions about letters P(L) and disability
level P(H) have disappeared from the summation because they
are assumed to be uniform probability distributions, and thus
constant values, which can be incorporated into the normaliza-
tion constant.

The Bayesian inference for the final term is:

P
(

L
∣∣∣C1:15

�x , C1:15
�y , C1:15

ẋ , C1:15
ẏ , Sx, Sy, A, μp, σp

)

∝ ∑
h ∈ H

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P
(
C1

�x |L, H
) × P

(
C1

�y |L, H
)

×P
(
C1

ẋ |L, H
) × P

(
C1

ẏ |L, H
)

×
15∏

i = 2

(
P
(

Ci
�x

∣∣∣Ci − 1
�x , L, H

)
× P

(
Ci

�y

∣∣∣Ci − 1
�y , L, H

)

× P
(

Ci
ẋ

∣∣∣Ci − 1
ẋ , L, H

)
× P

(
Ci

ẏ

∣∣∣Ci − 1
ẏ , L, H

))

×P(Sx |L, H ) × P
(
Sy |L, H

) × P(A |L, H )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Terms about pupil diameter size and variations vanish from
the equations because they are assumed to be independent
from letter identity, and thus can factored outside of the
summation, where they sum to 1 by the normalization rule.

P
(

L
∣∣∣C1:15

�x , C1:15
�y , C1:15

ẋ , C1:15
ẏ , Sx, Sy, A, μp, σp

)
is thus equiva-

lent to P
(

L
∣∣∣C1:15

�x , C1:15
�y , C1:15

ẋ , C1:15
ẏ , Sx, Sy, A

)
.

As via-points are accumulated, the probability distribution
over letters is updated. When the end of the trajectory is reached,
and auxiliary variables become available, the final probability dis-
tribution over letters is computed. From this distribution, the
system selects the most probable letter as the recognized letter,
and outputs its value.

USING THE MODEL FOR NOVELTY DETECTION
The second task we consider is an extension of the previous one:
we want the system to be able to detect when an input trajec-
tory does not correspond to a known letter. To perform this task,
we define a modification of the model, and a modification of the
online character recognition process we just described (it was not
introduced straightaway, for didactic purposes).

The symbol set of variable L is augmented with a special
symbol, noted “$,” which represents the “unknown letter.” In
the probabilistic model, many terms have variable L appearing
on their right-hand side (i.e., after the conditioning solidus).

Consider for instance, P
(

Ci
�x

∣∣∣Ci − 1
�x , [L = l], H

)
, the probability

distribution over the relative x-position of the i-th via-point for
any letter denoted l. When [l �= $], this probability distribution
is the same as described above. On the other hand, when [l = $],
this probability distribution is a uniform distribution. All other
probabilistic terms conditioned on variable L are modified in the
same manner: they are unmodified for known symbols, and are
associated with uniform distributions for the symbol “$.”

The character recognition task with novelty detection is solved
by a small variation of the previous algorithm: as before, we
compute probability distributions over letters as via-points are
detected but the case might happen that the unknown charac-
ter “$” would the most probable at the end of the trajectory.
In other words, we track, by Bayesian inference, the evolution

of P
(

[L = “$”]
∣∣∣C1:15

�x , C1:15
�y , C1:15

ẋ , C1:15
ẏ

)
as via-points are accu-

mulated: the fact that auxiliary variables are not taken into
account in this case will be justified experimentally below.

In the event that the unknown character “$” is the most prob-
able, we propose to the user to create a new symbol value in the
vocabulary set L, and associate the last trajectory to this new sym-
bol to learn. This helps alleviate the previous assumption that
learning is performed in a fully supervised manner: instead, the
user traces a letter without providing a label. The system either
recognizes it as a known character, stores the last trajectory into
the database for this character, thus refining the learned prob-
abilistic model, or the system detects that it is probably a new
character, and asks the user for confirmation that it should create
a new case in the L domain.

USING THE MODEL FOR DISABILITY ASSESSMENT
The third and final task we describe here concerns disability
assessment, which is solved by computing probability distribu-
tions over disability level H instead of letter L. When a trajectory
is completed, Bayesian inference yields:

P
(

H
∣∣∣C1:15

�x , C1:15
�y , C1:15

ẋ , C1:15
ẏ , Sx, Sy, A, μp, σp

)

∝ ∑
l ∈ L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P
(
C1

�x |L, H
) × P

(
C1

�y |L, H
)

× P
(
C1

ẋ |L, H
) × P

(
C1

ẏ |L, H
)

×
15∏

i = 2

(
P
(

Ci
�x

∣∣∣Ci − 1
�x ,L, H

)
× P

(
Ci

�y

∣∣∣Ci − 1
�y , L, H

)

× P
(

Ci
ẋ

∣∣∣Ci − 1
ẋ ,L, H

)
× P

(
Ci

ẏ

∣∣∣Ci − 1
ẏ ,L, H

))

× P(Sx |L, H ) × P
(
Sy |L, H

) × P(A |L, H )

× P
(
μp |H ) × P

(
σp |H )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

When a sequence of trajectories is recorded, the average prob-
ability distribution over disability level can be computed and
recorded, for later inspection by the medical staff (i.e., there is
no claim to provide automatic diagnostic, merely a measurement
tool).

RESULTS
We report here a series of experimental results based on a pre-
liminary database consisting of the first ever alphabets produced
using the eye-writing apparatus. Author Jean Lorenceau wrote 9
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alphabets, with a few missing characters (some “z,” for instance),
and 1–9 digits (but no 0). One of these is shown Figure 1.

DATA FILTERING AND DETERMINISTIC VARIABLE EXTRACTION
In these initial experiments, data was collected at 75 Hz.
Trajectory positions and velocities have both been filtered by a
binomial filter of order 20, in order to smooth trajectories and
remove noise in the data acquisition process.

When the user starts a new trajectory, a saccade is commonly
performed first to fixate the eye near some usual starting posi-
tion on the screen. Then movement is initiated, but this process
is, contrary to handwriting, not immediate. Some time is needed
to perceive the illusion and enter smooth-pursuit with voluntary
control: the eye first has to move a bit so as to receive stimulation
interpreted as movement in the same direction, which reinforces
the perception of an illusory moving target, which makes move-
ment in the same direction easier, so that the eye moves a bit more
in the same direction, etc. This “burn-in” period is highly sus-
ceptible to containing intrusive saccades of short amplitude, or
meandering, weakly directed movements. End portions of tra-
jectories also can be contaminated in this manner, with small
amplitude saccades preceding a blink usually associated with
trajectory termination.

Overall, most of these intrusive saccades are easily filtered out:
we compute, for the first 30 and last 5 points of a trajectory, the
acceleration. If the acceleration of the i-th point is greater than
some threshold (empirically set to 0.4 space-unit/time_unit2),
then we delete points 1 to i of the trajectory. In most cases, this
successfully removes intrusive saccades related to the movement
initiation and movement release periods of the beginning and
end of trajectories. Figure 3 shows two examples of this trajectory
trimming process.

This trajectory trimming process is robust with respect to the
chosen threshold value for acceleration. Figure 4 shows a typical

FIGURE 3 | Examples of “y” and “a” letters before (Left) and after

(Right) the trimming process designed to remove intrusive saccades at

the beginnings and ends of trajectories, and the filtering of high

frequency components.

acceleration profile for a raw trajectory in the database: saccades
correspond to large peaks in acceleration amplitude. Any thresh-
old value between 0.3 and 1 space-unit/time_unit² would roughly
yield identical trimmed trajectories from the raw trajectories in
our database. This trimming process is, however, slightly sensitive
to the number of points that can be trimmed at the beginnings
and ends of trajectories: the trade-off between data clean-up and
conservation of information was set empirically once, achieving
satisfactory compromise, without further parameter fiddling.

In some cases however, some saccades and meandering move-
ments remain in the trajectories processed in our experiments.
The impact of these superfluous movements is larger at the begin-
ning of trajectories, because they induce extraneous via-points,
and our probabilistic model is sensitive to via-point insertion.
Notice that, in this preliminary version, the BAP-EOL model does
not include an explicit model of via-point insertion and deletion.
This has a negative impact on the recognition rates reported here,
and warrants further consideration.

We process the filtered and trimmed trajectories to extract
a maximum of 15 via-points on each. To prevent via-points
to being too close from one another, we have set a geomet-
ric constraint: the x and y distances between two successive
via-points have to be greater than a small threshold. This success-
fully removes superfluous via-points along vertical and horizontal
plateaus, for instance. Figure 2 shows an example of via-points
detected for an instance of the letter ‘h’: a via-point right after the
start of the trajectory was removed by this geometric criterion.

The auxiliary variables are also computed at this stage. Overall,
from each trajectory, after the deterministic scripts, we obtain
and memorize 67 parameters: 15 4-dimensional via-points, 5
auxiliary variables, the letter identity L, and disability level H.

PARAMETERS OF THE PROBABILITY DISTRIBUTIONS IN THE BAP-EOL
MODEL
To compute parameters of the probability distributions in the
BAP-EOL model, we used a cross-validation method (Russell and
Norvig, 1995; Shiffrin et al., 2008): out of the 9 available alpha-
bets, we learn the parameters on 8 alphabets and use the ninth for

FIGURE 4 | Illustration of the filtering and trimming of trajectories.

Left: Raw trajectory for a “y” exemplar (blue dots), and the resulting
filtered and trimmed trajectory (red dots). Right: acceleration profile of the
raw trajectory. Spurious saccades in movement initiation correspond to
easily detected and filtered peaks.
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testing purposes. For instance, the letter identification task is per-
formed on each character in this ninth alphabet. The procedure
is repeated 9 times, each alphabet serving once for testing, and
8 times for learning. Except for illustrative examples, we present
below average results during this whole process.

We first instantiate the probabilistic variables of the BAP-EOL
model with the following discrete domains:

• via-points, Ck
�x and Ck

�y, each have 81 possible integer values
from −40 to 40, along with a special value for the probability
“well” for via-points beyond trajectory termination;

• variables concerning velocities at via-points, Ck
ẋ and Ck

ẏ , each
have 21 possible integer values from −10 to 10 (scaling down
by a factor 30 initial velocities measured in pixels/s), along with
a special value for the probability “well” for via-points beyond
trajectory termination;

• variables concerning width and height of completed trajecto-
ries, Sx and Sy, each have 51 possible positive integer values,
from 0 to 50;

• the variable concerning high-frequency components of tra-
jectories, A, has 31 possible positive integer values, from
0 to 30;

• the variable concerning the average pupil diameter, μp, has 201
possible real values, from −1 to 1, with increments of 0.01, and
a 0 corresponding to the pupil diameter during calibration of
the apparatus;

• the variable concerning the variability of the pupil diameter,
σp, has 51 possible real values from 0 to 5, with increments of
0.1;

• the variable concerning the letter identity, L, has 36 possible
symbolic values, for nine digits (1 to 9), 26 characters (“a” to
“z”) and the unknown character (“$”);

• finally, the variable concerning the disability level, H, has 3
possible discrete degrees, 1 to 3.

Because the probabilistic model is completely discrete, the choice
of domain sizes for these variables is directly related to compu-
tation time (having more values implies longer computations)
and precision of representation (having less values implies more
approximations). In our experiments, a satisfactory compromise
was achieved directly, in this trade-off between numerical and
time performance, without much empirical exploration.

We now turn to the parameters of the learned probability dis-
tributions in the BAP-EOL model. Terms about via-points relative
positions and velocities are Laplace succession laws: their learn-
ing speed parameter α is set to a very small value (10−7), so
that the initial uniform prior quickly vanishes. In the preliminary
experiments we report here, and in order to counteract the small
size of our learning database, we smooth the obtained Laplace
probability distributions by a Gaussian filter: this makes the prob-
ability peaks “ooze” over neighboring values, simulating a larger
database containing more trajectories, with some variability in
the letter shapes. Gaussian filters are of order 15 and variance 2
for relative position terms, and order 7 and variance 1 for velocity
terms.

Figure 5 shows conditional probability distributions for the
third via-point of the letter “f”: P

(
C3

�x

∣∣C2
�x, [L = “f”] , [H = 1]

)

FIGURE 5 | Learned conditional probability distributions about x

relative positions (top left panel), y relative positions (top right

panel), x velocities (bottom left panel) and y velocities (bottom right

panel), for the third via-point of letter “f.” Each panel shows a P(A|B)
conditional probability distribution, with the conditioning variable B on the
x-axis, the domain of variable A on the y -axis; in other words, each
column is a probability distribution that sums to unity. Probability values
correspond to gray-levels: the darker the color, the higher the probability.
See main text for interpretation of the information encoded in these
probability distributions.

(top left panel), P
(

C3
�y

∣∣∣C2
�y, [L = “f”] , [H = 1]

)
(top right

panel), P
(
C3

ẋ

∣∣C2
ẋ, [L = “f”] , [H = 1]

)
(bottom left panel) and

P
(

C3
ẏ

∣∣∣C2
ẏ , [L = “f”] , [H = 1]

)
(bottom right panel). It can be

seen that most signal is concentrated on a geometrically common
phenomenon that is, the third via-point is usually at the top of
the loop of the “f,” and the eye is, at that moment, going leftward.
Despite this commonality, there is variability in the learned tra-
jectories: this variability is explicitly encoded in the probability
distributions,withprobabilitypeaksthatareclosetoeachother.For
instance, considering y relative displacements, most of the proba-
bility mass encodes an upward movement between the second and
third via-point, given that there also was an upward movement
previously, between the first and second via-point: this describes
the upward motion for the first loop of an “f.”

However, some probability mass can clearly be seen to
be discordant with this general shape. For instance, again
considering y relative displacement, we observe a proba-
bility peak for a large downward movement, given a very
small previous y displacement: the small gray patch around

P
([

C3
�y = −35

] ∣∣∣
[

C2
�y = 0

]
, [L = “f”] , [H = 1]

)
. This is

due to the presence of another allograph in the learning database
that is to say, an “f” exemplar with a different geometric
shape. This is shown Figure 6. In our probabilistic model, such
allographs are represented numerically in the probability distri-
butions in this manner, and do not need an explicit encoding at
the symbolic level (Gilet et al., 2011).

When parameters are fully identified from a database of
trajectories, there are 21,829,107 computed parameters. The
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vast majority concerns the geometric information at via-

points: for instance, a term P
(

Ci
�x

∣∣∣Ci − 1
�x , L, H

)
requires 82 ∗

82 ∗ 36 ∗ 3 = 726, 192 parameters. Of course, most of these
parameters are not independent, either because of normal-
ization constraints (probability distributions sum to unity
over their domains), or because they are correlated by the
filtering processes, or even thanks to underlying regulariz-
ing assumptions (e.g., some distributions are approximated
Normal distributions). However, this still illustrates the scarcity
of data in the preliminary experiments we report here:
these parameters are learned from only 9 full alphabets, i.e.,

35 ∗ 9 = 315 characters. These parameters numerically fully
define the joint probability distribution of the BAP-EOL model,

P
(

C1:15
�x , C1:15

�y , C1:15
ẋ , C1:15

ẏ , Sx, Sy, A,μp, σp, L, H
)

. It is now

ready to be used for solving tasks.

ONLINE CHARACTER RECOGNITION: EXPERIMENTAL RESULTS
The first task is character recognition. We compute, thanks to

Bayesian inference, P
(

L
∣∣∣C1:15

�x , C1:15
�y , C1:15

ẋ , C1:15
ẏ , Sx, Sy, A

)
. We

introduce the experimental results with an illustrative example,
shown Figure 7.

FIGURE 6 | Two allographs of the letter “f” present in the learning

database. Left: the most common geometric form, where the third via-point
is at the top of the first loop. Right: the less common geometric form

(present once in our database), where the first loop is reduced and the third
point is instead at the beginning of the second loop, in the bottom portion of
the trajectory.

FIGURE 7 | Example of character recognition. Right: the trajectory
presented as input to the system, and the via-points detected along this
trajectory. Left: probability distributions over letters as via-points are detected
(the darker the color, the higher the probability): the first column is the

probability distribution P
(
L

∣∣∣C1
�x , C1

�y , C1
ẋ , C1

ẏ

)
, the second column is P

(
L |

C1:2
�x , C1:2

�y , C1:2
ẋ , C1:2

ẏ

)
, etc., and the final column is P

(
L

∣∣∣C1:15
�x , C1:15

�y , C1:15
ẋ ,

C1:15
ẏ , Sx , Sy , A

)
.
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On this example, the letter to be recognized is an “h.” After the
first via-point is detected, the probability distribution over letters
is still close to a uniform distribution, and therefore highly uncer-
tain. We recall that the only relevant information carried by the
first via-point is velocity information, since position at the first
via-point is (0, 0), whatever the letter. From the second via-point,
the probability distribution gets concentrated around four peaks,
related to the 4 letters “h,” “e,” “b,” and “l”: all of these, in cur-
sive form, share a common geometric beginning, with an upward
loop. From the sixth via-point however, the probabilities of letters
other than “h” are very small. At the final stage, auxiliary variables
are measured and taken into account. This example ends in a cor-
rect recognition, with a very high probability that the presented
letter is an “h.”

We repeat this character recognition process over our whole
database. For each trial, we compute the probability distribution
over letters as described and illustrated above, and the system
outputs the letter with the maximum final probability. Since our
database contains 9 alphabets, each letter can be presented 9
times for recognition (and parameter learning is performed on
the remaining 8 alphabets). We show Figure 8 the repartition of
character recognition when digits “9” are presented.

Overall, a 35 ∗ 36 confusion matrix summarizes our exper-
imental results for character recognition: for each of the 35
characters, they can either be recognized as one of the 35 known
characters, or as an unknown character “$.” We show this con-
fusion matrix Figure 9. We compute the global recognition rate
of our experiment as the average fraction of correct recognitions
for all letters (values on the diagonal of the confusion matrix).
This global recognition rate is 68.6% (216 characters correctly
recognized out of 35 ∗ 9 = 315 tests).

We notice that most characters are well-recognized, like dig-
its “5” and “8” or letters “f” and “s.” Inspection of the database

FIGURE 8 | Recognition frequency of the digit “9”: the system

correctly recognizes the presented trajectory as a “9” five times, and

incorrectly recognizes it as a “4” once, as a “o” once, and as a “q”

twice. Overall, this means a correct recognition rate of “9” of 55%.

reveals that the writer had great regularity when drawing these
characters, which makes their geometric probabilistic descrip-
tions reliable. In some other cases, like letters “a,” “g,” “o,” or
“t,” recognition is worse. Indeed, the eight learned trajectories
already contain allographs or ill-formed trajectories, which make
the learned model less stable. This is shown Figure 10 in the case
of letter “a.”

In some cases, characters are reliably recognized before their
completion. Since we are interested in providing rapid and early
character recognition (for instance, for word recognition and thus
the prediction of upcoming letters), we study the convergence
speed of the recognition process. We measure this convergence
speed using the entropy of the probability distributions over let-
ters as via-points are detected and accumulated. This is shown
Figure 11. Recall that the Shannon entropy of a probability dis-
tribution P (L) represents its concentration, and is computed as:

H(P (L)) = −
∑
l ∈ L

P([L = l]) log P([L = l]) .

Before the first via-point is detected, the probability distribution
over letters is uniform, with maximal entropy. The first via-point
only brings initial velocity information, and thus the gain in
entropy is less than for subsequent via-points. Finally, after the
last via-point, auxiliary variables bring additional information,
and entropy reaches its minimal value in this application.

We observe Figure 11 a fast convergence speed with a rapid
decrease of entropy while the first 7 via-points are detected. Since
most recorded trajectories are not much longer, the gain in
information then reaches a plateau, until auxiliary variables
become available after the fifteenth via-point. However, this hides
some variability in recognition speed for different characters:
some characters are recognized using only a few via-points (e.g.,
characters with short trajectories, or characters with charac-
teristic beginnings, like the “s”), whereas uncertainty remains
longer for other characters (e.g., “9” and “q” only differ at
their end).

NOVELTY DETECTION: EXPERIMENTAL RESULTS
The second task we solve with the BAP-EOL model is novelty
detection that is to say, recognizing when the presented trajectory
should be associated to a new symbol. In that case, the system asks
for input and confirmation by the user.

To experimentally test novelty recognition, we reduce our
learning database to a subset of available characters: we only learn
parameters for the “x,” “y,” and “z” characters. We then proceed
with character recognition, and the system can only either recog-
nize one of the three known characters, or the unknown character
“$.” Figure 12 shows two illustrative examples of probability dis-
tributions for this small set of recognizable character, as the first
14 via-points are detected.

We also compute, as before, confusion matrices in this exper-
imental context. They are not square matrices, because only 4
symbols can possibly be recognized, while we present 35 differ-
ent test characters. Figure 13 shows confusion matrices, after the
fourteenth via-point, and after the fifteenth via-point (which is
accompanied by auxiliary variables), and the evolution of entropy
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FIGURE 9 | Confusion matrix for character recognition. Each row is a
frequency count of characters recognized by the system (e.g., row labeled
“9” was shown previously Figure 8), with darker colors associated with

higher frequency counts. This confusion matrix is not square, as the 35
characters can also be recognized by the system as an unknown character
(last column). Values on the diagonal indicate correct recognitions.

of the probability distributions over letters as via-points are
accumulated.

We observe that auxiliary variables reduce the capacity of the
system to correctly detect novelty; for instance, the width and
height of characters do not vary much over the whole alphabet, so
that detecting a likely width and height increases the probability
that the character is a known character. Therefore, we only let the
system conclude that the presented trajectory is a new character if
the probability of character “$” is high before auxiliary variables
are measured.

We also observe that, although most characters are cor-
rectly recognized as unknown characters, some are incorrectly
indentified as “x,” “y,” or “z.” This is due to our filtering pro-
cess, where probability distributions are widely smeared around
learned exemplars. This helps largely alleviate the scarcity of
our learning database, but, on the other hand, this makes
the recognition process so forgiving that novelty detection is
impaired.

The accuracy and robustness of our letter recognition and
novelty detection processes are clearly at odds, and the trade-
off between these warrants further study. Unfortunately, it is
likely that an optimal compromise would be elusive, and this
trade-off would be application dependent. However, varying this

compromise during adaptation to a new user is a promising direc-
tion. When a new user populates the learning database, the system
would be sensitive to novelty, so that the database of learned let-
ters grows. However, later on, when most symbols already are
learned, the system would automatically become more robust,
as the likelihood that the user would use a yet unseen character
decreases.

DISABILITY ASSESSMENT: EXPERIMENTAL RESULTS
The final experiments we present concern the evaluation of motor
characteristics of produced trajectories, independently of the
represented letter, for disability assessment.

To do so, we simulate data from motor impairment loosely
inspired by amyotrophic lateral sclerosis (ALS)1. So far indeed, all
trajectories in our database have been provided by a healthy per-
son, author Jean Lorenceau. Therefore, in the probabilistic model,
these trajectories are associated with value [H = 1]: the H vari-
able, representing disability levels, takes value 1 for healthy users,
2 for mildly impaired users, and 3 for heavily impaired users.
We use the available trajectories and deteriorate them, with two

1ALS patients will be the first test population that will have access to the eye
writing system, later on in this research project.
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FIGURE 10 | Different letters “a” present in the database. The two
trajectories in the top row are correctly identified as letter “a” (the
writer performs letter “d” differently than in the top right panel). The
example in the bottom left panel is incorrectly recognized as a “b”
(very similar shape except for a longer downward stroke during the
first loop); the example in the bottom right panel is incorrectly
recognized as a “t” (most “t” exemplars do not have a bar).

different levels of manipulation, to generate two virtual databases,
each of 35 ∗ 8 characters, to associate to [H = 2] and [H = 3]. In
order to simulate these disabled motor control levels, we imagine
the following impairments.

Firstly, we assume that disability affects the size of produced
trajectories, with reduced movement amplitude for increased dis-
ability level. Technically, from initial trajectories, we scale them
down spatially by a factor 4/5 for [H = 2], and 1/2 for [H = 3].
Secondly, we add tremor movement to the initial trajectories,
algorithmically simulated by adding a sinusoidal component of
small amplitude for [H = 2] and of medium amplitude for
[H = 3]. Technically, while this certainly displaces marginally
some control points, this mostly affects the probability dis-
tribution about the high frequency components of the signal,
P(A |L, H ). Thirdly and finally, we assume that motor deterio-
ration affects pupil control, with a slight increasing mean pupil
diameter with increased disability level, and reduced pupil diam-
eter variability.

Figure 14 shows a letter “h” of our original database, along
with trajectories obtained by our algorithmic simulation of
increased disability: reduced size and added tremor are easily
observed.

With our original and simulated trajectory databases, we learn
parameters for the full BAP-EOL model, and use it to perform

FIGURE 11 | Evolution of entropy during character recognition. Left

panel: each row is the mean Shannon entropy of the probability distribution
over letters, as via-points are accumulated, for a given letter. Right panel:

average entropy as via-points are accumulated, for all letters. Three curves
are shown, one for each disability level: higher disability leads to slower
convergence speed.
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FIGURE 12 | Novelty detection during character recognition. Left

column: evolutions of the probability distributions over characters
(among “x,” “y,” “z,” and “$”), as the fourteenth first via-points are
detected. Right column: final probability distribution over letters after
detection of the fourteenth via-point. Top row concerns recognition and

novelty detection when a “6” is presented: it is outside of the learning
database and correctly recognized as a new character. Bottom row is
when a “3” is presented: while outside of the learning database, it is
geometrically close to a “z,” and incorrectly recognized as such, most
of the time.

disability assessment. We consider all learned trajectories, and, for
each, we feed them to the system and use Bayesian inference to
compute:

P
(

H
∣∣∣C1:15

�x , C1:15
�y , C1:15

ẋ , C1:15
ẏ , Sx, Sy, A, μp, σp

)
.

We thus build a 3 ∗ 3 confusion matrix, the average of these prob-
ability distributions over variable H, for our complete database. It
is shown Table 1.

In this experiment, we obtain a mean correct recognition
score of 81%. Of course, our disability simulation uniquely deter-
mines this score. In other words, this experimental measure can
be arbitrarily increased by simulating more separated levels of
impairments, and, conversely, it can be arbitrarily decreased by
simulating less distinct levels of impairment.

However, this still validates, as a proof of concept, the manner
in which the flexibility of probabilistic modeling can be leveraged,
in order to perform (general) disability assessment. Of course, a
precise model of motor impairment would have to be developed
for each disability and each patient population. Provided such a
model can be acquired and included in the BAP-EOL model in
lieu of our algorithmically simulated disability, computed prob-
ability distributions over variable H can be recorded as the user
performs trajectories. These distributions can then be presented
to the accompanying medical staff as a measure, to be interpreted

and, if required, to be complemented by adequate diagnostic
tests.

DISCUSSION
In this paper, we have presented the BAP-EOL model. It is a
variant of a previous probabilistic model of isolated letter read-
ing and writing, adapted to the original case of eye writing. In
the model, letters are internally represented as sequences of via-
points, along with auxiliary information about global size of
letters, high-frequency components amplitude during movement
production, and pupil diameter during trajectory tracing.

In this context, we have shown how the knowledge stored in
the BAP-EOL probabilistic model could be manipulated, thanks
to Bayesian inference, in order to solve three main tasks. Online
letter recognition for instance, is based on computing probability
distributions over letters, given an input trajectory. Experimental
results show promising correct recognition score, even from a
very scarce learning database.

The second task we solved was novelty detection: thanks to a
probabilistic model of the unknown letter, character processing
can recognize when the presented trajectory does not conform to
learned letter shapes. Preliminary results, here, allowed exploring
experimentally the tradeoff, in this process, between recognition
robustness and novelty detection sensitivity.

The third and final task was disability assessment, in the con-
text of eye writing by motor impaired patients. Indeed, trajectory
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FIGURE 13 | Novelty detection for a database of known characters

restricted to “x,” “y,” “z,” and the unknown character “$”. Left:
confusion matrix for the recognition of all available characters, after the
collection of 14 via-points. Middle: confusion matrix for the recognition
of all available characters, after the collection of 15 via-points and

auxiliary variables. In both cases (left and middle), most characters are
correctly recognized as new characters. Right: entropies of the
distributions over letters, as via-points are accumulated. The addition of
auxiliary variables makes the probability distributions more uncertain, in
this case.

recording is of course necessary for letter recognition, but it is
also a rich opportunity, an open window into the user’s motor
control. We illustrated the way in which the BAP-EOL model
could be expanded to include models of different levels of motor
impairment, and Bayesian inference used to recognize the user’s
disability level. Preliminary results, based on an imagined, simu-
lated database of motor impairments, illustrated the feasibility of
the task. Application to ALS patients, and assessment of the bene-
fit, if any, brought by this measurement tool (Gordon et al., 2012),
are part of future work.

Of course, however promising these experimental results may
be, they do not conceal the many open challenges that remain on
the path to automatic processing of eye writing. For instance, the
BAP-EOL model does not include an explicit method for dealing
with via-point insertion and deletion. Via-points are a powerful
summary of whole trajectories, but this representation is sensitive
to the pairing of memorized via-points to the ones extracted from
the input trajectory to be recognized. In particular, errors in this
pairing at the start of trajectories may not be recovered from, and
impact negatively character recognition.

Whereas beginnings of trajectories in handwriting are rather
stereotyped, which alleviates somewhat this issue, it is not the case
for eye writing. Indeed, using our apparatus, eye writing is per-
formed thanks to an original sensory-motor loop: some smooth

pursuit elicits perception of an illusory moving target which itself
makes smooth pursuit easier, and reinforces the illusion, etc. We
have therefore observed that the beginnings of trajectories often
include intrusive saccades, or wandering, undirected smooth
pursuit, before fluid letter tracing. This “burn-in” period, of
movement initiation, often inserts superfluous via-points, which
negatively interferes with character recognition. A specific proba-
bilistic model of movement initiation, or a more robust system of
via-point pairing, would help toward solving this issue.

Using the eye writing system to write words instead of iso-
lated letters might also be another opportunity to reduce the
impact of intrusive saccades related to movement initiation. In
that case, which ultimately is closer to the general use case of the
system, letter segmentation would be necessary. Our probabilistic
model offers the opportunity, thanks to online letter recognition,
to include prediction of the end of letter trajectories, to help let-
ter segmentation. Preliminary work in this direction is promising,
but warrants further developments.

Finally, it is also possible that the type of salient features
we used, inherited from previous work concerning handwrit-
ing, is maladapted to the context of eye writing, and negatively
impacts recognition scores. Zeroes in x and y velocity profiles
have the advantage of being both geometrically salient and mean-
ingful with respect to motor control, and seemed appropriate

www.frontiersin.org November 2013 | Volume 4 | Article 843 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Diard et al. Bayesian modeling of eye writing

FIGURE 14 | Left: example trajectory for the letter “h,” taken from
our database, and associated with base disability level

[
H = 1

]
(healthy subject). Middle, right: trajectories obtained from the “h”

on the left, after application of our algorithmic simulation of motor
deterioration

(
middle: medium impairment,

[
H = 2

]
; right: large

impairment,
[
H = 3

])
.

Table 1 | Confusion matrix in the disability assessment experiment.

h1 h2 h3

h1 0.8 0.2 0

h2 0.11 0.81 0.08

h3 0 0.06 0.94

The table is read in rows. For instance, the top row is the average probability

distribution over recognized disability level, for all trajectories of healthy users in

the learning database. Diagonal values indicate correct recognition.

for the trajectories produced by author Jean Lorenceau. Alternate
choices of features abound in the literature of handwritten char-
acter recognition, like detection of segmentation points between
strokes, detection of velocity extrema, etc.

However, recent observations of additional subjects and the
trajectories they produce during training indicate that alternate
strategies of eye writing exist, with a larger departure from hand-
writing. Some subjects seem to produce mostly straight segments
and sharp angles; others often include “burn-in” periods inside
of letters, as they temporarily lose control of smooth pursuit, etc.
Defining optimal features for eye written character recognition
will have to follow a proper taxonomy of eye writing styles and
their geometric properties. Such a taxonomy is yet to be obtained.

In this paper, we have highlighted a number of aspects by
which handwriting and eye writing differ. The BAP-EOL model
allows studying these differences; to the best of our knowledge,
this is an original object of study. Additionally to this fundamental
exploration of eye writing, our preliminary results hint at the

feasibility of automatic trajectory processing for letter recognition
and disability assessment.

Even in the case that letter eye writing would turn out to
be inferior to existing methods for communication with motor
impaired patients (e.g., if throughput is lesser with eye writing
than with virtual keyboards), the eye writing system still would
allow artistic free-flow production and drawing; we hope this
might still be an invaluable tool to motor impaired patients,
allowing them to continue expressing themselves in an emotion-
ally rich manner, despite their motor disability.
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