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We present a PDP model of binary choice verbal analogy problems (A:B as C:[D1|D2],
where D1 and D2 represent choice alternatives). We train a recurrent neural network in
item-relation-item triples and use this network to test performance on analogy questions.
Without training on analogy problems per se, the model explains the developmental
shift from associative to relational responding as an emergent consequence of learning
upon the environment’s statistics. Such learning allows gradual, item-specific acquisition
of relational knowledge to overcome the influence of unbalanced association frequency,
accounting for association effects of analogical reasoning seen in cognitive development.
The network also captures the overall degradation in performance after anterior temporal
damage by deleting a fraction of learned connections, while capturing the return of
associative dominance after frontal damage by treating frontal structures as necessary
for maintaining activation of A and B while seeking a relation between C and D. While
our theory is still far from being complete it provides a unified explanation of findings that
need to be considered together in any integrated account of analogical reasoning.
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1. INTRODUCTION
Analogical reasoning, the ability to detect and exploit patterns
of relational similarity between domains of knowledge, has been
argued to be at the core of human cognition (Hofstadter, 2001).
Studies and models have focused on different aspects of ana-
logical reasoning. According to the number of constituents that
the two knowledge domains will have, the form of the questions
that the task will assume, and other variables, different paradigms
have been developed. Some studies have focused on the process-
ing of analogous domains of knowledge and situations where
many objects are related with each other (Duncker, 1945; Gick
and Holyoak, 1983). In this case, the entities in the knowledge
domains are assumed to have a form of structure that can be
mapped with entities in an analogous domain as a result of ana-
logical reasoning (Gentner, 1983). In some studies, the subjects
are explicitly asked to solve an analogy problem, while in others
their capability to spontaneously infer an analogy is tested, mainly
for goal-directed problem solving tasks (Duncker, 1945; Gick and
Holyoak, 1983; Holyoak et al., 1984).

In one important type of explicit analogy problems, partic-
ipants see three items (A:B::C) and must select a fourth item
to complete an analogy of the form “A is to B as C is to D”
(Spearman, 1923; Sternberg and Nigro, 1980; Sternberg et al.,
1982). Participants, commonly, are given a set of candidate D
items and must choose the option that maximizes the similar-
ity of the relation between A and B with the relation between C
and the picked D. Such forced-choice verbal analogy problems are
often used in standardized tests of mental ability, and researchers
have examined performance of adults and children either using
pictorial presentation of objects and scenes (Goswami and Brown,

1990; Kotovsky and Gentner, 1996) or verbally (Gentile et al.,
1969, 1977; Sternberg and Nigro, 1980).

In this paper we seek to provide an integrated account of
both developmental and neuropsychological findings from stud-
ies employing forced choice verbal analogy problems. The num-
ber of candidate options for the D item is not constant across
studies. Depending on the variables of interest, studies have used,
two (Morrison et al., 2004), four (Goswami and Brown, 1990) or
more candidate responses for the D item.

For simplicity, we simulate performance in binary choice ver-
bal analogy problems, where only two candidate D responses are
provided (denoted henceforth as A:B::C:[D1|D2], where D1 and
D2 are the two alternatives). This is sufficient for the scope of
behavioral phenomena we consider. We believe this focus on a
single type of problem, together with the integration of both
developmental and neuropsychological constraints, is a good
first step for the development of an account in which verbal
(and perhaps other forms of) analogical reasoning is viewed
as an emergent consequence of reliance on learning and dis-
tributed representations. As such, our model complements other
approaches which aim to address a broader range on analogical
reasoning processes within the framework of mechanisms specif-
ically constructed to support analogical reasoning (Hummel and
Holyoak, 1997; Morrison et al., 2004; Doumas et al., 2008).
We study the development of analogical reasoning as a conse-
quence of knowledge acquisition and examine the special role
of word associations. We suggest that word-association statistics
complement the role of learning in explaining developmental pat-
terns such as the relational shift seen in cognitive development
from associative responses to appropriate relational responses.
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Also, we investigate the role of word-associations in perfor-
mance following frontal or temporal damage, and explain how
associative responding returns after frontal damage and the dete-
rioration of cognitive control. Our theory is far from address-
ing all of the findings in the very broad analogical reasoning
literature. However, we argue that we bring together findings
from the more limited domain of forced-choice verbal anal-
ogy problems that have not been jointly considered before and
provide an emergentist alternative to classical approaches to solv-
ing such analogy problems. Extensions to our framework will
be required to address the full range of analogical reasoning
paradigms.

In the rest of this introductory section we review the key
findings that we consider to be important for the development
and deterioration of performance in verbal analogies. Our model
provides an integrated qualitative account of these findings.
In section 2 we describe the architecture and representational
assumptions of our model in detail. In addition, we explain
the training process and testing of the model in analogy ques-
tions. In section 3 we demonstrate the results of our simulations.
Finally, in section 4, we discuss the achievements and shortcom-
ings of our model, compare it with other models in the literature
and consider extensions to address a broader range of analogical
reasoning situations.

1.1. KEY FINDINGS
1.1.1. The role of knowledge acquisition
Early developmental theories of analogy-making attributed devel-
opmental changes in performance to a domain-general pro-
gression through a series of stages. Piaget et al. (1977) found
uncertain evidence of analogical reasoning in children from
5- to 12- years old. These findings for incompetence of ana-
logical reasoning at these ages were aligned to Piaget’s more
general account of the development of reasoning. Similarly
Sternberg and Nigro (1980) suggested that children’s strate-
gies shift from associative responding in early ages to rela-
tional reasoning through domain-general changes. However,
Goswami (1991) has argued that these theories underestimate
children’s analogical reasoning abilities and the influence of the
environment.

Precursors of analogical reasoning have been noticed in chil-
dren in early ages from infancy in simple problem solving studies
(Crisafi and Brown, 1986; Brown, 1989). Additionally, children in
the ages 3–6 show competence in analogical completion in tradi-
tional forced choice analogy studies (Goswami and Brown, 1989,
1990; Rattermann and Gentner, 1998), contradicting Piaget’s ear-
lier findings. In the Goswami studies, the materials were chosen
to be familiar to children. Thus, the conclusion was that what
guides analogical development is experience with the items and
relations involved, instead of a change in a domain-general mech-
anism. The Goswami and Brown (1989, 1990) finding that the
ability of children to complete analogies within familiar domains,
compared to the incapacity in the Piagetian studies (Piaget et al.,
1977), suggests that the capacity for analogical reasoning is not
based on a domain-general capacity for formal operations, but
depends on the amount of experience that children have within
specific domains of knowledge.

1.1.2. Word associations and the relational shift
A number of factors may affect children’s responses in
forced-choice analogy problems. Sternberg and Nigro (1980) sug-
gested that children’s preferences in problems of this type are ini-
tially associative. Achenbach (1970, 1971) designed a task to test
individual preferences on relational versus associative strategies.
In an A:B::C:[D1|D2] task used to distinguish analogical from
associative responding, the candidate D choices contain, among
others, the correct analogical choice and at least one choice that is
more or less associated to C than the correct response. For exam-
ple in the PIG:BOAR::DOG:[WOLF|CAT] analogy problem, the
correct response would be the WOLF. But the foil CAT, which
has higher semantic association with the word DOG than WOLF
has, can be used to test the ability to respond analogically despite
the presence of semantic distractors. Sternberg and Nigro (1980)
showed that the response speed and errors of 9- and 12-year-
olds depended on the degree of association between candidate
D terms and C terms in the analogies, thus they concluded that
younger children rely on associations while older children rely on
relational matching.

Goswami and Brown (1989) has argued, though, that these
relations were hard for the children to handle and proposed that
children rely on associations when there is not enough knowl-
edge of the domain. Taken together, the findings suggest that,
despite the primary effect that domain-specific knowledge has,
the role of word association should not be disregarded. Gentile
et al. (1969) discovered that word pair association factors can
explain a large portion of the variance in analogical responding of
university students, who could also be primed to respond associa-
tively. Recent studies have also highlighted the influence of word
associations in analogy completion. Thibaut et al. (2011) have
shown that analogies constructed with pairs of weakly seman-
tically associated items were harder for children with inhibition
problems. Also, in a neuroimaging study of verbal analogies,
Bunge et al. (2005) showed that strong associations in the A:B
part of the analogy significantly improved performance in the
analogy completion task. This suggests that the more famil-
iar the A:B relation the easier the comparison with the C:D
term is.

In all cases semantic association seems to play an important
role which either facilitates or inhibits correct analogical response,
according to the relative strength of the association between the C
term and correct vs. the incorrect alternative.

1.1.3. Neural basis of analogical reasoning
Given the centrality and complexity of analogical reasoning it
is unsurprising that several brain areas, associated with various
cognitive processes, are involved in analogy-making. Specifically,
cognitive control and semantic retrieval processes are involved.
Bunge et al. (2005) showed activation of distinct cortical areas
in association with component processes of analogical reasoning
(semantic retrieval and relational integration).

A large number of neuropsychological (Stuss and Benson,
1984; Shallice and Burgess, 1991; Duncan et al., 1995; Waltz et al.,
1999) and neuroimaging studies (Baker et al., 1996; Prabhakaran
et al., 1997; Osherson et al., 1998) have implicated prefrontal cor-
tex (PFC) in complex and high-level cognition such as reasoning.
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Waltz et al. (1999) found that patients with frontal lobe dam-
age had impaired performance in the more complex trials of the
Ravens Progressive Matrices test (i.e., when more than one rela-
tion had to be integrated), a test that is cognitively similar to
analogy tests. Mediation of the PFC has been found also in ana-
logical reasoning tasks. Wharton et al. (2000) showed evidence for
activation of the left dorsomedial prefrontal cortex (Brodmann’s
area 44 and 45) in geometric analogy problems.

Despite the evidence of activation of the PFC in analogical rea-
soning its exact role is still unknown. In non-analogy studies,
Cohen and Servan-Schreiber (1992), by reviewing the deterio-
ration of performance of schizophrenic patients in attentional
(Abramczyk et al., 1987; Cornblatt et al., 1989) and linguis-
tic (Chapman et al., 1964) tasks, suggested that the PFC plays
an essential role in maintaining an internal context representa-
tion in a form that can constrain processing task-relevant input.
Interestingly, Chapman et al. (1964) showed that schizophrenics
could not interpret correctly a weak meaning of an ambiguous
word even if the context of the sentence provided clear evidence
for disambiguation. Instead, patients demonstrated meaning-
frequency effects, preferring the more frequent meaning of a word
over the contextually-appropriate meaning. Cohen and Servan-
Schreiber (1992) provided simulations that captured this effect
by lesioning a model component that corresponded to the pre-
frontal cortex. The PFC may play a similar role in allowing the
correct alternative to be selected in A:B::C:[D1|D2] problems. Let
us consider the concrete example we presented previously: In the
PIG:BOAR::DOG:[WOLF|CAT] case the ability to pick the rela-
tionally appropriate response WOLF may depend on the PFC to
maintain an internal representation of the A:B “context” to help
override the strong association between DOG and CAT. The A:B
part of the analogy is what provides the appropriate context for
picking the analogically correct response.

In addition to the prefrontal cortex, temporal areas are argued
to be important to verbal analogies, given their importance for
semantic tasks (Hodges, 2000). The anterior temporal cortex
(particularly in the left hemisphere) is argued to be important for
verbally transmitted conceptual knowledge (Martin et al., 1996;
Mummery et al., 1999).

The importance of these cognitive processes becomes appar-
ent with the study of frontotemporal lobar degeneration (FTLD)
patients. FTLD is a regional neurodegenerative etiology of
dementia. A main classification of FTLD patients can be done,
according to the primary locus of damage, which can be either
in the frontal or in temporal areas and especially in the ante-
rior temporal areas. Morrison et al. (2004) compared frontal and
temporal FTLD patients’ performance with that of control sub-
jects. In a forced binary choice analogy task they found that
both temporal and frontal damage patients made more errors
than control participants. Since the choice was binary, one choice
(called here D1) was correct and the other (called D2) was incor-
rect. The relative association of the C:D1 pair compared to that
of the C:D2 was called the Semantic Facilitation Index (SFI). This
Semantic Facilitation Index took positive, zero, and negative val-
ues. The sign of the index was based on an approximation of the
difference between the C:D1 association and the C:D2. Frontal
damage patients performed well with positive SFI problems

(C:D1 association stronger than C:D2 association, where D1 is
assumed to be the correct response), but their performance was
impaired for equal SFI and especially negative SFI items, in which
the incorrect choice had a higher association with the C term.
Temporal patients, on the other hand showed overall depressed
performance, and were less affected by SFI.

Table 1 summarizes the key findings that we consider to
be important for treatment within an integrated mechanistic
account. We believe that any framework of analogical reasoning
needs to follow a knowledge-acquisition approach in order to
address the overall role of experience in solving verbal analogy
problems. Specifically, we highlight here the role of association
strength (the environment’s statistics) on performance. We sug-
gest that people’s ability to use the context provided by the A:B
pair depends in part on prefrontal integrity to maintain a repre-
sentation of this context and in part on prior experience, and that
a by-product of this experience dependence is that the retrieval
process is either facilitated or inhibited by the relative association
of the C item with the correct alternative as opposed to the incor-
rect response. Our model qualitatively integrates and simulates
these findings.

1.2. MODELING FRAMEWORK AND DESIGN GOALS
Our model belongs to the Parallel Distributed Processing (PDP)
tradition (McClelland et al., 1986; Rumelhart et al., 1986a).
Connectionist networks embody characteristics that are appeal-
ing for relational representation such as gradience in repre-
sentation, interactivity in a bidirectional manner between units
allowing mutual satisfaction of constraints, nonlinearity, and
adaptivity (McClelland, 1993). The principle of graded represen-
tations is essential for being able to represent a graded perfor-
mance of analogical reasoning instead of an all-or-none approach
where a comparison is or is not analogically appropriate. In
addition, allows developmental explanations based on knowledge
acquisition. Connectionist networks are accompanied by learning

Table 1 | Key findings of verbal analogies.

DEVELOPMENT OF VERBAL ANALOGICAL REASONING

1. Experience in relational knowledge is a key force behind the
development of analogical reasoning (Goswami, 1991)

2a. There is a shift in analogical responding from associative strategies
to relational reliance (Sternberg and Nigro, 1980)

2b. This relational shift must be supported by knowledge acquisition
(Goswami and Brown, 1989)

THE NEURAL BASIS OF VERBAL ANALOGIES

3a. The prefrontal cortex has been implicated in analogy and analogy-like
imaging studies (Waltz et al., 1999; Wharton et al., 2000)

3b. A putative role of PFC is to maintain an internal representation of
task context (Cohen and Servan-Schreiber, 1992)

3c. Frontal lobe lesions cause strong influence of associations in
responding (Morrison et al., 2004)

4. Temporal lobe lesions cause general impairments in performance
regardless of task relative associations (Morrison et al., 2004)
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algorithms that allow them to modify their weights, and hence
their knowledge, with experience.

In line with the gradient character of our framework, one goal
of our model was to address gradience in analogical reasoning.
We argue that analogies can be drawn between pairs of items that
have similar, instead of completely identical, relations. For exam-
ple we suggest that the relation between DOG and PUPPY is more
similar to the relation between CAT and KITTEN than it is to
the relation between RIFLE and PISTOL, but also that both the
DOG:PUPPY::CAT:KITTEN and DOG:PUPPY::RIFLE:PISTOL
analogies can be valid, even though the relations vary in
their degree of similarity. By using distributed relational rep-
resentations we are able to solve relational problems even for
cases where the relational representations are similar but not
identical.

Second, our model is motivated by a desire to allow the rela-
tion retrieved between A and B to be affected by the rest of the
analogy problem. As argued by French (2008) one has to consider
both parts of the analogy to figure out which relation is the most
appropriate. Considering our previous example, one cannot be a
priori certain that the relevant relation between DOG and PUPPY
is that of kinship, size-relation or anything else before the candi-
date relations are constrained by the C:D terms. Thus, we consider
interactivity during relation-retrieval to be crucial for our theory.

Before turning to the details of our model, we note that our
work builds on two previous modeling efforts. Leech et al. (2008)
proposed a learning based model that served as one of the main
inpirations for our approach, demonstrating how learning could
explain aspects of development of analogical reasoning abilities.
Morrison et al. (2004) offered a model of the pattern of neu-
ropsychological deficits seen in FTLD within the LISA model of
analogical reasoning (Hummel and Holyoak, 1997). Our model
differs from both of these earlier models in several ways, and is
the first to address both the developmental data and the neuropsy-
chological findings within the same model. In the discussion we
consider similarities and differences between the models in more
detail.

2. MATERIALS AND METHODS
2.1. NEURAL NETWORK MODEL
2.1.1. Architecture and representation
Under our approach verbal analogies are a by-product of sim-
ple relational learning. A cognitive agent is exposed to item1-
relation-item2 triples. It learns to associate the items with each
other, such that the presentation of the two items tends to result
in filling in the relation. This relation, in turn, may then work
together with the presentation of one of the two items to con-
strain the retrieval of the other item. Our model draws on related
early work by Hinton (1981). Hinton’s effort embodied the same
computational principles and the same psychological content. In
an effort to implement semantic networks in parallel hardware,
Hinton introduced a network very similar to the one proposed
here, though at the time the learning machinery available for
training such networks was more primitive.

Our network’s training architecture is shown in Figure 1.
Similarly to Hinton’s network there are two visible pools for the
role-fillers of a relational triple (A and B), a visible pool for

FIGURE 1 | Model’s training architecture. The network consists of two
visible pools (A and B) for the two concepts in a relation, a visible pool
(Relation or R) for the relation between them, and a hidden pool.
Connectivity between pools is bidirectional.

the relation (R) and a hidden integrating pool. All three visi-
ble pools are connected with bidirectional projections with the
hidden pool.

Objects in the A and B pools are represented in a localist
manner. In contrast, representation in the Relation pool is dis-
tributed. We acknowledge that localist coding does not allow
the network to capture the subtleties and effects of surface sim-
ilarity between concepts, but reduces the complexity of learning
for the network. For the Relation pool patterns of activation
correspond to specific relations with similar patterns represent-
ing similar relations. Representations for a relation correspond
to activations of 0 and 1. Each unit is assumed to correspond
to semantic or visual features of the relation. In our simula-
tions relations that are seemingly the same or can instantiate
a valid analogy are assumed to come from a shared prototype
pattern. For example the relation for the pair PIG:BOAR will
be very similar to the relation for the pair DOG:WOLF since
they both are distorted instances of a prototype pattern approx-
imately corresponding to the relation “domesticated form of.”
Importantly, these two instances will be similar but not iden-
tical. Activation of appropriate representations in these three
pools corresponds to a specific relational fact. We will call
these facts propositions and henceforth denote them as A:R:B or
A:B with the relations being implied. Of course we hold that
both items and relations involve distributed representation—
we use distributed relation representations to underscore that
the relation (like items) are likely to vary across cases that
might sometimes be labeled as the same, and to demonstrate
that relations need not be identical for analogical reasoning to
succeed.

2.1.2. Training
We train the network to complete relational propositions
when given any 2 of a triple’s elements as inputs. We use
the backpropagation-through-time (Rumelhart et al., 1986b)
learning algorithm as implemented in the pdptool simulation
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environment [version 2.07, McClelland (2012)]. As it learns the
associations between objects and relations, the model assigns to
each input a stable pattern of activity across the hidden units.
For each training epoch a set of propositions is presented to the
network. This set of propositions corresponds to the network’s
environment. Each proposition (i.e., each A:R:B triple) appeared
many times within each epoch. One third of the time, the A and
B items were presented as input; in another third, the A and
R items were presented as input; and in the final third, the B
and R items were presented as input. In all three types of cases,
the network had the task of filling in or completing the third
member of the triple. Also each input combination (i.e., A:B, or
A:R, or B:R) for a proposition can appear multiple times within
an epoch. This number of times is called the proposition’s fre-
quency. We assume that the frequency of co-occurrence of items
within propositions is an important contributor to the strength
of their association, an idea well grounded in psycholinguistics
(Spence and Owens, 1990). Of course we don’t argue that asso-
ciative value is captured only by co-occurrence frequency, but
instead that it is being sufficiently approximated and on the same
time allows us to address our questions on a very simple neu-
ral network. We leave the details of the model’s environment for
the Simulations section and a complete description is given in the
Appendix.

2.1.3. Testing
Our model is not trained on analogies per se, and we show that
the ability to complete analogy problems can emerge from our
training architecture. One way in which this might work would
be to imagine that the network is first presented with A:_:B,
and fills in the appropriate relation R; and that R or a trace of
it persists after removing B and replacing A with C, allowing
completion of the C:R:_ triple. Such an approach would be sim-
ilar to the “relational priming” framework (Leech et al., 2008),
which is grounded empirically on findings suggesting that analo-
gies occur spontaneously (Goswami and Brown, 1989; Pauen and
Wilkening, 1997; Tunteler and Resing, 2002). However, instead of
using priming as a mechanism for retrieving the A:B relation first,
and later use that to infer the D term, we suggest that the brain
may possess the ability to simultaneously represent the A,B,C,
and D terms of the analogy, and can use them all together to find
a common relation that completes both the A:_:B triple and the
C:_:D triple. Note that we do not claim that the brain’s architec-
ture has this capability solely to solve verbal analogies problems,
but that, in general it possesses the capability of allowing mutual
constraints to influence completion of neighboring propositions,
just as mutual constraints can shape the perception of letters in
visual letter perception (Rumelhart and McClelland, 1982). For
present purposes we rely on this capability only for analogical
reasoning, however.

The architecture we use is shown in Figure 2. The network
consists of two copies of the trained network, sharing a com-
mon relation pool. The weights between A and Hidden1 (H1)
are identical to the weights between C and H2; the weights
between B and H1 are identical to the weights between D
and H2; and the weights between H1 and R are the same as
the weights between H2 and R. This way, the network takes

FIGURE 2 | Model’s testing architecture. Two copies of the trained
network share a common relation pool, so that both the A and B terms and
the C and one candidate D term jointly constrain the search for a relation.
While the A, B, and C items are clamped for the entire testing process the
D items are clamped only at the beginning. We run two tests, one for each
candidate D item; the D alternative with the strongest “echo” of activation
at the end of testing is chosen.

advantage of its experience. Finally, one more refinement is
required. In the thought experiment where one clamps to both
the top and bottom part the same A:B inputs (denoted as
A:B::A:B), the net input arriving at the Relation pool is dou-
ble the input that it was trained to receive. What that means is
that the net input that this pool receives departs from its experi-
ence and has essentially double the magnitude. For this reason
we have halved the contribution of the H1-to-R and H2-to-R
projections.

It is important to stress that we do not assume the brain
literally contains two copies of the identical network, sharing
the relation pool between them. We do, however, assume that
both parts of an analogy problem can access connection-based
knowledge at the same time and can mutually constrain each
other, something that is made possible by this architecture. We
assume that this ability is part of the general cognitive machinery
that allows the interpretation of each of two items to be con-
strained by the other, even if one is presented first. A model with
some relevant properties was previously proposed by McClelland
(1986).

When the network is clamped with A,B,C, and D representa-
tions, the two parts of the network will try to fill in the R pool
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the relations associated and learned for both of these two pairs of
objects. Activation in the relation pool will depend upon the acti-
vation of the Hidden1 and Hidden2 pools. The Hidden1 pool will
acquire a representation learned for the A:B input and Hidden2
will acquire a representation learned for the C:D input. Thus,
Hidden1 will push the Relation pool toward representing the rela-
tion between items A and B and Hidden2 will push toward the
relation between C and D. The more similar the two relations are,
the greater the goodness of the network’s state. Since all inputs
are hard-clamped, the consistency of the Relation pool does not
affect activation in the A,B,C nor D pools. However, when the D
item is unclamped the consistency of the two relations and the
goodness of the network’s state will affect activation in pool D. If
the two relation are similar, then the completed Relation with the
C term will support activation of that D term. However, if the two
relations were less similar, then the filled relation will not resem-
ble the relation between C and D and thus the D item will not
be supported by activation in the Hidden2 pool (we use below an
example to make this idea clearer).

The test procedure we used is similar to one used by Dilkina
et al. (2010) in a lexical decision task. 1. For each analogy ques-
tion we conduct two test trials. We clamp the A, B, and C items in
their corresponding pools for the entire test. Each of the D alter-
natives is clamped on the D pool for some processing cycles, then
removed for several more cycles, and the residual activation of
the D unit that was initially activated is then recorded as a mea-
sure of the strength of the “echo” produced by that alternative.
The alternative with the strongest echo is chosen as the network’s
response.

In summary, for a given analogy question A:B::C:[D1|D2], the
process below is followed: The model calculates separately how
good the A:B::C:D1 and A:B::C:D2 analogies are and compares
their goodness to find the network’s response. For each analogy
we clamp the A, B, C, and D terms to their corresponding pools
for a few processing cycles. During this phase, activation is spread
over the network. Of interest is the fact that the A and B terms
in the top part of the network push activation in the Hidden1
and the R pool as the network has learned to do in training. The
same happens for the C and D terms. If the two pairs (A:B and
C:D) share similar relations then the top and bottom part of the
network will pattern-complete in the R pool similar representa-
tions. If they have different relations then the two parts of the
network will push dissimilar representations in a resulting “mean-
ingless” representation. After the first phase, we unclamp the D

1We explored a variety of different alternative decision criteria. The first was
the echo of activation (residual activation after unclamping) as mentioned
before. Alternatively, we left the D terms clamped for the entire processing
and used the net-input at the end of processing as a decision criterion. Finally,
we did not clamp any of the D items and selected the item with the highest
activation at the end of processing. The network’s responses were the same for
all three different criteria, thus we do not report any simulations for the other
two decision-criteria. We preferred the echo criterion because it expresses
the close-ended nature of the task, without allowing the network to consider
irrelevant alternative options. It also lies somewhere between the two alter-
native considered options allowing for both open-ended retrieval processes
(echo after unclamping) and close-ended binary choice (necessary decision of
higher echo among two alternatives).

term (but keep all others clamped) and let the network process a
few more cycles. By unclamping here we mean that we stop hard-
coding input activation but keep the pool’s state as it was without
flushing it to zero. At this second phase, activation is still spread.
Of interest is the activation in the D pool. The bottom part of the
network has the C term clamped and now has a relation partially
filled. Whether this filled relation was consistent (A:B and C:D
similar) or inconsistent (A:B and C:D dissimilar) will determine
how the bottom part of the network will allow the D activation to
be maintained (echo measure). For consistent relations between
the two parts the D term maintains higher activation. The model
then chooses the D term with the higher maintained activation.

An example is given in Figure 3. As mentioned previously,
for each analogy question we perform two separate tests on the
network (one for D1 and one for D2). In our example, in one
test we clamp PIG, BOAR, DOG, and WOLF in pools A,B,C,
and D respectively; in the other test, CAT is clamped on the D
pool instead of WOLF. The D item will be clamped for a few
processing cycles. According to the degree of training that the net-
work has received the activation in the top part will push the R
pool’s representations toward activating the relational pattern of
the proposition PIG:BOAR. On the other hand activation on the
bottom part will push the R pool toward the C:D relation. An
approximation of the joint representations for the A:B and C:D
pair is filled in the relation pool. In the case of DOG:WOLF the
relation is very similar to the PIG:BOAR, opposed to the case of
DOG:CAT. Thus, the R pattern completed in the DOG:WOLF
case is more consistent with the DOG:WOLF proposition as it
appears in the training set, opposed to the DOG:CAT proposi-
tion. This way, the WOLF unit is expected to maintain higher echo
(activation at the end of processing).

However, it is important to note that such a behavior depends
on the stored weights that the network has acquired and the extent
to which acquired knowledge can support relational retrieval
versus free association. D activation will also depend on the
frequency and association of each of the D terms with the C
term, given the presence of C. In our example, CAT is trained
more frequently with the word DOG than is WOLF, thus the
response CAT gains an advantage this way. Representational
similarity facilitates analogical responding, but frequency facil-
itates associative responding, regardless of which alternative is
the relationally correct response. Our expectation is that the
interactions between these two forces will support the correct
response in tasks where the correct is strongly associated with
the C term and will prevent correct responding in tasks where
the correct response is weakly associated, but that as training
progresses, the network’s encoding of both low and high fre-
quency associations will become sufficiently robust that the rela-
tional similarity will allow correct responses, regardless of relative
frequency.

2.1.4. Effects of frontal and temporal damage in frontotemporal
lobar degeneration (FTLD)

2.1.4.1. Frontal damage. Following the ideas of Cohen and
Servan-Schreiber (1992) we assume that frontal damage dimin-
ishes an individual’s ability to maintain context information—
here, the representation of the A:B item—needed to constrain
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FIGURE 3 | Illustrative analogy question. (A,B) Sketch analogy testing
in the question PIG:BOAR::DOG:[WOLF|CAT]. The concept WOLF will
initially support consistent pattern completion in the R pool. When
unclampled, the partially completed pattern will support residual

activation in the D term opposed to the CAT. However, as shown in
(C) the higher association of CAT with DOG provides an associative
advantage when incomplete or insufficient information is clamped in the
relation pool.

the C:[D1|D2] decision. One way PFC might do this is to regu-
late the overall activation of the hidden units mediating the A:B
association. Accordingly, we treated frontal damage as reducing
an overall biasing input to the hidden units in the A:B part of
the network. This leads to a reduction of activation in H1 pool,
impairing the ability of the A:B pair to influence the pattern of
activation on the relation units, thereby causing the network to
operate approximately as in Figure 3C. There are other possi-
ble ways in which PFC damage might reduce the contribution of
the A:B association to constraining the specification of the rela-
tion between C and D which would likely have similar effects,
and it is possible that different frontal syndromes (e.g., FTLD,
schizophrenia) might produce such an effect in slightly different
ways.

2.1.4.2. Temporal damage. Anterior temporal damage in the
network is much more straightforward. The role of the anterior
temporal lobe is to allow the completion of propositions—in our
case, the filling-in of the missing relations between the presented
items. This mechanism is mapped to the pattern completion pro-
cesses of the two parts of the network. Since all projections in
the network are essential for pattern completion we will assume
that random loss of connections corresponds to anterior temporal
damage. The approach of randomly removing connections (set
their weights to 0) has been followed by Rogers et al. (2004) for
lesioning a model of semantic memory. Relying on our assump-
tion that both parts of the analogy draw on the same underlying
connection-based knowledge, we removed connections from one
part of the network (A:B part) at random according to a specified
probability, then copied the projections from the lesioned part of
the network to the complementary (C:D) part, so that the lesion
was identical for both parts of the network.

2.2. SIMULATIONS
We ran two simulations. The first was intended to demonstrate
how the relational shift emerges within a single-purpose learning

network. For our second simulation we used the trained networks
of the first simulation and applied lesion to demonstrate how
our model accounts for frontotemporal lobar degeneration. The
two simulations use the same training set, which we describe in
the following section. For each simulation we trained five net-
works with randomly initialized connection weights and their
own randomly generated training environments.

2.2.1. Relational patterns
The relational pattern representations were generated as follows.
Relations in the training set come from 8 different relational pro-
totypes, consisting of 16 active units out of the full set of 128
relation units. Ri refers to one of the relational prototypes. Two
different prototypes (thought of as corresponding to very dissim-
ilar relations) have no overlap at all on their set of active units.
However, relations generated from the same prototype have 12
units in common. Specifically, an instance of a relation is obtained
by turning off two of the units of the active units of the prototype.
The turned off units are necessarily different across instances (See
Figure A1C for two instances of the R2 prototype).

2.2.2. Training environment and parameters
The training environment for each network consisted of blocks of
propositions called cells. Each cell was designed to provide three
analogy questions. One with positive SFI, one with neutral, and
one with negative (recall that SFI is defined as the relative asso-
ciation of the correct response with the C term compared to the
association of the incorrect response with the C term). For satisfy-
ing such a constraint, each cell should minimally have the format
seen in Figure 4. In this format we have a basic source proposition
A:R1:B, one relational target proposition C:R1′:D1, and three foil
target propositions C:R2:D2, C:R3:D3, and C:R4:D4, one weak,
one moderate, and one strong (Note that each relation in the
above propositions is an exemplar from a different prototype,
except that R1 and R1’ are exemplars form the same prototype).
This set gives three analogy tests (SFI>0: A:B::C:[D1|D2], SFI=0:
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FIGURE 4 | Training environment design. Minimal design for a
knowledge cell. The source proposition provides the A:B part of the analogy
question, the C:D1 provides the correct response and there are three foils
with various associations (shown in parentheses as Low, Medium, and
High training frequency). Further details of the environment design are
presented in the Appendix.

A:B::C:[D1|D3], and SFI<0: A:B::C:[D1|D4]). The three kinds of
test within a cell are a result of the frequency variation that reflects
association variation of a word (C) with several other words (D1,
D2, D3, D4). Such a minimal design confounds frequency of asso-
ciation with frequency imbalances in the rates of occurrences
of relations and items. Seemingly, a word D4 that has a high-
frequency of co-occurrence with the word C for example, seems
to have overall higher frequency of occurrence. To fix that, by
keeping the structure behind this basic design that yields 3 anal-
ogy questions, we counterbalanced global frequency of training
by reusing items and relations in propositions of various frequen-
cies across cells (See Appendix for details on the imbalances and
our scheme for counterbalancing).

3. RESULTS
3.1. SIMULATION 1: RELATIONAL SHIFT
We trained 5 randomly initialized networks with 5 randomly gen-
erated training sets (as described in the Appendix) for 350 epochs.
The average error measure was almost zero at the end of training.
However, what is important is not performance on the relational
propositions, but on the analogy questions (higher echo of D1 vs.
foils for each cell). At 350 epochs the networks had an average
correct performance in the analogy tests of 0.97.

One important focus of interest is the development of this
performance through time. We sampled performance every 10
epochs (initially all networks had performance at chance). In
Figure 5 we show the development of performance by problem-
type. It is obvious that for all problem-types performance
improves with knowledge-acquisition. Importantly, the networks
learn to solve problems with higher SFI before other prob-
lem types, and is impaired early on for problems with lower
SFI. The fact that performance is significantly below chance in
the negative SFI condition indicates that responding is primar-
ily determined by differences in association strength early on.
Higher association of the correct response facilitates performance,
while for the negative case, lower association inhibits perfor-
mance and the networks fall below chance even after 10 epochs
of training. Performance in the negative SFI condition starts
to show improvement at approximately 80 epochs of training
and the networks became relational even for the negative SFI
case after 130 epochs of training, when the acquired knowledge

FIGURE 5 | Development of performance by problem type. Average
performance of networks, by problem type in time. The relational shift is
apparent by the early bifurcation of the plotted lines according to problem
type combined with the convergence to correct responses later. Chance is
at 0.5. Early in training, performance is below chance for the negative SFI
problems and higher SFI problems are learned faster. Later, performance is
improved for all problem types.

allows the testing process to overcome the prepotency of the
high-association foils. This pattern can be described as a relational
shift, since the early bifurcation can be attributed to a reliance
on word-association, while later performance relies on relational
knowledge. Note that this occurred, even though the network
was never trained to carry our analogical reasoning. Once both
parts of the analogy are highly familiar, their mutual constraint
outweighs associative responding.

3.2. SIMULATION 2: FTLD
Our simulations aim to capture the same key characteristics that
Morrison et al. (2004) classified as important (Figure 6-Left):

1. control participants showed good performance at all levels of
SFI,

2. frontal lobe patients showed depressed performance for lower
SFI problems,

3. temporal patients showed depressed performance, and
4. both frontal and temporal patients exhibit a SFI effect, which

is bigger for the frontal patients.

We lesioned the 5 networks of Simulation 1 at 350 epochs of
training. We applied either a frontal lesion as a reduced bias in
H1 pool or a temporal lesion as random loss of connections.
The bias in the H1 units was reduced from −2 to −6.5 for
the frontal lesion and connections were removed with .42 prob-
ability for the temporal lesion. Since the temporal lesion was
randomly applied, we generated 5 lesioned versions of each net-
work resulting in 25 networks with temporal lesions in total.
Our network accounts for the interaction of lesion-type with
problem-type. It is obvious that the negative SFI-problems are
impaired compared to neutral and zero after frontal damage and
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FIGURE 6 | Frontotemporal lobar degeneration simulations.

Performance on analogy problems per problem-type for various lesions.
Left: FTLD data from Morrison et al., 2004 (Reprinted with author’s
permission). Right: Simulation 2 results.

there is an overall degradation of performance after temporal
damage (Figure 6). When frontal damage is applied to the model,
evidently the model loses part of its ability to respond relation-
ally and moves to associative strategies. This happened because
the H1 pool loses its ability to maintain a representation of the
A:B proposition. Hence the relation pool is influenced predom-
inantly by the C:D part of the analogy. In the bottom part of
the network there was only a constant input coming from the C
pool. Thus, given the lack of other constraints, the most natu-
ral reaction is to complete the patterns that are more frequently
trained with C. This is how associative responding emerges in
our network. We consider this a very important implication of
our model that is consistent with previous work on the prefrontal
cortex (Cohen and Servan-Schreiber, 1992). In the semantic case,
the network lost its ability to successfully complete the patterns.
Hence, the whole process can be considered a noisy version of the
control test.

As mentioned previously, there is a SFI effect in the experi-
mental data for both frontal and temporal groups—the effect is
larger for frontal than for temporal lesions, and this is captured
in the simulation results as well. In both frontal and temporal
cases the SFI effect is larger in the simulations than in the experi-
mental data. We believe that the size of the SFI effect empirically
will likely depend on a range of factors, including the degree of
asymmetry of the word associations—our model appears to show
a larger asymmetry effect overall than the experimental data. A
possible reason for that could be the fact that the actual asso-
ciations used in the experiment were less asymmetric than our
model assumed.

4. DISCUSSION
We aimed to provide a model of key findings of verbal analog-
ical reasoning. Despite our apparent focus on a specific class of
analogy problems we unified disparate findings related to normal
performance, development, and deterioration of verbal analogical
problem solving within a learning system that learns relationally-
mediated associations. Our simulations were qualitative and
aimed to explain key phenomena at an abstract level, however,
the basic pattern of the findings were robust and consistent with

the basic patterns seen in developmental and neuropsychological
data.

We showed how a neural network trained solely on rela-
tional propositions can solve analogy questions by allowing both
halves of the analogy problem to mutually constrain the selec-
tion of a relation. In addition we showed in accordance with
Goswami’s theories how knowledge-acquisition can drive the
improvement in performance during development—we do not
require the invocation of a qualitative change in processing but
only the gradual buildup of relation-mediated associations as the
basis for the so-called relational shift. Importantly, we showed
how knowledge acquisition can interact with the environment’s
statistics in a complementary manner to explain the behavioral
patterns observed during development. Specifically, we explained
the shift of children’s reasoning from associative to relational as a
by-product of learning and pattern completion on a given archi-
tecture. The architecture assumes cognitive control components
that attempt to use acquired contextual information for overrid-
ing prepotency of incorrect responses. We showed that early in
training top-down contextual information was not enough for
overcoming the prepotency of strong foil responses. However,
after training, without any changes on the system’s parameters
or architecture, this phenomenon is diminished and the network
learns to yield relationally appropriate responses. The same net-
work, trained on the same training environment, explained the
overall degradation of performance after temporal damage as
the loss of connections responsible for pattern completion pro-
cesses and explained the return of associative responding after
frontal damage as the loss of capacity to maintain context-related
information that guides the retrieval of the appropriate target
representations.

4.1. MODEL LIMITATIONS
Of course the interaction between frontal lobe development and
knowledge acquisition is of great interest. It is important to note
that our theory does not exclude frontal lobe development as a
causal factor behind the behavioral pattern of analogical reason-
ing during development. On the contrary, executive-functions
skills, attentional switching, and inhibitory control play very
important and specialized roles in the development of analogy-
making (Richland et al., 2006; Morrison et al., 2011; Richland
and Burchinal, 2013). However, we argue that the developing
frontal lobe synergistically with background knowledge cause
the observed relational shift. Even if frontal-lobe development
has its own trajectory we argue that it needs to exploit not
only changes in frontal control functions but also acquired
knowledge.

Our goal was not to provide a mapping from model com-
ponents to brain areas. We do not believe that the two separate
network parts reside in different brain areas, but instead that our
architecture provides a neurocognitive explanation of the role of
top-down contextual biasing. The frontal lobe, however, has a
dual role in such a task. The one is to actively maintain goal-
relevant contextual information (Cohen and Servan-Schreiber,
1992) for top-down biasing. The other is to guide attentional
switching between what we model as two different networks
(Hummel and Holyoak, 1997; Doumas et al., 2008; Morrison
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et al., 2011). While these functions are potentially somewhat
different in nature, the extent of their separability is unclear and
they may potentially share the same underlying neural basis.
Damage in the frontal lobe in FTLD patients probably causes
severe impairments in both functions. Our theory, however,
deals with impairments only in the former. We acknowledge that
impairments in attentional switching functions as well (a com-
ponent function not explicitly included in our model) could play
a role in the associative effects found in frontal patients. Moving
toward neurally grounded models will help us understand how
the plausibility-driven constraint of interactivity is actually imple-
mented in the brain and how it is deteriorated with frontal
damage. As a first step, we argue that our model is not incom-
patible with the switching function. In terms of the architecture
shown in Figure 2 the top-down function would focus on actively
maintaining the retrieved relation for the A:B pair of the anal-
ogy providing bias in the Hidden1 layer, as explained through the
paper. We tried other forms of lesioning the top-down biasing
function (e.g., impaired clamping in the A and B layers) and all
had similar results, showcasing the importance of active mainte-
nance of information in the A:B part of the network. Then switch-
ing control would be used to map this relation to the one from the
C:D pair. This mapping could be done interactively by means of
several continuous rapid switches of attention from one pair to
another.

Our model did not aim to provide a fitted quantitative match
for the data in the literature. While this is a goal for future
work, we suggest that our approach is a useful, and perhaps
necessary, first step. We were very concerned with potential
confounds caused by stimulus-frequency constraints, so we pri-
oritized counterbalancing. This allows us to be sure that our
results depend on the co-occurrence frequency factors and not
on the frequency of the items and relations that enter into these
associations. Our design allowed us to counterbalance overall
frequency of training of each word or relation. Of course, we
don’t argue that such counterbalancing is plausible and we believe
that frequency of a specific item indeed plays a crucial role in
analogy making (both in reality and in our theory). However,
such questions were considered to be out of the scope of our
current model. In future, it will be important to consider how
such a framework can be extended to process more plausible
data-sets.

A final limitation of our model is that it lacks an explanation
of how the relational representations are learned and developed.
We believe that relation representations change as a function of
experience, but out current model lacks this property. Even if
the environment provides invariants for many visual relation-
ships (Doumas et al., 2008), we think it may be inappropriate
to assume that a cognitive agent has available learned represen-
tations of complex relations like “is among the strongest” or “is
the favorite student of”. Instead, a complete model of analogical
reasoning should consider how these representations are learned
and shaped by their exemplars. Our model provides a suggestive
initial framework for capturing the interacting complementary
role between a learning agent and it’s environment, and pro-
vides a base on which further work can proceed to address this
issue.

4.2. COMPARISON WITH OTHER MODELS
As mentioned earlier, our model is related to and inspired by the
neural network of Leech et al. (2008). We believe our approach
advances these author’s relational priming approach in several
different ways, some of which were circumstantial to the rela-
tional priming model and some of which were intrinsic to
it. The nature of the theory for “relations as transformations”
addresses intuitively only a small class of relational propositions,
namely propositions that express causal transformations. Such
causal relationships were used by Goswami and Brown (1989)
in pictorial analogy tasks. However, our use of distributed repre-
sentations allows for a more flexible representation of relations,
giving us the flexibility to address a wider range of relation
types and corresponding findings. As discussed in the peer-
commentary of the relational priming Leech et al. (2008) paper,
transformation upon relations that operate in a linear manner on
item representations (as implemented on the relational priming
approach) suffers from non-transitivity. Our flexible represen-
tation of relations does not come cost-free, however, since our
theory lacks a complete description of how such representations
develop.

Also, importantly, as argued by French (2008) a priming-based
approach does not cover the need to consider both parts of the
analogy before settling to the correct response. Our network inter-
actively considers both parts of the analogy for completing the
shared relation. Although it is likely that this interactivity was
not necessary to account for the data we simulated, we never-
theless agree with French (2008) that such interactivity has a
role to play in analogical reasoning. Our simulations also used
similarity, rather than strict relational identity, as a basis for ana-
logical reasoning. While we did not explore effects of variation
in relational similarity, pilot results from preliminary simula-
tions revealed that, indeed, a higher number of shared relational
“microfeatures” (Hinton, 1981) is associated with higher levels of
activation. We set as a future goal the implementation of more
complete simulations that will more fully exploit the interactive
and similarity-based features of our architecture.

On the other hand our model differs from the LISA approach
significantly. Morrison et al. (2011) have recently considered the
relational shift within the LISA theory. Admittedly, the LISA the-
ory provides a much more complete framework for a vast array
of findings related directly or indirectly to analogical reasoning.
We believe our approach has an important benefit. Our cog-
nitive control explanation (both for the relational shift and for
the frontal lesion) is fundamentally different than that proposed
in the LISA model. In our case, cognitive control is expressed
as a top-down influence in the network’s operation that does
not directly inhibit irrelevant information. Instead, inhibition
of alternatives naturally arises as a consequence of competition
among alternatives; PFC serves primarily to maintain a represen-
tation of context, so that the mutual constraint between the A:B
and C:D pairs can proceed, and the relational shift emerges within
the network without any hard-coded domain-general changes but
as a simple consequence of learning. In contrast to this, Morrison
et al. (2011) argue that the relational shift is a result of the
domain-general maturation of the inhibitory system that para-
metrically is hard-coded to change values during development.
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While maturation of the PFC is likely to play a role in main-
taining context representations, we emphasize that experience is
also likely to contribute to the relational shift during develop-
ment. Our approach is emergentist and such a suggestion is very
important in cognitive science (McClelland, 2010) as it eliminates
the need for assuming specialized systems or hard-coded compo-
nents. In addition, our framework provides unified simulations of
both the developmental and neuropsychological findings, operat-
ing upon the same training set, something that is important for
the plausibility of the theory. We believe and hope that the two
classes of models will both contribute to the further development
of mechanistic accounts of analogical reasoning.

4.3. FUTURE WORK
We consider the potential of addressing findings in the cog-
nitively related field of metaphor comprehension. Metaphor
comprehension can be seen as the process of filling out the A
and D terms of an analogy in which the B and C are given
Turney and Littman (2003). Consider the metaphor “demol-
ish an argument.” Comprehension of such a sentence can
be seen as the process of inferring an analogy between two
domains which the metaphor links. One can think of the analogy
CRITICIZE:ARGUMENT::DEMOLISH:BUILDING. The statisti-
cal pattern completion properties of neural networks are appeal-
ing for such a task. Clamping the known B and C terms might lead
to completing the unknown terms, given the constraints that the
R pool will pose. Such a prospect further justifies our modeling
choice for an interactive architecture.

Finally, we note that an extended version of the model might
some day be applicable to non-verbal analogies problems of the
type found on the Raven’s progressive matrix test. Experience
with propositional relationships expressed in verbal form is likely
to be of relatively little importance for such problems. However,
there is still a potentially important role for an interactive archi-
tecture such as ours, in which selection among alternative visu-
ospatial relationships rather than verbal relationships is mutually
constrained by the given items in the specified cells of the matrix
and the alternative choices provided for the completion of the
missing cell. In such a model we would expect that we would
observe, and be able to simulate, a role for factors similar to those
at work in the current model, including relative familiarity of the
correct relation and extent of cognitive control needed to allow a
relation common to different rows or columns of the matrix to
win out in competition with others.
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APPENDIX
TRAINING SET DESIGN
As mentioned in the Materials and Methods section we used cells
of knowledge. Each network’s environment consists of 8 cells of
knowledge. The 8 cells have the same basic structure (as shown in
Figure A1A and in the main text), but they are augmented with
additional propositions. The complete design is explained here.
The network’s world consists of 32 items and 8 relational proto-
types (i.e., types of relations). Among the 32 items, 16 appear in
the first slot of a relational proposition (8 of them act as A items
in propositions and 8 act as C items) and the other 16 are fillers
of the second slot (8 act as B and 8 act as D). These 32 items and
8 relations are used in such a way across 8 cells of knowledge in
the training set that will provide necessary frequency counterbal-
ancing. The cell, as shown in Figure A1B, is divided in two parts,
one which contains A:B propositions and one which contains C:D
propositions. The two types of propositions have no qualitative
differences. They are labeled differently because they serve differ-
ent roles in the analogy questions we created. In each of the two
parts, there are four propositions two of which have a frequency of
3, one with a frequency of 1 and one with a frequency of 5. In sum-
mary, a cell has four A:B propositions that have frequencies 3, 1,
3, and 5 and four C:D propositions that again have frequencies 3,
1, 3, and 5. The first A:B proposition is designated to be the source
part of the analogy question for that cell. The first C:D proposi-
tion is assumed to be the correct response and the other 3 C:D
propositions are put as incorrect responses in analogy questions
to generate various SFI-type problems.

Since, the first propositions in the two sets are the ones that
provide a correct analogy, they share the same relational proto-
type (but with different instances), while all others have different
relations. Analogy tests are obtained by taking the first propo-
sition in the A:B part and the four propositions in the C:D
part. The other A:B propositions exist for counterbalancing pur-
poses. Now we need to clarify how counterbalancing occurs.
Counterbalancing follows a simple rule. We will try to make all
As, Bs, Cs, Ds, and Rs to appear in all possible propositions-rows,
so that in total they will all have the same frequency.

Figure A1B shows the general format of a cell. All A:B and C:D
propositions in cell j use the same Aj and Cj. Thus, all A and
C items have the same frequency in the training set (frequency
of 12). Within each cell there is one main relation, and six addi-
tional ones. The main relation used in cell j is relation Rj. Except
for the first A:B proposition and the first C:D proposition that are
assigned relation Rj, all other propositions are assigned a sequence
of relations that starts from Rj+1 (R8 is followed by R1). This way
each relation appears in all possible row-propositions and pro-
vides necessary relational counterbalancing. For example relation
R1 would appear in the first and fourth proposition in cell 1, in
the second proposition in cell 8, in the third proposition in cell 7,
and so forth, and would not appear at all in cell 2. Finally, each
cell has a subset of the 8 B and the 8 D items. This subset is a
pseudo-random permutation of 4 integers from 1 to 8. These per-
mutations were constrained. One constraint is that the B (or D)
items in a single cell have all to be different. The item Bi cannot
appear twice in a cell. Also, each Bi (and Di) had to appear four
times in the entire training set (appear in four cells) appearing

FIGURE A1 | Model details. (A) Minimal cell design as described in
Materials and Methods. (B) Final design of a knowledge cell augmented
with propositions that serve counterbalancing purpose. Each cell has 8
propositions (one source, one correct target, three foils, and three
additional). All A, B, C, and D items are reused in various propositions in
various cells for counterbalancing frequencies. All A items have the same
frequency between them by being used in all first 4 propositions of a cell.
Similarly for C items in bottom 4 propositions. All relational prototypes
appear in all 8 rows as 8 different instances. A prototype appears in two
rows (source and target) in its respective cell and shift in other cells. Items
B and D appear in their respective 4 rows in different cells. We constrain
them so as to appear in different rows in different cells and not reappear
associated with the same A/C or R items. (C) Activation of two instances
(R21 and R22 )derived from the same prototype R2. Each 16 units are
dedicated to a relational prototype. For each instance we turn off 2
randomly chosen unique units.

in each cell in a different proposition-row. This way all B and D
items appear once and only once in all four different row types
through the training set. A final constraint is that if a B (and D)
and a specific relation R were associated in a given proposition,
they should not be associated in a different proposition elsewhere
in the training set. That is for controlling for the conditional prob-
ability of an item given another item. The number of possible B
and D permutation assignments gives us the freedom to create
different training sets and test the network in a number of ran-
dom training environments that obey the same principles, giving
us this way more reliable results.

RELATIONAL REPRESENTATIONS
We also need to clarify our assumptions for relational patterns
representations. As we said before relations in the training set
come from relational prototypes. For two different relations the
prototypes have no overlap at all on their set of active units. But
not all occurrences of a prototype are the same. Each relational
representation appears in relational instances instead of proto-
types. As described above, there are 8 instances of a prototype in
the training set. Instances have the same inactive units and have
high correlation of active units. An instance is obtained by turn-
ing off two specific units of the active units of the prototype. The
turned off units are necessarily different across instances. Each
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prototype has 16 units on, and two of them are turned off in each
instance. So, two distinct instances of a prototype have an over-
lap of 12 active units. Figure A1C shows examples of relational
prototypes and instances.

NETWORK PARAMETERS
The A and C pools of the network had 16 units (one for each A
and C item in the training set) and the B and D pools had 16 units
as well (one for each B and D item). The hidden pools had 110
units and the R pool had 128 units. As noted earlier patterns in the
A, B, C, and D pools were localist and in the R pool distributed.
Weights were initialized to have random values between −0.25
and 0.25. Activation at each time-step was computed by the
logistic function of the net input. We trained 5 networks for 350

epochs with the backpropagation through time algorithm. We
used 7 intervals and 4 ticks. For training, input was clamped
during the entire processing, while the target error was com-
puted for the last 2 intervals. Training consisted of all three
possible input combinations (A:_:B, A:R:_, and _:B:R). We used
a learning rate of 0.001 and weight decay of 0.000001. In each
training session noise was added in a relational instance so that
in expectation one active prototype unit would be turned off
in the target and one inactive would be turned on in the tar-
get. We used cross-entropy as an error measure. For testing we
clamped the A, B, C, patterns for the entire processing while
the D1 and D2 patterns were clamped only for 3 intervals. We
used the relative echo of the D1 and D2 units as a response
decision-criterion.
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