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Object detection and identification are fundamental to human vision, and there is
mounting evidence that objects guide the allocation of visual attention. However, the role
of objects in tasks involving multiple modalities is less clear. To address this question, we
investigate object naming, a task in which participants have to verbally identify objects
they see in photorealistic scenes. We report an eye-tracking study that investigates which
features (attentional, visual, and linguistic) influence object naming. We find that the
amount of visual attention directed toward an object, its position and saliency, along with
linguistic factors such as word frequency, animacy, and semantic proximity, significantly
influence whether the object will be named or not. We then ask how features from
different modalities are combined during naming, and find significant interactions between
saliency and position, saliency and linguistic features, and attention and position. We
conclude that when the cognitive system performs tasks such as object naming, it uses
input from one modality to constraint or enhance the processing of other modalities, rather
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than processing each input modality independently.
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1. INTRODUCTION
Over the last decade, the use of natural scenes (photographs) as
stimuli in vision science experiments has increased. Much of this
research has concentrated on explaining the sequences of fixations
and saccades made during visual tasks such as search, memoriza-
tion, and free-viewing. The concept of saliency maps (Itti et al.,
1998) has been an influential framework for tackling this problem
and a number of different models have been proposed over the
years (Toet, 2011). However, the extent to which low-level saliency
can predict fixations has been questioned, and recently there has
been a trend toward explaining the allocation of visual attention
in terms of the objects present within the scene (Einhiuser et al.,
2008b; Elazary and Itti, 2008; Nuthmann and Henderson, 2010).

If the allocation of visual attention is driven by objects then this
raises the question of, in a given scene, which objects are promi-
nent and thus capture attention? For example, the two images in
Figure 1 both contain many objects, some of which intuitively are
more important given the context of the scene (CABINET, CHAIR,
BED and GEESE, BENCH, MEN, WOMAN, respectively) than oth-
ers (e.g., RUG, PLANT and LEAVES, BOTTLE, FENCE). Spain and
Perona (2008, 2010) discuss this problem based on the concept
of object importance, which they define as the probability of an
observer mentioning the object during an object naming study.
Although Spain and Perona’s interests lay in machine vision,
their naming task is also of interest to cognitive scientists: while
eye-trackers can accurately record where observers look during
scene-viewing, methods of self-report (free recall) such as object
naming give us an insight into what observers perceived.

Object naming not only gives us a handle on what makes an
object prominent (or important) in a given scene. It also affords

us a way of investigating the role of objects in multimodal cogni-
tive processing. In order to carry out a naming task, participants
not only need to draw on visual features (such as position and
saliency), but also on linguistic features: an object can have mul-
tiple potential names, these can vary in frequency, they can be
ambiguous, and they relate semantically to other objects in the
scene. By studying how attention is allocated during a multimodal
task, we can therefore shed light on how the cognitive system
integrates data from different modalities. It is conceivable that
this integration is simply additive: when deciding which objects
to name, the cognitive system independently computes promi-
nence values in all available modalities (e.g., visual and linguistic),
and then combines them into an overall prominence score. An
alternative hypothesis is that the modalities influence each other,
i.e., data from one modality is used to constrain or enhance the
processing of other modalities. The purpose of this paper is to
determine whether object naming can provide evidence for this
crossmodal guidance hypothesis.

1.1. RELATED WORK

There is increasing evidence that it is objects, rather than low-
level image features, that play the central role in the allocation
of overt visual attention. Einhiuser et al. (2008b) carried out a
series of experiments to explore the extent to which observers
fixate interesting objects rather than maxima of saliency maps.
Eight observers were shown a series of images which they were
asked either to rate in terms of artistic interestingness or search
for a specified target. After each trial they were instructed to name
(by typing on a keyboard) objects that had been present in the
scene. The objects named by observers were then annotated by
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FIGURE 1 | Two example scenes with annotations.

the authors and object maps, O, were then constructed by setting
O(x, y) to be the number of objects under pixel (x, y), weighted by
the number of observers who named it. These proved to outper-
form Itti and Koch’s saliency model (using the default parameters,
and with no central bias) in the prediction of fixation locations:
AUC = 65.1% for object maps compared to 57.8% for low-level
saliency. They then proceeded to investigate object saliency scores,
with the saliency of an object defined as the sum of all saliency
values within its boundary, divided by the sum of the saliency
scores over the whole image. They were able to show that there are
strong links between object saliency and object recall, especially
for objects which all of their subjects mentioned. Nuthmann and
Henderson (2010) came to a similar conclusion based on an anal-
ysis of fixation locations made during a visual search experiment.
They found that observers exhibited a preference for fixating the
center of objects as opposed to the center of salient proto-objects
(Walther and Koch, 2006). [Although, also see Leek et al. (2012)
for evidence that observers show a preference for fixating areas
of high curvature within objects.] The conclusion from these
two studies is that low-level saliency appears to guide attention
indirectly, through the objects present within a scene.

The correlation between the maxima of low-level saliency
maps and objects in a scene has been explored by Elazary and
Itti (2008). Using a collection of nearly 25,000 images (from the
LabelMe database) they showed that the maxima of the saliency
maps coincided with an annotated object in 43% of the images,
considerably higher than chance (21%). The authors suggest
that this is an indication that the selection of interesting objects
within a scene appears to be influenced by low-level image fea-
tures as well as higher-level cognitive processes. A complementary
study Masciocchi et al. (2009) collected interest points from a
large number of observers (over one thousand) using an online
web interface and found high levels of observer agreement and
significant effects of low-level saliency.

Building on these studies, Spain and Perona (2008, 2010) con-
sidered the problem of measuring the prominence of an object
within a scene. They carried out an object naming study on

Amazon Mechanical Turk in which observers were asked to name
(by typing) ten objects that were present in the scene. The con-
cept of object importance was then defined as the probability
that a given object would be named. A set of nearly fifty features
were extracted for each object, the majority of which reflected
the object’s position or conspicuity (Walther and Koch, 2006).
Such features were then used to predict object importance using a
linear regression model, achieving good performance in discrim-
inating objects with high naming frequency from those that were
rarely named.

Going beyond the low-level object properties considered by
Spain and Perona, higher-level contextual properties of a scene
and semantic information of individual objects are likely to have
an influence on the perceived prominence of different objects
within a scene. Indeed, such factors have been shown to affect
fixation placement in purely visual tasks, as well as during tasks
which involve the concurrent processing of visual and linguistic
information. In visual search, Wang et al. (2010) found that the
frequency and predictability effects on fixation duration found
in the reading literature also occur in scene viewing, albeit only
for small objects in a scene. This work was expanded to explore
semantic guidance: observers exhibit a preference for making sac-
cades to objects that are semantically similar to the object they
are currently inspecting, and during visual search, attention is
increasingly directed toward objects that are semantically similar
to the target object (Hwang et al., 2011). Semantic information
has been shown to influence attention within 150 ms of display
onset (Gordon, 2004).

The object naming paradigm is also used by psycholinguists
who study how lexical items are retrieved from memory and
verbalized. Research has shown that several types of constraints,
linguistic and non-linguistic, mediate the selection of lexical items
and influence the associated gaze responses. On the one hand, lin-
guistic information such as lexical frequency (Meyer et al., 1998;
Almeida et al., 2007) or word length (Zelinsky and Murphy, 2000)
modulates the associated gaze duration (less frequent or longer
words correlate with longer gaze durations). On the other hand,
the linguistic act of naming is constrained by the sentential con-
text in which it is situated (Griffin and Bock, 1998), as well as
by the semantics of surrounding objects (Damian et al., 2001;
Hocking et al., 2009).

1.2. THE PRESENT STUDY

In the present study, we investigate the factors that influence
object naming behavior. More specifically, we are interested in
how information from different modalities is used by the cogni-
tive system to determine which objects should be named. Object
naming involves visual, linguistic, and attentional information; it
is conceivable that these different modalities are processed inde-
pendently by the cognitive system. Or, alternatively, information
from one modality could guide the processing of other modalities
(crossmodal guidance hypothesis).

To evaluate this hypothesis, the present study includes mea-
sures of visual attention and linguistic properties along with
low-level image features such as area and saliency [unlike prior
studies, e.g., (Spain and Perona, 2010)]. Furthermore, we use
a fixed display time for stimulus presentation (5000 ms), and
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participants are instructed to only start naming objects once the
stimuli has been removed from the screen. This ensures that visual
attention is independent of language production (during pre-
view), and language production is independent of visual attention
(during speaking, when the scene is no longer visible). This set-
up avoids biasing the naming task in favor of our hypothesis: if
participants have to view a scene and speak at the same time, then
visual attention and language processing are closely time-locked
(e.g., Tanenhaus et al., 1995; Griffin and Bock, 2000). This time-
locking is likely to artificially enhance the interaction of visual and
linguistic features that we need to demonstrate as evidence for the
crossmodal guidance hypothesis.

2. METHODS

2.1. STIMULI

We selected 100 photographs as stimuli for this experiment. Of
these, 70 were taken from the SUN09 dataset (Choi et al., 2010)
and 30 from Flickr, in order to achieve a good range of scene
types. Images were selected so that they contained a large num-
ber of objects, rather than being photographs focused on a single,
central object. There was an approximately equal split between
images that contained people and those that did not. There were
also four practice trials at the start of the experiment. See Table 1
for an overview of the characteristics of the set of images used.

2.2. PARTICIPANTS AND PROCEDURE

Twenty-four participants were paid £6 in return for carry-
ing out the experiment. Informed consent was obtained from
each participant before the experiment started and the task was
explained with written instructions. All participants were native
English speakers with normal (or corrected-to-normal) vision.
Participants were not screened for acuity. Before each trial was
initiated, participants were required to fixate on a central fix-
ation cross. The image was then displayed for 5000. After this
period, the image was removed from display and participants
were prompted with a beep to name as many objects from the
scene as they could remember. They were encouraged to name
at least five objects, and no specific directions were given as to
what should or should not be considered an object. Participant
responses were spoken; they were digitally recorded and tran-
scribed after the experiment. Naming was self-timed and par-
ticipants proceeded to the next trial by pushing a button on a

Table 1| Overview of scene types represented.

People present Yes No Scene type Instances
Inside 65 21 44 Bathroom 5
Outside 35 28 7 Bedroom 10
49 51 Kitchen 15

Dining room 4

Living room 6

Other inside 26

Street 17

Park

Garden 3

Other outside 7

response pad. The experiment lasted between 30 min and 1h.
Around half the trials from one participant were lost due to a
computer error.

An Eyelink II head-mounted eye-tracker was used to moni-
tor participants’ eye-movements with a sampling rate of 500 Hz.
Scenes were presented on a 21” Multiscan monitor at a resolution
of 800 x 600 pixels (approximately 31° x 25°, with 1° & 25 pix-
els). Viewing was binocular although only the dominant eye was
tracked. A chin rest was not used as this would have interfered
with the participants’ ability to produce verbal responses. Viewing
distance was approximately 50 cm from the screen. Calibration
was carried out at the beginning of the session and repeated
again approximately halfway through the session. Some partici-
pants required more than two calibrations. Drift correction was
performed between trials. The default settings for the Eyelink II
fixation filter were used.

2.3. OBJECTS, LABELS, AND ANNOTATIONS

Rather than coming up with our own definition of what should be
considered an object, we used the results from the naming exper-
iment to generate a list of object labels for each scene. Adjectives
were removed from the participants’ responses (so “red car” and
“white car” were both mapped to “car”) and synonyms were col-
lapsed. Named objects that were not present in the scene were
marked as mistakes, although observers were given the benefit of
the doubt if there was a highly related object present in the scene.
For example, in an image containing both a table and a desk, these
labels were preserved as two separate categories. However, in an
image that only contained a desk, any mentions of “table” were
mapped onto “desk,” rather than marked as a mistake.

In general, mentions of “shirt,” “shoes,” etc. were all mapped
onto “clothing” and excluded from further analysis . This
accounted for 0.79% of verbal responses. Similarly, references to
large regions such as “sky,” “grass,” “ground,” “wall,” “floor,” and
reports of the scene type were mapped to “background” (4.69%
of responses).

The post-processing reduced the number of unique labels
from 788 to 474. There were between 7 and 33 (mean 14.2) unique
labels per image. Each images was then annotated with polygons
for each instance of a named object, based on the list of object
labels for the image in question. This resulted in a total of 2858
annotated polygons, with a median of 26 polygons per image.
Examples are shown in Figure 1. Based on this annotation, we can
now compute a mapping from the word mentions to the anno-
tated polygons in each image. The full mapping will be released
with the rest of the dataset.

2.4. FEATURES

In this section, definitions of all features used in the analysis are
given. Features computed from activation maps (such as atten-
tional landscapes and saliency maps) have to be defined for
categories of objects. We do this by first assigning scores to the
objects within a scene by aggregating the map values (by either
taking the mean or the maximum) over the pixels (x, y) that fall

Exceptions were made in cases in which several observers all named the same
item of clothing.
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within the object’s boundary. We then aggregate over all objects
that belong to a given label, again by either taking the mean or
the maximum. For example:

) 1
B8 2o v
max f&p @)
O;e i

A n
T ypeo

for objects O; belonging to set A and pixels (x, ) belonging to
object Oj, where 7; is the number of pixels belonging to O;.

2.4.1. Attentional features

Mapping fixations to polygons in cluttered scenes is a non-trivial
problem due to occlusion and nesting. We carried out this map-
ping by assigning fixations (x, y) to the polygon with the smallest
area that contained it. Fixations were then mapped to labels by
taking the union of all fixations over the polygons associated with
that label.

A downside of this area-of-interest based method is that fix-
ations which land close to, but not within, an object’s bound-
ary are not considered. A solution to this is to use attentional
landscapes [also called hotspot maps, (Holmgvist et al., 2011)].
These typically involve placing Gaussian kernels over each fixa-
tion, and weighting them by fixation duration. The bandwidth
of the Gaussian kernels are generally set to 1° of visual angle,
to approximate foveal vision. However, these methods appear to
be under-researched and therefore, we will evaluate attentional
landscapes constructed using a range of bandwidths, and com-
pare whether weighting the Gaussian kernels by fixation duration
provides any benefit in the predictive power of such maps.

We will also experiment with different ways of extracting a
score from attentional landscapes for given object. Each object
corresponds to a binary mask, giving us a subset of pixels in an
attentional landscape. We will compare using the mean, maxi-
mum, and sum of all pixels corresponding to an object. Similarly,
a mentioned label can correspond to multiple objects within an
image. (For example, a participant mentions “car” when there are
three cars present in the scene.) Therefore, we will also consider
defining attentional scores over labels as the mean, maximum or
sum of the attentional scores over the objects that are represented
by that label.

2.4.2. Area and positional features

Area is perhaps the most straightforward feature: we simply take
the log of the number of pixels belonging to the largest object
associated with a given label. As visual attention is biased toward
the center of an image (Tatler, 2007), this is likely to also have a
strong influence on which objects are named. We are not aware
of any previous work investigating which of the many different
distance metrics give the best account for this central bias, and
there are several different ways to define the distance from an
object to the center of the screen. We consider two of them: dy,
gives the distance from the center of the image to the closest
point belonging to the object, while d. measures distance rela-
tive to the object’s centroid. These two metrics behave slightly

differently as a large object could contain the center of the image
within its boundary, but still have a relatively large distance to its
centroid.

2.4.3. Object saliency and clutter

Features based on saliency are extracted in a similar way to
the attentional landscape scores. We used two different saliency
models: the saliency toolbox (Walther and Koch, 2006) and the
low-level saliency component of the contextual guidance model
(Torralba et al., 2006). Recent work by Henderson et al. (2009);
Asher et al. (2013) has also shown that visual clutter (Rosenholtz
et al., 2007) can be an effective indicator of the difficulty of find-
ing a given target in a natural scene, therefore we included feature
congestion clutter scores along with measures of visual saliency.

2.4.4. Linguistic features

The lexical frequency of each label was obtained from the CELEX-
2 database (Baayen et al., 1996). If a lexical item was not found
in the database, we used Wordnet (Miller, 1995) to find the fre-
quency of the closest synonym. In a total list of 474 unique labels,
there were also 61 multi-word expressions (e.g., “dish-rack” and
“cash machine”), which were not found in the database. For those
cases, we took the mean frequency of its constituent words?

The semantic distance between labels was calculated using
Latent Semantic Analysis [LSA, (Landauer et al., 1998)]; as pro-
posed by Wang et al. (2010). LSA is a widely used computational
model of word meaning which measures the similarity between
words based on the co-occurrence of context words within the
same document. Intuitively, two words are semantically similar if
they occur in similar contexts. LSA represents words as vectors
of co-occurrence counts, and semantic similarity is quantified
as vector distance. We built our LSA model using the British
National Corpus, which contains 100 million word of text and
speech (Burnard, 1995). We computed an LSA vector for each
label; and the similarity between labels was measured using cosine
distance.

2.5. ANALYSIS

We primarily use two techniques to analyze the behavior of the
features discussed above. Conditional probabilities are computed
from the empirical data to show what effect individual features
have on the probability of an object being named. Binomial dis-
tributions are fitted to the data to give confidence intervals. In
order to assess the predictive power of different features, we use
10-fold cross validation, where a simple logistic regression model
is trained on 90% of the data, and then tested in the remaining
10%; this process is repeated 10 times so that each fold functions
as the test data exactly one. We compute the mean area under
curve (AUC) to measure how powerful a given set of features are
in predicting which objects will be named and fixated. We use a ¢-
test to perform comparison between AUC of features representing

2We double-checked that the mean [(a + b)/2] was an adequate approxima-
tion for compound frequency by computing also the product (a - b), as well
as the minimum [min(a, b)] observed between the frequencies of its compos-
ing words. We found that the mean, minimum, and product frequencies are
highly correlated (Pearson r = 0.95; p < 0.01) across all comparison.
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the same information, e.g., distance to the center from centroid,
or from closest point.

In the final part of the Results section, we investigate the
crossmodal interaction of different features in predicting object
naming. To achieve this, we first fit a different linear models for
each family of related features (position, saliency, and linguistic
features), resulting in the following set of linear equations:

Fy = Bp110g(A) + Bpadm + Bpsdc (3)
F, = Bgsalr + Bpsalix + Bgclutter (4)
F; = ppywordlength + Bpanimacy + Blexfreq + Puds (5)

For the position model F,, the predictors used are the loga-
rithm of the object area, log(A), and both measures of distance
from the center: closest point, d,,, and centroid, d.. For the
saliency model F;, we use both measures of saliency obtained
using Torralba et al. (2006), salt, and Walther and Koch (2006),
salik, together with visual clutter, clutter calculated using the
Matlab toolbox developed by Rosenholtz et al. (2007). For the lin-
guistic model Fj, the predictors used are the number of characters
of the label, wordlength, whether the object named is animate
or inanimate, animacy, the lexical frequency of the label word
in the CELEX-2 database (Baayen et al., 1996), lexfreq, and its
LSA distance, d;. All predictors are normalized to range between
0and 1.

Equations (3)—(5) each predict naming given a subset of the
complete feature set. We therefore obtain a unique composite fea-
ture for each family of features (position, saliency, and linguistic)
by computing the linear combination of the individual features.
In particular, we multiply each predictor by its coefficient, and
add the results to obtain the combined predictor [e.g., the lin-
ear combination of the position features is the expression given
in Equation (3), where Bp1, Bp2, and Bp3 are the coefficients of
the predictors]. Note that we do not have an equation for atten-
tion, as we use only the best predictor observed in the analysis of
attentional landscape, see section 3.1 below.

We examine crossmodal interaction, i.e., the interaction
between these composite features, using linear mixed effects mod-
eling (LME) as implemented by the R package Ime4 (e.g., Baayen
et al. 2008). In LME, the dependent measure is modeled as a
linear function of different predictors (fixed effects), and the vari-
ance implicit in the multilevel structure of the data is accounted
for based on the random variables of the design (Participants
and Scenes). Since we want to infer the significant interactions
directly from the data, i.e., we do not want to impose an a pri-
ori best model to the data, we perform a step-wise, forward,
best-path model selection. To perform model selection, we com-
pare nested models using a log-likelihood ¥ 2-test and retain the
model that returns the best statistical fit. We start with an empty
model, and build its random structure first. Then, we include the
fixed effects that are the experimental variables of interest (e.g.,
Saliency), and evaluate whether including random slopes would
improve the fit. Each term (fixed or random) is included accord-
ing to the impact on the log-likelihood, i.e., the term that gives
the best improvement goes first. We use a conservative alpha of
p < 0.01 as the threshold value to include or reject the term. All

factors are centered to reduce collinearity. The best-path model
selection procedures returns a level of Type-1 error comparable
to models with maximal random effects structure (Barr et al.,
2013).

Our dependent measure for the LME is a binary variable indi-
cating whether something is mentioned (1) or not (0); thus,
we use the logit link function to transform our observations to
a continuous range. Therefore, the coefficients § of the model
are on a logit scale, but they can be transformed back into
probabilities by exponentiating the coefficients (if the reader is
interested in probabilities). The predictors evaluated are the com-
posite features given by Equations (3)—(5): Saliency, Position and
Linguistics, together with best feature obtained from the atten-
tional landscape analysis (Attention), which includes fixation
duration.

In the Results section, we report and discuss the LME model
coefficients of the best fitting model. The tables therefore only list
those predictors that were retained in the best model. The pre-
dictors in the table are ordered in the inclusion order obtained
through model selection. Moreover, as we are interested in com-
paring the relative importance of features, we also report and
discuss standardized Bs, i.e., coefficients that have been normal-
ized so that they are all on the same scale and therefore their size
can be compared directly.

In Appendix, we report a correlation matrix (Spearman’s p)
across the measures we used for all features to detect possible co-
linearities, especially when we have multiple measure for the same
feature (e.g., different saliency measures). This analysis shows
that there are only four cases in which the correlation is higher
than the level of 0.4 which is often regarded as critical for avoid-
ing colinearity. The highest overall correlation is 0.59, between
minCentroid and minPixels.

While it is important to check for colinearity in this way, we
also need to emphasize that all regression models presented in this
study are simple linear models in which the dependent variable
(e.g., naming) predicted by a single predictor (e.g., mean seman-
tic similarity). Moreover, the linear-mixed effect model we use
to test for cross-modal interactions utilizes predictors which are
linear combinations of measures within the same family of fea-
tures [e.g., clutter, saliency (WK), saliency (T)]. Thus, no multiple
(co-linear) predictors of the modality are concurrently present in
the mixed effects model. Colinearity between predictors across
modalities in the mixed model is another concern. Table7
tabulates the relevant correlations; again, these coefficients are
below the threshold of 0.4, except for two cases: Position and
Attention (0.51) and Saliency and Position (0.48). This indicates
that the colinearity is not a major concern in the mixed effects
model.

3. RESULTS

Participants made an average of 14 fixations during the 5 s display
duration, and the mean number of mentioned labels per image
was 5.2 (SD = 0.9). See Table 2 for the corresponding propor-
tions of fixated and named objects. Overall, accuracy was high:
only 3.65% of responses mistakenly referred to an object that
was not present in the image. These mistakes were removed from
subsequent analysis.
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3.1. NAMING AND ATTENTION

In this section we explore the extent to which the objects named
by a participant can be predicted from their eye-movement
behavior. We first look at whether fixated objects are more likely
to be named than non-fixated objects (see Table 2 and Figure 2A.
This is indeed the case. However, this is not the full story, as
participants only go on to name half of objects that they fix-
ated and a sizable proportion of non-fixated objects are named.
Sustained attention on an object, in terms of the number of fix-
ations and total fixation duration increases the likelihood that it
will be named Figure 2B, but even here, P(named|total fixation
duration = x) does not increase past 0.8. Both total fixation dura-
tion and the number of fixations have similar predictive power
(Table 3).

We now look at whether the timings of fixations to an object
can be used to help predict which objects will be mentioned.
Specifically, we use the time to initial fixation and time since final
fixation (time elapsed between the final fixation on an object and
the offset of the image), see Figures 2C,D. Both of these measures
appear to have a comparatively small effect on the conditional
probability of naming a fixated object. However, we can see that
objects which are not fixated within the first 3 s of the image dis-
play time are less likely to be named. Similarly, objects which are
only fixated within the first second, and not re-fixated later in the
trial, are also less likely to be named. Taken individually, these
features score AUCs of 0.544 and 0.535, respectively (predicting
which of the fixated objects will then be named). A downside

in attentional landscapes which typically only include fixation
location and duration information.

A weakness of the AOI analysis presented above is that we
get no information for objects that are not fixated. We can see
clearly from Table 2 that the lack of a fixation does not mean that
an object will not be named: participants could potentially use
para-foveal and peripheral vision to detect and identify objects
for naming. We can extract features to represent this from atten-
tional landscapes and give each object a score based on the density
and durations of the fixations that land in its proximity.

From Figure 3 we see that the predictive power of the atten-
tional landscape scores varies with o, the bandwidth of the
Gaussian kernel. Furthermore, attentional landscapes that weight
fixations by their duration appear to perform better than, or at
least as well as, those that do not. Defining attentional scores
for objects as the maximum value given to the pixels within
their boundary appears to perform better than using the mean,
and the best performance is achieved using a relatively small
kernel bandwidth, o ~ 0.16°. Therefore, we will use this func-
tion to provide measures of the amount of visual attention
each category of object receives (max-max, weighted by fixation
duration). While this method outperforms the simple AOI anal-
yses presented in Figure2 (equivalent to ¢ = 0° in Figure 3),

Table 3 | AUC scores for the ability to predict which objects a
participant will name based on logistic models using attentional

of these latency-based features is that, unlike number of fixations measures.
and total duration, there is no obvious way to incorporate them
Feature AUC
Table 2 | Mean proportions of fixated and named objects. Number of fixations 0.708
Total fixation duration 0.706
Fixated Not fixated Total
Time to first fixation 0.544
Mentioned 0.20 0.10 0.30 Time since last fixation 0.535
Not mentioned 0.20 0.50 0.70
Attentional landscape with fixation duration 0.726
Total 0.40 0.60 Unweighted attentional landscape 0.708
A B 1 C 1 D
0.8 5 0.8 § 0.8
5 06 g g 06 8 06 ¢
£ = R S SUE S 80835600 291344
H B g % 2 AR S eI Lo b4
E E é 0.4 L{> Z 04 4’
B < %ﬂ} % T
02 T 02 \,gl 02

0
0 1000 2000

total fixation duration

fixated 3000

not fixated

FIGURE 2 | Conditional probabilities of naming an object given
attentional features. In all cases, the dotted line shows the baseline
probability of naming an object, independent of the x-axis. (A)
P(named|fixated). We can clearly see that if a participant fixates
within an object’s area of interest, then they are much more likely to

0 0
0 1000 2000 3000 4000 5000 0
time to first fixation

1000 2000 3000 4000 5000
time since last fixation

name the object. (B) P(named|fixated = T and total fixation

duration = x). (C) P(named|fixated = T and time to first fixation = x).
(D) P(named]|fixated T and time since last fixation = 5000 — x).
Note: we have transformed the x-axis so the trend can easily be
compared with (C).
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this only holds for relatively small values of o. Using larger
values, such as 1° which is more common in the literature,
appears to offer no improvement on simply using fotal fixation
duration.

0.74

mean-mean
mean-max
max-mean

0.72 max—-max

0.7

0.68

mean AUC

0.66

0.64

FIGURE 3 | The ability of attentional landscape scores to predict the
objects an individual will name for a range of ¢ values (expressed in
degrees of visual angle). Scores were obtained by first taking the
maximum or mean of pixels within objects, and then aggregating over
objects belonging to a class, again using the maximum or mean. In the
legend above, mean-max means object scores were calculated as the
maximum saliency over pixels within the object boundary, while label

3.2. NAMING AND OBJECT POSITION, SALIENCY AND LINGUISTIC
FACTORS

In the previous section we explored the role of attention on select-
ing objects to be named. We now consider the other features
outlined in Section 2.4 and explore their role in predicting both
the allocation of visual attention and their naming likelihood. In
order to allow for meaningful comparisons between these fea-
tures and the attentional landscape scores discussed above, we
will extract features from saliency and clutter maps using the
same definition as above: features for object categories (labels)
are defined to be the maximum of the feature values over the
associated objects in a given scene.

3.2.1. Size and position

We start by examining the role of area and position
(Figures 4A,B). While both of these features have a consid-
erable effect on attracting fixations and selection for naming
(Table 4), the AUC scores for predicting fixation locations are
greater than those predicting naming probability (according
to a f-test on the ten AUC results from the individual models
generated during tenfold cross-validation). In terms of distance
metrics, measuring the distances from the closest point on the
object outperforms measuring from the centroid [ty = 19.86,
p < 0.001].

Table 4 | AUC scores for object area and distance from center.

scores were defined as the mean over all objects associated with the Feature Fixation Naming
object. Solid lines: attention landscape with weighting by fixation duration.
Dashed lines: no weighting by fixation duration. Error bars show the Log(area) 0.689 0.653
sta.nda.rd error for the AUC scores obtained from the 10-fold cross Mincentroid 0.621 0.595
validation. .
MinPixels 0.691 0.622
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FIGURE 4 | The effect of individual features on the likelihood of naming an object. Participants are more likely to name (A) large, (B) central items. (C,D)
Salient items and (E) those with a high clutter score are also more likely to be named. These features have a similar effect on fixation locations.
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3.2.2. Saliency and clutter

The relationship between saliency and the likelihood of an object
being named is shown in Figures 4C-E and the corresponding
AUC scores are shown in Table 5. Saliency (WK) significantly
outperforms saliency (T), sy = 8.99, p < 0.001, and clutter,
tas) = 14.56, p < 0.001, on predicting whether an object is going
to be fixated, as well as, whether an object would be mentioned:
tagy = 8.52,p < 0.001 and 15y = 19.05, p < 0.001, respectively.
Even though the three measures of saliency are weakly correlated
(p = 0.4), refer to Table A1, they show different predictive power.
This result corroborates recent work by Borji et al. (2012), which
demonstrates how the predictive power saliency models changes
across different experimental conditions.

3.2.3. Linguistic features

Participants were far more likely to fixate and name animate
objects (people) than inanimate objects (see Figure 5). There are
also weak effects of word length on object naming, and a stronger
effect of lexical frequency (Table 6). We also find a small effect of
mean semantic proximity: participants are more likely to name
objects that are semantically related to the other objects in the
scene.

3.3. CROSSMODAL INTERACTION

In our final analysis, we investigate how the four composite
features proposed in this paper (Attention, Position, Saliency,
and Linguistics, see section 2.5) predict object naming. We are
particularly interested in interactions between these features, as

they shed light on how the cognitive system integrates informa-
tion from multiple modalities in a task such as object naming.

We start off by considering whether the four composite fea-
tures are correlated. Table 7 presents correlation coefficients for
all pairs of features. There is a substantial correlation between
Position and Attention, and between Saliency and Attention. This
confirms that objects that are prominent either in terms of posi-
tion or in terms of saliency are attended more; furthermore,
the two types of prominence (Position and Saliency) are cor-
related with each other. Importantly, however, there is only a
weak correlation between Linguistics and any of the other fea-
tures (r < 0.18): objects that are linguistically important are not
typically prominent in terms of saliency or position, or attended
frequently.

Table 6 | AUC scores for linguistic features.

Feature Fixation Naming
Word length 0.498 0.551
Lexical frequency 0.546 0.604
Mean semantic proximity 0.514 0.530
Animacy 0.521 0.527

Table 7 | Pairwise correlations (Pearson'’s r) between the composite
feature used in the LME analysis.

Table 5 | AUC scores for saliency and clutter measures. Attention Position Saliency
Feature Fixation Naming  pgsition 051
Saliency 0.37 0.48
Clutter 0.610 0.585 . ..
Linguistics 0.15 0.17 0.18
Saliency (T) 0.626 0.615
Saliency (WK) 0.652 0.638 All coefficients are statistically significant (p < 0.001)
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FIGURE 5 | (A) Participants are more likely to name animate objects. The
result here potentially underestimates the true effect as in some images,
MAN, WOMAN, and PERSON all exist as separate labels. Some participants

letters in label mean semantic proximity

mention either or both of the first two labels, while some simply say
“people.” (B,C) Show the effect of lexical frequency and word length on
P(named|x), while (D) shows the mean semantic proximity.
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As a next step, we fitted a mixed effects model involving
the same four composite features as independent variables, and
Mention (named or not) as the dependent variable. The optimal
model was computed as explained in section 2.5. Table 8 reports
the coefficients of those predictors that remained after model
selection. We find main effects of Attention, Position, Saliency,
and Linguistics. Thus, an object is more likely to be named the
more it is attended to, the more prominent is in terms of its
position and saliency, and the more linguistically important it is.

Table 8 not only lists the raw coefficients § returned by the
mixed model analysis, but also the standardized Bs, i.e., coeffi-
cients that have been normalized so that they are all on the same
scale and therefore their size can be compared directly. Based on
the standardized Bs, we find Attention to have the biggest effect on
naming probability, followed by Position. Interestingly, linguistic
characteristics of the object to be named are more important than
their visual saliency: the standardized B of Linguistics is almost
the same size as the one of Position, while the standardized p of
Saliency is only about half that. As the task is inherently linguistic,
objects that are linguistically important are more likely named to
be than objects that are visually salient.

Crucially, we also observe significant interactions between
the composite features. A visually salient object, which is also
linguistically important, is more likely to be mentioned (inter-
action Saliency:Linguistics). Visual saliency interacts also with
Position, such that an object in a prominent position which is
also more salient is more likely to be mentioned (interaction
Position:Saliency). However, the likelihood of mention does not
increase for all interactions: we find a negative coefficient for
the interaction Attention:Position. This indicates that an object
in a prominent position requires less attention in order to be
named than an object in a non-prominent position. This is less
counter-intuitive than it seems, as prominent objects (e.g., large
and centrally located) are probably easier to detect and identify in
parafoveal vision, without the needed for sustained overt atten-
tion. As an example consider the image in Figure 6, with typical
scan pattern and mentioned objects. Here, the painting is in cen-
tral position, and receives overt attention (several fixations), but
it is not named. The clock, on the other hand, is far away from the
center, receives a lot of attention, and it is named. This pattern is
expected under a negative interaction of Attention and Position.

Table 8 | Coefficients for the mixed effects model analysis of Mention.

Predictor B Stand. SE P

Intercept -0.92 0.07 0.0001
Attention 4.97 1.45 0.23 0.0001
Position 3.95 1.09 0.56 0.0001
Saliency 2.13 0.5 0.57 0.0001
Linguistics 5.22 0.92 0.93 0.0001
Attention:Position —21.63 —0.81 1.14 0.0001
Saliency:Linguistics 23.70 0.46 2.44 0.0001
Position:Saliency 9.13 0.28 1.62 0.0001

The normalized and centered predictors are the composite features Saliency,
Position, and Linguistics, and the amount of Attention received. We give both
raw coefficients () and standardized coefficients.

Let us return briefly to the positive interaction of Saliency and
Linguistics that we observed (recall that these two composite fea-
tures were not strongly correlated, see Table 7). This interaction
indicates that information from these two modalities is not simply
additive. Rather, linguistic information is processed in the light
of saliency information: when it comes to naming, the linguis-
tic features of more salient objects matter more than those of less
salient ones (and conversely, the saliency of linguistically promi-
nent objects has a greater effect). More generally, we can conclude
that when the cognitive system performs a task such as naming,
it uses input from one modality to guide (constrain or enhance)
the processing of input from another modality. It does not simply
process each modality separately, it integrates them interactively,
presumably in the service of efficiently solving crossmodal tasks.

Note that the main effect of Saliency on naming we
observe (as well as the interactions Saliency:Linguistics and
Position:Saliency) challenges accounts in which visual saliency
is not expected to have an impact during goal-oriented tasks
(Einhduser et al., 2008a). Naming is a goal-oriented task, and
our results show that saliency (in conjunction with linguistic
prominence and position) is used to determine whether an object
is a viable naming candidate or not. This is unexpected if we
assume that saliency is only active in free viewing an other
non-goal-oriented tasks.

4. DISCUSSION

In this paper we explored which factors determine whether or
not an object is named in an object naming task. We found a
strong link between overt attention and naming: fixated objects
are more likely to be named than non-fixated objects, and a single
feature based on an attentional landscape gives a good prediction
of naming (AUC = 0.726). However, this is not the whole story, as
one third of named objects were not fixated by observers during
the 5000 ms display duration, and furthermore, only half of the
objects fixated by an observer are named.

Interestingly, fixation latencies (time to onset of initial object
fixations, and time elapsed since offset of final object fixation)
appear to have very little to do with likelihood of naming
(Figure 2). This is surprising as one would expect a primacy effect
with participants fixating the important objects earlier in the

FIGURE 6 | Example illustrating the negative interaction of Attention
and Position. The objects named by the participant whose scan pattern is
shown were: flowers, candle, table, chair, and clock.
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scene viewing. Similarly, the objects which are viewed toward the
end of the display time might be easier to remember and so we
would see an effect of recency. Indeed, Irwin and Zelinsky (2002)
reported such an effect in an experiment investigating visual
memory for objects within a scene, with participants showing
an increased ability for remembering objects that were targeted
by the last three fixations of each trial. Similarly, Zelinsky and
Loschky (2005) showed an increase in memory for the last three
fixated objects. A potential reason for the difference with our
results is that these two studies both used a paradigm in which
participants were asked to report the identity of an object that
had been displayed at a cued position, rather than free recall. This
suggests that perhaps the participants in our study had an advan-
tage in recalling objects fixated early and late in trial, but chose
not to name them.

Beyond visual attention, we examined a range of features
across different modalities and compared their ability to predict
which objects were named, and which objects were fixated. We
found that the positional features (an object’s area and its dis-
tance from the center of the screen) have the greatest predictive
power of the feature classes we have considered, and that measur-
ing the shortest distance from an object to the center outperforms
using the object’s center of gravity. Although this central bias is
less prominent when we are trying to explain higher-level cogni-
tive performance (naming rather than fixating), the distance from
an object to the center of the screen is still one of strongest features
predicting naming.

It is possible that the effect of area is simply due to chance:
if fixations were randomly distributed then larger objects would
be expected to receive a higher proportion of fixations simply
because they account for a greater proportion of the image’s area.
Taken to the extreme, a close up photograph of a single object
will receive close to 100% of fixations as there is nothing else for
an observer to look at. However, note that this case is not rep-
resented in our dataset: the minimum number of (annotated)
objects present in a photograph was seven.

To explore the effect of area in more detail, we looked at how
the proportion of fixations an object receives varies with the pro-
portion of the image the object takes up (Figure 7). If the effect of
area is simply down to chance, then the null hypothesis is for the
proportion of fixations on an object to be equal to the propor-
tion of the image taken up by the object’s area. If larger objects
are more salient, then we would expect the proportion of fixa-
tions to be greater than the proportion of the image. However, as
can be seen in Figure 7, we actually have the opposite trend: small
objects are fixated more than the null hypothesis suggests, and
large objects are fixated less (although, the proportion of fixations
is still positively correlated with the area of the object). This is not
entirely unexpected, as a lot of the larger objects in our dataset are
less interesting, background objects, such as GRASS, BUILDING,
RAILING, TABLE, FENCE.

There is a similar story with regards to the saliency and
clutter metrics. Interestingly, we find that the saliency mea-
sure computed using the model by Walther and Koch (2006),
based on the notion of proto-objects, which does not include
edge information, outperforms both the saliency component of
Torralba et al’s (2006) model, as well as the clutter measure by
Rosenholtz et al. (2007). As discussed also above, there is growing
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FIGURE 7 | The effect of an object’s area on the proportion of fixations
it receives.

evidence that the efficiency of different saliency models changes
as a function of the experimental conditions examined (see Borji
etal. (2012) for an exhaustive analysis).

Unlike the image-based saliency and positional features, we
find that linguistic factors perform better in predicting which
objects are named than which will be fixated. However, we do
find that linguistic factors such as lexical frequency and seman-
tic proximity influence where we look, in line with recent work by
Wang et al. (2010) and Hwang et al. (2011).

In our final analysis, we created one composite feature for each
of the four features classes we considered—attention, position,
saliency, and linguistic factors—and used a mixed-effects model
to explore how these composite features interact. We found that
each feature had a significant main effect, confirming that each
modality has an impact on naming, even in a model that includes
all of them (and despite the fact that the composite features
are correlated). We were also able to use standardized coeffi-
cients to determine the relative importance of the four composite
features, and found that Attention was the most important deter-
minant of naming, followed by Position and Linguistics (equally
important), and finally Saliency (least important).

Crucially, the mixed model also showed a number of signif-
icant interactions: Attention interacted with Position, Saliency
with Linguistics, and Position with Saliency. These interactions
are theoretically important, as they help us determine how the
cognitive system deals with multimodal tasks such as object nam-
ing. As outlined in the Introduction, there are two competing
hypotheses. One possibility is that the processing of input from
multiple modalities (e.g., linguistic properties and visual prop-
erties) happens independently, in which case the effects of the
various modalities should be additive (no significant interactions
between factors). Alternatively the cognitive system uses input
from one modality to guide (reduce or enhance) the processing of
input in other modalities. In this case we should observe interac-
tions between modalities, i.e., between the composite features that
we investigated in this study. The fact that we see such interactions
provides evidence for this crossmodal guidance hypothesis. For
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example, the interaction of Saliency with Linguistics indicates that
the cognitive system, at least during object naming tasks, makes
use of saliency to guide the processing of linguistic information:
the linguistic prominence of a salient object is more important for
naming than the linguistic prominence of a non-salient object.
In other words, the processing of these modalities is not per-
formed independently, but rather through an interactive process
involving both modalities.
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APPENDIX: CORRELATION MATRIX ACROSS MEASURES

FOR ALL FEATURES

Table A1 | Spearman (p) correlation across measures of all features introduced in our linear regression models.

Att. fix Log(area) de dm salt salj Clutter Animacy Lex. freq. Word length
Att. fix
Log(Area) 0.43
de -0.33 —-0.06
dm —0.51 -0.34 0.59
salt 0.31 0.26 —0.21 -0.22
salik 0.36 0.49 -0.19 -0.27 0.44
Clutter 0.28 0.25 -0.14 -0.28 0.40 0.39
Animacy 0.18 0.14 -0.14 -0.17 0.13 0.15 0.09
Lex. freq. 0.13 0.19 —0.02 —0.06 0.16 0.16 0.14 0.36
Word length —0.01 -0.01 0.02 -0.02 0.01 —0.03 —0.03 —0.08 -0.31
Semantic 0.07 0.09 -0.07 —-0.07 0.07 0.09 0.13 0.06 0.29 -0.19

In Table A1, we report correlation coefficients across measures
for all features discussed in this study. We observe an overall low
mean correlation of 0.064 £ 0.23. This indicates that, in general,
measures for different features are not co-linear. The highest value

we observe is a correlation of p = 0.59, between minCentroid and
minPixels, suggesting that most objects have regular shapes, hence
the distance from centroid is already a good approximation of the
position of the object.
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