
GENERAL COMMENTARY
published: 22 November 2013

doi: 10.3389/fpsyg.2013.00876

Conjoint measurement of disorder prevalence, test
sensitivity, and test specificity: notes on Botella, Huang,
and Suero’s multinomial model
Edgar Erdfelder* and Morten Moshagen

Department of Psychology, University of Mannheim, Mannheim, Germany
*Correspondence: erdfelder@psychologie.uni-mannheim.de

Edited by:

Michel Regenwetter, University of Illinois at Urbana-Champiagn, USA

Reviewed by:

Juan Botella, Universidad Autónoma de Madrid, Spain
Xiangen Hu, The University of Memphis, USA

Keywords: multinomial modeling, validity, diagnostic accuracy, gold standard, imperfect reference

A commentary on

Multinomial tree models for assessing the
status of the reference in studies of the
accuracy of tools for binary classification
by Botella, J., Huang, H., and Suero,
M. (2013). Front. Psychol. 4:694. doi:
10.3389/fpsyg.2013.00694

Botella et al. (2013) proposed two use-
ful multinomial models for conjoint mea-
surement of disorder prevalence rates
in different populations (e.g., prevalence
rates of dementia) and both the sen-
sitivity and the specificity of the test
used to assess this disorder (e.g., the
Mini Mental State Examination, MMSE;
Folstein et al., 1975). Their first model
requires a perfect indicator of the disor-
der (i.e., a gold standard, GS), whereas
the second model provides for indica-
tors not perfectly correlated with the dis-
order (i.e., imperfect references, IR). In
line with Lazarsfeld’s (1950) latent-class
model, the only requirement of the lat-
ter model is local stochastic independence
of the IR and the test-based classifica-
tion, that is, stochastic independence of
the IR and the test result within subpopu-
lations of individuals with vs. without the
disorder.

The present comment addresses two
shortcomings of the IR model and sug-
gests ways to overcome them: (1) Lack
of global identifiability in general and
(2) lack of local identifiability when
prevalence rates are homogenous across
populations.

Problem (1). As acknowledged by
Botella et al. (2013), the IR model is not
globally identifiable. There are always

two sets of sensitivity and specificity
parameters for both the reference (SeR

and SpR, respectively) and the test (SeT

and SpT , respectively) that predict exactly
the same outcome probabilities and there-
fore cannot be distinguished on grounds
of model fit [see Botella et al. (2013),
Table 1]. Despite the lack of uniqueness in
parameter estimates, Botella et al. (2013)
recommended use of the unconstrained
IR model and to choose the set of param-
eter estimates that appears more plausible.
However, besides introducing an unnec-
essary degree of subjectivity, a model that
is consistent with parameter values incon-
gruent with common sense is obviously
too flexible and overly complex. For exam-
ple, Botella et al.’s IR model allows for
references and tests that are negatively
correlated with the disorder under inves-
tigation, that is, for tools that measure
the opposite of what they are supposed to
measure. This is clearly not reasonable. In
addition, their model lacks unique validity
measures for both the reference and the
test.

A simple way to remedy these prob-
lems is to constrain the sensitivity and
specificity parameters in accordance with
the two-high threshold model of detec-
tion (e.g., Snodgrass and Corwin, 1988;
Waubert de Puiseau et al., 2012). In this
refined model, the parameters of the IR
model are reparameterized as follows:

SeR = DR + (1 − DR) · BR (1)

SpR = DR + (1 − DR) · (1 − BR) (2)

The new parameters, DR and BR, denote
validity and bias measures, respectively,
for the IR [both in (0, 1)]. DR is the

probability that the IR detects the true
status (disorder present vs. absent), and
BR represents the disorder-present bias
(i.e., the probability of a positive diagno-
sis) given failure to detect the true sta-
tus. Accordingly, the sensitivity and speci-
ficity parameter estimates of the test, SeT

and SpT , are reparameterized as func-
tions of test validity and bias parame-
ters DT and BT , respectively. Importantly,
these reparameterizations jointly imply
the order constraints SeR ≥ (1 − SpR) and
SeT ≥ (1 − SpT)1 so that a positive diag-
nosis cannot be less likely given presence
than given absence of the disorder. In other
words, whereas the dimensionality of the
parameter space remains unchanged (as
the Se and Sp parameters are replaced by
D and B parameters), the refined model
restricts the admissible data space. As a
consequence, in contrast to Botella et al.’s
IR model, the refined model excludes neg-
ative correlations of the disorder with both
the IR and the test. Moreover, introducing
these order constraints renders the model
globally identifiable (subject to the auxil-
iary condition of unequal prevalence rates,
see below), thereby removing any ambigu-
ity in interpretation.

As summarized in Table 1, fitting the
refined model to the data sets analyzed by
Botella et al. (2013, Table 2) results in the
same goodness-of-fit statistics as observed
for the original IR model2. This shows
that the order constraints are perfectly

1 This follows from (1 − SpR) = (1 − DR) · BR as
implied by Equation (2) and, correspondingly, (1 −
SpT ) = (1 − DT ) · BT .
2 The model specification and data files used to derive
the results of Table 1 with multiTree (Moshagen, 2010)
can be requested from the first author.
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Table 1 | Maximum likelihood parameter estimates, goodness-of-fit (G2), cFIA, and Minimum Description Length (MDL) measures for the

original and the refined IR model applied to the AUDIT and the MMSE data of Botella et al. (2013, Table 2).

Statistic/Estimate AUDIT data MMSE data

Original model Refined model Original model Refined model

SeR 0.996 / 0.000 (0.996) 0.876 / 0.000 (0.876)
SpR 1.000 / 0.004 (1.000) 1.000 / 0.124 (1.000)
DR – 1.000 – 0.876
BR – – – 0.000
SeT 0.637 / 0.040 (0.637) 0.864 / 0.128 (0.864)
SpT 0.960 / 0.363 (0.960) 0.872 / 0.136 (0.872)
DT – 0.600 – 0.736
BT – 0.098 – 0.486
G2(4) 13.99 13.99 12.14 12.14
cFIA 20.1 18.7 23.0 21.6
MDL 577.0 575.6 1493.6 1492.2

Parameter estimates in parentheses are derived from the corresponding validity and bias estimates using Equations (1) and (2). The two estimates for the original

model correspond to the two maxima of the likelihood function. Note that the BR parameter for the AUDIT data is not identifiable because DR approaches the

boundary of the parameter space.

in line with the data3. However, as a
consequence of exclusion of negative cor-
relations, model flexibility as measured
by cFIA is reduced for the refined model,
resulting in better Minimum Description
Length (MDL) indices of model fit than
observed for the original IR model. An
additional advantage of the refined model
is that it provides unique validity and bias
measures for both the reference and the
test. For the MMSE data, for example,
the test validity (0.736) is almost as large
as the validity of the reference (0.876),
although the difference in validities is sta-
tistically significant [�G2(1) = 8.60, p =
0.003]. Most importantly, unlike the origi-
nal IR model, the refined model is globally
identifiable so that there is only a sin-
gle set of validity and bias estimates (and
the corresponding sensitivity and speci-
ficity estimates) for both measurement
tools involved (see Table 1).

Problem (2). To apply their models
in situations where classification data are
available from a single large study only,
Botella et al. (2013) suggested a random
split of this sample in k segments and to
treat these segments as if they were drawn
from k different populations. However,

3 Although not required for the present data, it is
also possible to conduct a formal �G2 difference test
of the refined model against the original IR model.
However, because both models include the same num-
ber of parameters and differ by a parametric order
constraint only, the asymptotic distribution under
the null hypothesis is a mixture of χ2 distributions
(Iverson, 2006) rather than a standard χ2 distribution.
The parametric bootstrap as implemented in multi-
Tree (Moshagen, 2010) can be used to approximate
this distribution.

apart from sampling error, random splits
necessarily result in the same prevalence
rate in each of the random segments so
that the same population classification
matrix must hold for each data set. In
effect, there are only 3 instead of 3k inde-
pendent category probabilities available,
implying that both the standard and the
refined IR model (with k + 4 parameters
each) cannot be identifiable. Hence, ran-
dom splits of a large sample will be of no
help. A possible remedy is to split the sam-
ple based on a third variable that has been
observed in addition to the IR and the test
result (say, gender, age group, profession,
or religion), provided the assumption can
be made that the prevalence rates, but
not the sensitivity and specificity of the
test and the reference, differ between the
corresponding subpopulations. Unequal
prevalences in at least two subpopulations
suffice to ensure local identifiability. Thus,
systematic splits of a single large sample
may remedy the identifiability problem
whereas random splits will not.
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