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Perceptual load theory successfully replaced the early vs. late selection debate by appealing
to adaptive control over the efficiency of selective attention. Early selection is observed
unless perceptual load (p-Load) is sufficiently low to grant attentional “spill-over” to task-
irrelevant stimuli. Many studies exploring load theory have used limited display durations
that perhaps impose artificial limits on encoding processes. We extended the exposure
duration in a classic p-Load task to alleviate temporal encoding demands that may
otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual
demands alone, then freeing-up available mnemonic resources by extending the exposure
duration should have little effect. The results of Experiment 1 falsify this prediction. We
observed a reliable flanker effect under high p-Load, response-terminated displays. Next,
we orthogonally manipulated exposure duration and task-relevance. Counterintuitively, we
found that the likelihood of observing the flanker effect under high p-Load resides with
the duration of the task-relevant array, not the flanker itself. We propose that stimulus
and encoding demands interact to produce the load effect. Our account clarifies how task
parameters differentially impinge upon cognitive processes to produce attentional “spill-
over” by appealing to visual short-term memory as an additional processing bottleneck

when stimuli are briefly presented.
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The world around us is saturated with rich visual information;
however, only a small subset of this information reaches con-
scious awareness at a given point in time. To accomplish this
feat, the visual system operates with extreme prejudice by fil-
tering all adequate visual stimuli to a small subset of privileged
information. The outcome of this judicious behavior is a cog-
nitive process known as selective attention. So that we may
optimally behave on a variable environment, selective atten-
tion finely resolves visual input in accordance with biological
imperatives. Attention selects stimuli that will aid an organ-
ism’s pursuit of specific biological objectives, e.g., to locate food,
to find sanctuary, to assess social relevance, to find a mate, et
cetera (Most etal., 2007; Hodsoll etal., 2011). Optimal selection
strategies give rise to adaptive behavior. However, this process
is imperfect; sometimes attention selects more information than
what is needed and sometimes less. Given a noisy input chan-
nel, on sheer probability alone it is rare that attention selects
no more than desired and no less than necessary. Thus atten-
tional control vacillates, throttling open to capture more of the
environment when additional information is needed to complete
a task and throttling down when narrower focus is needed to
prevent distraction (Lien etal., 2010). In this fashion attention
flexibly accommodates to the dynamic environment and is said
to operate with a late locus when distractors command behavior,
and an early locus at all other times (Yantis and Johnston, 1990;
Miller ’s 1991). That selective attention operates with an arbitrary
amount of tolerance at all was not immediately understood. In
fact, it took more than four decades to resolve the flexible locus
hypothesis.

Early selection views prevailed in the 50s and 60s with
pioneering attention studies (e.g., Cherry, 1953; Neisser, 1969;
Treisman, 1969). However, the consensus shifted toward late
selection views in the 70s and 80s (e.g., Deutsch and Deutsch,
1963; LaBerge, 1975; Allport, 1977; Duncan, 1980). Load
theory was developed in the 90s to reconcile these disparate
findings by appealing to the possibility of adaptive atten-
tional control (Lavie and Tsal, 1994; Lavie, 1995). Load the-
ory proposes that selective attention acts early, but is more
efficient under high perceptual load (p-Load) than low p-
Load (see Benoni and Tsal, 2013 for a concise review of load
theory).

Load theory garners support from the flanker paradigm
(e.g., Eriksen and Hoffman, 1973; Eriksen and Eriksen, 1974).
In the simplest version of the flanker task, a target appears
in the center of a homogeneous letter array (see Figure 1).
The target takes on one of two possible identities, each
of which is mapped onto a unique response key. Whereas
congruent distractors share the target’s response, incongru-
ent distractors are mapped onto an alternate response key.
The resulting trials are response congruent and incongruent,
respectively. Incongruent distractors engender conflict during
response selection and yield greater response time (RT) when
observers must report the target’s identity (Miller, 1991). This
robust RT difference reflects the flanker effect and behav-
iorally indicates that the flanking distractors were processed to
at least the point of meaning. Significant flanker interference
effects epitomize late selection processes (Yantis and Johnston,
1990).
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FIGURE 1 | Canonical Flanker and load tasks. The Eriksen Flanker task,
top two panels, has both congruent and incongruent conditions. In the
Eriksen Flanker task, the target is always located in the center. In the load
task, lower two panels, the Flanker is either above or below the stimulus
array and the relevant load is determined by the relationship between the
distractors in the linear array and the target; additionally, the target can
appear at any one of the six linear locations. The targets in these examples
(all the letter “Z") have been italicized and underlined for distinction.
Whereas the Flanker task employs response terminated displays, the load
task uses brief exposure.

To address the possibility of a flexible locus of attention,
Lavie (1995) revamped the flanker task by varying the diffi-
culty to find the target. Heterogeneous distractors that resem-
ble the target characterize high p-Load displays (Roper etal.,
2013). Phenomenologically, these displays appear more clut-
tered than Eriksen and Eriksen’s (1974) flanker displays (see
Figure 1). Lavie proposed that an early filter is only estab-
lished when attentional “resources” are fully taxed, that is, when
p-Load is high. Under all other circumstances, load theory
predicted surplus “resources” mandatorily “spill-over” to pro-
cess task-irrelevant stimuli. Indeed, Lavie’s results supported her
predictions; significant flanker effects obtain only under low
p-Load.

Despite the successes of p-Load theory, the nature of the
attentional “resources” it invokes is unclear. Recent attempts to
operationally define p-Load have successfully integrated load the-
ory into the broader attention literature. Torralbo and Beck (2008)
proposed that the load effect arises from the need to resolve
low-level stimulus interactions between the target and distractors.
Extending from Torralbo and Beck (2008); Lavie and Cox (1997),
and Duncan and Humphreys, 1989), we demonstrated a clear role
for target-distractor similarity and distractor homogeneity in the
context of p-Load (Roper etal., 2013). Using identical stimuli in
a visual search task and a canonical p-Load task, we discovered a
close correspondence between search efficiency and flanker effect
magnitude. We found that low p-Load displays were searched effi-
ciently, whereas high p-Load displays were not. These findings
suggest that load might be defined by appealing to bottom-up
stimulus interactions that are known to affect visual search. How-
ever, close consideration of the typical p-Load task suggests that

bottom-up stimulus factors do not completely account for the
“resources” of p-Load theory.

At least two component processes are at play when an observer
performs the canonical p-Load task: (1) feature-based attention
needed to resolve inter-stimulus competition (Lavie and Cox,
1997; Torralbo and Beck, 2008; Roper etal., 2013), and (2)
encoding-based processes needed to endogenously represent fleet-
ing stimuli (Jolicoesur and Dell’Acqua, 1999). The thrust of our
current work was to closely examine specifically how exposure
duration operates to bring about encoding challenges. This was
done so that we may better characterize the nature of atten-
tional “resources” — feature-based and encoding-based — that are
responsible for “spill-over.”

To date, nearly all load studies have employed brief target
display durations. For example, Lavie’s (1995) original work incor-
porated 100 ms stimulus exposure durations. Similarly, a concise
but representative literature review revealed that subsequent load
studies have followed suit with exposure durations ranging from
17 to 200 ms, having a modal duration of 100 ms (Lavie and Cox,
1997; Bavelier etal., 2000; Handy and Mangun, 2000; Lavie and
Fox,2000; Lavie and de Fockert, 2003, 2005; MacDonald and Lavie,
2008; Torralbo and Beck, 2008; Benoni and Tsal, 2010; Caparos
and Linnell, 2010; Elliott and Giesbrecht, 2010; Gaspelin etal.,
2012; Roper etal., 2013). Brief exposure durations were origi-
nally adopted to preclude eye movements putatively as a means
to disentangle overt from covert attentional processes (Lavie and
Cox, 1997). The practice of brief exposure duration in load tasks
deviates from the original flanker interference studies from which
load theory is drawn as those pioneering studies employed dis-
play durations of 1000 ms (Eriksen and Hoffman, 1973; Eriksen
and Eriksen, 1974). The use of limited display durations is not
problematic per se, but failing to adequately recognize the role
of exposure duration can be misleading when interpreting load
theory.

On the assumption that brief exposure durations impose
encoding demands, we manipulated the exposure duration of the
stimulus array in a typical p-Load paradigm. We hypothesized that
if the flanker effect solely depends upon display complexity (i.e., p-
Load), then indefinitely extending the exposure duration, thereby
reducing encoding demands, should have no bearing on the behav-
ioral outcome (i.e., no flanker effect would be present under
high p-Load). We orthogonally manipulated p-Load (canonical
low p-Load vs. high p-Load) and exposure duration (100 ms
vs. response-terminated). If temporal demands play no role in
“spill-over,” then we expect to observe a robust load effect —
flanker effect under low but not high p-Load. However, if tem-
poral demands prevent robust flanker processing under high
p-Load, then extending the exposure duration will increase the
opportunity to sample the flanker thereby promoting a flanker
effect.

To preview our results, we find a significant flanker effect
under high p-Load when displays are response terminated. Exper-
iment 1 suggests that brief exposure duration imposes encoding
restrictions that manifest as the load effect. In Experiment 2, we
orthogonally manipulated exposure duration and task-relevance
by briefly presenting the target array (Experiment 2a) and the
flanker (Experiment 2b). We found that, under high p-Load,
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interference effects are abolished when the target array is briefly
displayed, but not when the temporal restriction falls on the flanker
alone. As hypothesized by load theory, task-relevance must be
considered to accurately describe how feature competition and
temporal demands interact to engage selective attention.

EXPERIMENT 1

METHOD

Observers

Twenty-four University of Iowa undergraduates participated for
course credit. All had normal or corrected-to-normal vision.

Apparatus

An Apple Mac Mini computer displayed stimuli on a 17-inch
CRT monitor and recorded keyboard responses and latencies. The
experiment was controlled using MATLAB and the Psychophysics
toolbox (Brainard, 1997). Observers were seated 60 cm from the
monitor.

Stimuli and procedure

The stimuli and procedure were modeled after Lavie’s (1995) load
experiments. A target letter, equally likely to be X or Z, was ran-
domly positioned in a six-item linear array (see Figure 1). The
target was accompanied by five non-target letters which occupied
the remaining positions along the horizontal. The letters K, V, S,
J, and R comprised the high p-Load non-target set and the letter
O, repeated five times, comprised the low p-Load, non-target set.
The target and non-target letters were presented in uppercase, Hel-
vetica font. They subtended a visual angle of 1.79° vertically and
1.55° horizontally and were separated by 0.60° (edge-to-edge). On
every trial, a task-irrelevant flanker appeared 5.80° above or below
the linear target array. The flanker was cortically magnified and
subtended a visual angle of 2.84° vertically and 2.48° horizontally.
Observers were encouraged to ignore the flanker. All stimuli were
presented in black on a white background.

Observers were instructed to respond to the target via key-
board button press as quickly and accurately as possible. Observers
pressed the “Z” key with the index finger one hand and the “?” key
with the other index finger to indicate whether the target was Z or
X. The flanker was equally likely to be response congruent (Z when
the target was Z, likewise for the X), incongruent (X when the tar-
get was Z, or vice versa), or neutral (P which was not associated
with any response).

Each trial began with a central black fixation dot that appeared
for 1000 ms. The target array and the flanker immediately replaced
the fixation dot (see Figure 2). These stimuli were briefly displayed
(100 ms) or remained until observer response. This exposure dura-
tion manipulation (brief or response-terminated) was blocked
along with p-Load (high or low) thereby creating four unique block
types. Block order was counterbalanced to produce 24 unique ver-
sions of the experiment (4! = 24). Each observer completed four
blocks of 98 trials. Prior to the experiment, observers completed
a 32-trial practice block. The results of the practice blocks were
excluded from analyses.

RESULTS AND DISCUSSION
Mean correct RTs were computed for each observer as a function
of load, exposure duration, and the nature of the critical distractor

(congruent, neutral, and incongruent). Response latencies £ 2.5
SD from the individual means were excluded from the analysis
(see Figure 3); this trimming excluded 2.8% of the data.

A three-factor repeated measures ANOVA (2 x 2 x 2) was
conducted on the RT data, with display p-Load (high vs. low),
m-Load (100 ms vs. response-terminated), and flanker congru-
ency (neutral vs. incongruent) as factors. We observed a main
effect of p-Load, F(1, 23) = 119.44, p < 0.0005, nlzJ = 0.84. RT
was faster for low p-Load (Mean = M = 554 ms) than high p-
Load (M = 840 ms). We also observed a main effect of m-Load,
F(1, 23) = 11.76, p = 0.002, nf, = 0.34. RT was faster when
the display was briefly exposed (M = 652 ms) than when it was
response-terminated (M = 742 ms). Additionally, we observed
a significant main effect of flanker congruency, F(1, 23) = 34.4,
p < 0.0005, nlz, = 0.60. RT was faster in the neutral condition
(M = 684 ms) than in the incongruent condition (M = 710 ms).
Most important, we observed a significant three-way interaction,
F(1, 23) = 4.39, p = 0.047, nf) = 0.16, and a significant two-way
interaction between m-Load and congruency, F(1, 23) = 6.26,
p = 0.020, nf) = 0.21 which align our results with Lavie’s original
finding (1995).

Accuracy performance paralleled RT effects (see Table 1). A
three-factor repeated measures ANOVA (2 x 2 x 2) was con-
ducted on accuracy data, with display p-Load (high vs. low),
m-Load (100 ms vs. response-terminated), and flanker congru-
ency (neutral vs. incongruent) as factors. We observed a main
effect of p-Load, F(1, 23) = 29.39, p < 0.0005, nf) = 0.56.
Accuracy was better for low p-Load (M = 0.95, SE = 0.005)
than high p-Load (M = 0.91, SE = 0.008). We also observed
a main effect of m-Load, F(1, 23) = 68.77, p < 0.0005,
nf, = 0.75. Accuracy was better when the display was response
terminated (M = 0.96, SE = 0.006) than when it was brief
(M = 0.90, SE = 0.007). Additionally, we observed a significant
main effect of flanker congruency, F(1, 23) = 33.83, p < 0.0005,
nf) = 0.60. Accuracy was better in the neutral condition (M = 0.94,
SE = 0.005) than in the incongruent condition (M = 0.92,
SE = 0.006). We observed a significant two-way interaction, F(1,
23) =29.66, p < 0.0005, 1r]123 =0.56. No other comparisons reached
significance.

The results of the brief display condition replicated the load
effect in that we observed a significant flanker effect for low
but not high p-Load. The response-terminated displays pro-
duced a different pattern of results. Here we observed flanker
effects irrespective of p-Load, indicating that display com-
plexity interacts with temporal demands to produce the load
effect.

This finding shares affinity with Miller’s (1991) assertion that
even with fairly high p-Load, unattended flankers are processed
semantically to some degree. To support his claim, Miller, 1991,
Experiment 9) measured observers’ RT to identify a target letter
in a heterogeneous display. Miller sought to delay the recognition
of the flankers with respect to the target by presenting the target
array slightly before the flankers. The flankers were presented in the
periphery after a variable stimulus onset asynchrony (SOA) of 250,
350, and 450 ms. Significant flanker effects obtained regardless
of SOA. Importantly, Miller used response terminated displays.
The current findings reconcile the discrepancy between Miller’s
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FIGURE 2 | Trial schematic. Example of high p-Load, response terminated displays as presented in Experiments 1 and 2.
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FIGURE 3 | Mean correct RT in Experiment 1. Briefly exposed stimuli
were presented for 100 ms — all other stimuli were response-terminated.
Asterisks denote significance from neutral condition: *p < 0.05,
**p < 0.01. Error bars represent 95% within-observers confidence intervals
(Loftus and Masson, 1994; Morey, 2008).

load manipulation and those typically used to study p-Load on
attention (e.g., Lavie, 1995).

Whereas Experiment 1 explored the demands marshaled by
whole-display temporal constraints, Experiments 2a and 2b were
designed to address whether task-relevance interacts with the

temporal demands of the display to produce “spill-over.” Stimu-
lus relevance has been critical to load theory’s interpretation since
its inception (Lavie and Tsal, 1994). Only when the relevant task
p-Load is low, will surplus attentional “resources” mandatorily
“spill-over.” Our account makes the strong prediction that the
task-relevant array’s exposure duration is most critical to witness
load effects. When presented briefly, attention samples the task-
relevant region at the expense of the flanker provided that the
feature-based demands are sufficiently great. This leads to the nat-
ural prediction that briefly presenting the target array while leaving
the flanker present until response will abolish flanker effects. This
sort of prediction is at great odds with intuition. It seems irrational
to expect the flanker to show no influence on behavior when it is

Table 1 | Experiment 1: accuracy performance.

Flanker type

Incongruent Neutral Congruent

M SD M SD M SD

Low load  Briefdisplay 093 005 0.96 0.04 096 0.04
Resp. term. 0.95 0.04 097 0.02 097 0.02

High load  Brief display 0.85 0.07 0.87 0.06 0.89 0.06
Resp.term.  0.95 0.04 096 0.03 0.97 0.03

Frontiers in Psychology | Cognition

December 2013 | Volume 4 | Article 967 | 4


http://www.frontiersin.org/Cognition/
http://www.frontiersin.org/Cognition/archive

Roper and Vecera

Exposure duration and load

present on-screen for the entire duration of the trial and is the only
on-screen stimulus 100 ms into the trial. We designed Experiment
2a to test this hypothesis and find that when encoding demands are
placed on the task-relevant array but not the flanker, “spill-over” is
prevented despite the near-certain probability that the flanker was
visibly isolated.

EXPERIMENT 2

In Experiment 2a the target array offset after 100 ms, but the
flanker persisted until response. We employed the converse rela-
tionship in Experiment 2b — the flanker offset after 100 ms, but
the target array persisted until response.

METHOD

The method of Experiment 2a was identical to Experiment 1
except that the offset of the target array and the flanker were
asynchronous. Thus, in lieu of categorical response terminated
displays such as those in Experiment 1, we introduce hybrid
displays in Experiment 2 where 100 ms after stimulus onset,
either the task-relevant or task-irrelevant portion of the display
was removed — the lave being response terminated. Whereas
Experiment 2a was characterized by the asynchronous removal
of the target array, Experiment 2b was characterized by the asyn-
chronous removal of the flanker. All stimuli were removed without
backward masks. Observers were 48 (24 per experiment) Univer-
sity of Towa undergraduates. All observers reported normal or
corrected-to-normal vision. Experiments 2a and 2b were analyzed
separately.

RESULTS AND DISCUSSION

Experiment 2a

Mean correct RTs were computed for each observer as a func-
tion of p-Load, brief exposure (whole display or hybrid), and the
nature of the critical distractor (congruent, neutral, and incon-
gruent). Response latencies & 2.5 SD from the individual means
were excluded from the analysis (see Figure 4); this trimming
eliminated 2.9% of the data.

Response time data were analyzed identically to Experiment
1 by carrying out a 2 x 2 X 2 repeated-measures ANOVA. We
observed a main effect of load, F(1, 23) = 235.60, p < 0.0005,
n%, = 0.91. RT was faster under low p-Load (M = 528 ms) than
high p-Load (M = 778 ms). Additionally, we observed a significant
main effect of flanker congruency, F(1, 23) = 6.18, p = 0.021,
nf) = 0.21. Neutral RT (M = 646 ms) was faster than incongruent
RT (M = 661 ms). The two-way interaction between p-Load and
congruency was marginally significant, F(1,23) = 4.20, p = 0.052,
ng = 0.15.

Accuracy performance paralleled RT effects (see Table 2). A
three-factor repeated measures ANOVA (2 x 2 X 2) was con-
ducted on accuracy data, with display p-Load (high vs. low),
m-Load (100 ms vs. response-terminated), and flanker congru-
ency (neutral vs. incongruent) as factors. We observed a main
effect of p-Load, F(1, 23) = 28.08, p < 0.0005, nlz, = 0.55.
Accuracy was better for low p-Load (M = 0.95, SE = 0.007)
than high p-Load (M = 0.90, SE = 0.010). We also observed
a main effect of brief flanker, F(1, 23) = 28.88, p < 0.0005,

71123 = 0.56. Accuracy was better when just the flanker was brief

Experiment 2a
1000
OCongruent
900 { | @Neutral
mIncongruent
800 -
» 700
£
&
600 -
*%* *k
500 -
400 -
300
Brief Exposure | Brief Target Array Brief Exposure | Brief Target Array
Low p-Load High p-Load
FIGURE 4 | Mean correct RT in Experiment 2a. Briefly exposed stimuli
were presented for 100 ms — all other stimuli were response-terminated.
Asterisks denote significance from neutral condition: **p < 0.01. Error bars
represent 95% within-observers confidence intervals (Loftus and Masson,
1994; Morey, 2008).

(M = 0.95, SE = 0.006) than when the entire display was brief
(M = 0.89, SE = 0.012). Additionally, we observed a significant
main effect of flanker congruency, F(1, 23) = 15.00, p = 0.001,
né = 0.40. Accuracy was better in the neutral condition (M = 0.93,
SE = 0.007) than in the incongruent condition (M = 0.91,
SE = 0.008). We observed a significant two-way interaction, F(1,
23) =27.73, p < 0.0005, nf) = 0.5. No other comparisons reached
significance.

Experiment 2a demonstrated that when the task-relevant
array is temporally constrained, the flanker fails to exert a
behavioral effect despite being the only on-screen stimulus
for the majority of the trial. Thus, the load effect is closely
linked with the exposure duration of the target array, not the
flanker. Although the flanker lingered until response, it failed
to exert an interference effect. We reason that briefly presenting
the target imposes a mnemonic load (m-Load) on process-
ing. This m-Load consumes mnemonic resources to endoge-
nously represent the flanker thereby precluding robust flanker
processing.

We take it as fact that the absence of a significant interfer-
ence effect means that the flanker’s identity did not reach response
selection. However, we cannot know for certain where the system
ceased processing the flanker during its initial sweep. If we assume
that the flanker needs to be consolidated into visual short-term
memory (VSTM) before it can exert a downstream effect, then
the absence of a downstream effect suggests two possibilities: (1)
limited attentional “resources” initially deploy to preserve the rep-
resentation of the fleeting task-relevant region at the cost of the
task-irrelevant region, and (2) the flanker’s representation simply
decays too fast. Experiment 2a falsifies the second possibility. If the
flanker doesn’t reach response selection because it simply decays,
then when we prevent decay by leaving it on-screen until response
we ought to expect a flanker effect irrespective of any feature or
encoding demand placed on the task-relevant array. However, we
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Table 2 | Experiment 2: accuracy performance.

Flanker type

Incongruent Neutral Congruent
M SD M SD M SD
Exp. 2a Low load Brief display 0.93 0.05 0.95 0.03 0.97 0.03
Brief Flanker 0.94 0.06 0.96 0.03 0.96 0.02
High load Brief display 0.83 0.09 0.85 0.1 0.85 0.12
Brief Flanker 0.95 0.04 0.96 0.03 0.95 0.05
Exp. 2b Low load Brief display 0.94 0.05 0.96 0.04 0.95 0.05
Brief target 0.93 0.05 0.96 0.04 0.97 0.02
High load Brief display 0.84 0.08 0.88 0.06 0.87 0.06
Brief target 0.93 0.09 0.95 0.09 0.94 0.08
observed the contrary. Thus, in order for robust flanker processing .
. .. .. Experiment 2b
all other encoding restrictions must be mitigated. Therefore, the 1000
flanker effect does not reside with the duration of the flanker. Fur- OCongruent 7
thermore, when we shorten its longevity but leave the task-relevant 900 { | @Neutral
array until response, we should expect to obtain the canonical load M Incongruent
effect. Experiment 2b was designed to test this hypothesis. 800
Experiment 2b 27001
Mean correct RTs were computed for each observer as a func- Eeoo ] *
tion of p-Load, brief exposure (whole display or hybrid), and the *%
nature of the critical distractor (congruent, neutral, and incon- 500 -
gruent). Response latencies £ 2.5 SD from the individual means
were excluded from the analysis (see Figure 5); this trimming 400
eliminated 2.9% of the data.
Response time data were analyzed identically to the previous 30 T Eposure | Briet Flankor ot Exposure | Brif Flanker
experiments by carrying out a 2 x 2 X 2 repeated-measures Low p-Load High p-Load

ANOVA. We observed a main effect of load, F(1, 23) = 164.98,
p < 0.0005, nf, = 0.88. RT was faster for low p-Load (M = 542 ms)
than high p-Load (M = 847 ms). We also observed a main effect
of target array duration, F(1, 23) = 11.58, p = 0.002, n% = 0.34.
RT was faster when the entire display was briefly presented
(M = 642 ms) as opposed to the flanker alone (M = 747 ms).
Additionally, we observed a significant main effect of flanker con-
gruency, F(1, 23) = 11.66, p = 0.002, n; = 0.34. Neutral RT
(M = 684 ms) was faster than incongruent RT (M = 705 ms). Most
important, we observed a significant two-way interaction between
p-Load and flanker congruency, F(1, 23) = 6.02, p = 0.022,
nf) = 0.21. These results replicate our findings from Experiment 1
and Lavie’s original perceptual load demonstration.

Accuracy performance paralleled RT effects (see Table 2). A
three-factor repeated measures ANOVA (2 x 2 x 2) was con-
ducted on accuracy data, with display p-Load (high vs. low),
m-Load (100 ms vs. response-terminated), and flanker congru-
ency (neutral vs. incongruent) as factors. We observed a main
effect of p-Load, F(1, 23) = 11.70, p = 0.002, TIIZ, = 0.34. Accu-
racy was better for low p-Load (M = 0.95, SE = 0.006) than high
p-Load (M = 0.89, SE = 0.017). We also observed a main effect
of brief flanker, F(1, 23) = 9.96, p = 0.004, nf, = 0.30. Accuracy

FIGURE 5 | Mean correct RT in Experiment 2b. Briefly exposed stimuli
were presented for 100 ms — all other stimuli were response-terminated.
Asterisks denote significance from neutral condition: *p < 0.05,

**p < 0.01. Error bars represent 95% within-observers confidence intervals
(Loftus and Masson, 1994; Morey, 2008).

was better when just the flanker was brief (M = 0.94, SE = 0.012)
than when the entire display was brief (M = 0.89, SE = 0.013).
Additionally, we observed a significant main effect of flanker con-
gruency, F(1, 23) = 56.53, p < 0.0005, nlz3 = 0.71. Accuracy was
better in the neutral condition (M = 0.93, SE = 0.010) than in
the incongruent condition (M = 0.91, SE = 0.010). We observed
a significant two-way interaction, F(1, 23) = 10.05, p = 0.004,
nf, = 0.30. No other comparisons reached significance.

In Experiment 2b we obtained a significant flanker effect under
high p-Load when the flanker was briefly presented but the target
array lingered until response. Although the flanker was briefly pre-
sented it nevertheless exerted a downstream effect. We propose that
when briefly presented, the flanker’s icon can be sampled provided
that the search stimuli remain visible. This proposition conforms
to Experiment 1 and 2a in that both high stimulus competition
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and great encoding demands interact to produce the load effect. By
briefly presenting the flanker in Experiment 2b, we incrementally
loaded mnemonic processing.! Because the majority of stimuli
remained onscreen, however, spare resources were available to
process the fleeting flanker.

Experiments 1 and 2 indicate that the load effect vanishes when
observers are not given strict encoding demands. These results
point to the visual system’s highly adaptive nature; when items are
in jeopardy of decaying away, the system can optimize attentional
allocation toward task-relevant stimuli at the expense of task-
irrelevant stimuli. Lavie demonstrated that high p-Load induces
this response. We have demonstrated that great encoding demands
also engage selection. Thus, mnemonic “resource” limitations can
serve as an additional processing bottleneck that activates selection
and drives the load effect.

GENERAL DISCUSSION

Historically, the load effect has been thought to be driven entirely
by perceptual-level resource demands, not data limitations (Lavie
and de Fockert, 2003); however, our experiments have shown that
in fact both p-Load and m-Load play similar, but distinct roles in
distractor processing. In Experiment 1, we extended the exposure
duration of a canonical load task and demonstrated that when the
encoding restrictions imposed by brief displays are lifted, flanker
effects obtain despite high p-Load. In Experiment 2b, we demon-
strated the importance of task-relevance when considering the
influence that m-Load has on selective attention. We observed a
significant interference effect when the flanker was briefly exposed
but the task-relevant array remained until response. This find-
ing starkly contrasts with Experiment 2a, the inverse situation,
where the flanker remained until response but the task-relevant
array was briefly exposed. In Experiment 2a, although the flanker
remained on-screen, it failed to exert a behavioral effect under high
p-Load. The results provide a possible compromise for load theory
that incorporates m-Load and p-Load as potential restrictions
that interact to set the locus of selective attention. We cannot
observe p-Load effects without implementing an m-Load; con-
versely, we cannot observe m-Load effects without implementing a
p-Load.

Figure 6 highlights the individual contributions of m-Load and
p-Load on distractor processing. Tasks with high m-Load (points A
and B in Figure 6) but with low p-Load (point A) lead to significant
flanker effects as has been shown previously (Lavie and Tsal, 1994).
Experiment 1 demonstrated that tasks with high p-Load (points D
and B in Figure 6) but without accompanying high m-Load (point
D) also gives rise to significant flanker effects. Therefore adequate
consideration must be given to p-Load and m-Load to fully capture

"We would like to stress that the flanker was not backward-masked in Experiment 2.
Therefore, based on the presence of the flanker effect in high p-Load, it is likely that
the identity of the flanker was obtained from the visual icon (Averbach and Coriell,
1961; Phillips, 1974). We reason that the visual system consolidated the flanker into
VSTM to prevent complete decay. Indeed visual transients, such as abrupt-offsets,
have been shown to capture attention (Pratt and McAuliffe, 2001), and attention-
capturing stimuli are automatically consolidated in VSTM (Schmidt etal., 2002;
Belopolsky etal., 2008). However, we acknowledge the possibility that the flanker
circumvented VSTM, but this scenario is less likely. Our own investigations have
revealed that when the flanker is backward-masked, canonical load effects obtain
(Roper etal., 2011).

Differential contributions of p-Load and m-Load on the load effect
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1 & > 080
[0 060-0.79
[ 0.40-0.59
I 0.20-0.39
O <020

L

‘

g
b
H
E]
g
M
g

Lavie & de Fockert (2003)

2 (E)

Encoding Demand
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FIGURE 6 | Load effect “resources.” This empirically derived model
illustrates two forms of “resource” demand — feature- and encoding-based
- that impinge upon selective attention to produce the load effect (denoted
by dashed lines). The vertical axis denotes the m-Load and is quantified as
the number of briefly exposed display stimuli. The horizontal axis denotes
the p-Load and is quantified in terms of the search efficiency of the
displays. These values are estimated based on our previous work exploring
the role of visual search and load (Duncan and Humphreys, 1989; Roper
etal., 2013). Points A and B represent the canonical low p-Load and high
p-Load tasks, respectively. Tasks represented by point A and B served as
control conditions for Experiments 1 and 2. Low p-Load was characterized
by a conspicuous target (search efficiency ~1 ms/item), whereas high
p-Load was characterized by an inconspicuous target (search efficiency
~25 ms/item) — both conditions are characterized by high m-Load (7 stimuli
at 100 ms exposure). Experiments 2a and 2b, denoted by filled circles,
were hybridized and fall between line segments AB and CD in terms of
m-Load (see Experiment 2 methods). Point C represents a low m-Load, low
p-Load task and point D represents a low m-Load, high p-Load task (both
unique to Experiment 1). Point E reflects a high m-Load, low p-Load task
(Experiment 2, Lavie and de Fockert, 2003). N.B., although feature
competition and encoding demands can be manipulated orthogonally, it is
not entirely clear whether these factors are psychologically independent.
The shape of the curve is intended for demonstration only.

the load effect. In Experiments 2a and 2b, we demonstrated that
the m-Load needs to be placed on the task-relevant array, not
the flanker, to obtain the load effect. We speculate that this is
because there is more visual information that needs to be encoded
when the six-item target array is briefly presented. These encoding
demands are compounded when p-Load is great. As demonstrated
in Experiment 2a, when mnemonic resources are preoccupied by
the necessity to quickly encode the target array, the flanker fails
to engender an interference effect even when it remains on-screen
until response.

SENSORY AND ENCODING DEMANDS

Lavie and de Fockert (2003) increased task difficulty by degrading
the target stimulus and decreasing exposure duration (50 ms) in a
low p-Load task. They argued that the flanker effect would be abol-
ished only if the imposed data limitations play a role in selective
attention. The data revealed a significant flanker effect, suggesting
that data limitations do not drive p-Load. Such a conclusion runs
counter to our current findings, but can be explained by care-
fully inspecting Figure 6. First, we assert that due to relatively low
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p-Load and 100 ms exposure duration, conventional low p-Load
tasks fall near point A in Figure 6. From Norman and Bobrow
(1975) we know that masked, degraded, and brief displays consti-
tute data limitations. If these arguments hold, then it follows that
the flanker task with a degraded target and very limited exposure
duration as described above and tested by Lavie and de Fockert
(2003) would deviate from point A in the vertical direction only.
Our account predicts a significant flanker effect under these con-
ditions. Therefore, we propose that the load effect arises from
attentional resource demands imposed by the display’s perceptual
characteristics coupled with the encoding demands introduced by
brief stimulus presentation. Limiting the exposure duration pre-
vents complete processing of all available stimuli due the severe
capacity limitations inherent to memory consolidation and rep-
resentation. When this happens, the least relevant stimuli are
excluded from robust processing.

SELECTIVE ATTENTION AND VISUAL SHORT-TERM MEMORY

In three experiments we have demonstrated that the load effect
dissipates when the temporal demands to quickly encode the
task-relevant stimuli are removed. Counter-intuitively, the like-
lihood of processing the task-irrelevant flanker does not reside
in the longevity of the flanker itself but rather with the avail-
ability of attentional “resources.” These findings implicate VSTM
capacity limitations as a substantial bottleneck for attentional
processing.

Briefly presented stimuli place temporal demands on visual
processing (Joliccesur and Dell’Acqua, 1999). Thus, fleeting envi-
ronmental information must be internally represented before it
reaches downstream processing. We propose that limited display
durations increase temporal encoding demands. Exactly where
along the stream of processing these demands exert the great-
est effect is not precisely known; however, Roper and Vecera
(2013) demonstrated that increments in VSTM load produced
greater selective attention in a concurrently performed p-Load
task. Konstantinou and Lavie (2013) replicated this effect in a
standard selection task. Thus the reliance on VSTM to identify
the target and program the correct response has been empir-
ically founded. Furthermore, these two recent studies demon-
strate that domain-specific m-Loads impede distractor processing
but domain-general m-Loads exacerbate the distraction effect.
Because VSTM capacity is spatially and temporally restricted
(Zhang and Luck, 2008), when stimuli are too numerous or too
complex, selective attention can prioritize entrance into VSTM
based on task relevance. In the typical load task, the task-relevant
search array appears around fixation, and the flanker appears at
a location never occupied by a target. Observers can optimally
search for the target by segregating the display based on task-
relevance, allowing attention to prioritize likely target locations
over unlikely target locations. We hypothesize that under high p-
Load, observers prioritize potential target locations for entry into
VSTM at the expense of the task-irrelevant flanker. Under low
p-Load, ample VSTM capacity exists, and attention need not pre-
cisely prioritize entry into VSTM — in fact, based on the evidence,
under low p-Load, all stimuli are mandatorily processed (Lavie,
1995). This account need only assume that the flanker be encoded
in VSTM prior to exerting behavioral effects — a safe assumption

given that access to VSTM satisfies a necessary, but not sufficient,
condition to witness competition at the output stage.

This work converges with recent work by Konstantinou etal.
(2012), who found that a concurrent VSTM load attenuated
contrast sensitivity. Decreased brain metabolism in primary and
tertiary visual areas (V1-V3) accompanied the contrast sensitivity
decrement. Extending from Bundesen (1990) and Bundesen etal.’s
(2005) Theory of Visual Attention (TVA), Kyllingsbak et al. (2011)
demonstrated that load effects are best explained by appealing to
amodel that incorporates processing capacity and VSTM capacity
limits. Participants reported the identity of several targets in briefly
presented displays while ignoring flanking letters. Target identifi-
cation declined as the number of flankers increased, a result not
readily predicted by load theory. Kyllingsbaek etal. (2011) argued
TVA could readily explain their results — as the number of flankers
increases, flankers are more likely to enter VSTM, which reduces
the likelihood that a target will enter VSTM.

The previously described extant studies bolster the current
work and provide direct tests to support our conclusion that the
load effect relies upon the availability of VSTM resources. Thus
it is reasonable to conclude that load, as it has been previously
tested, is not exclusively perceptual but rather partly determined
by mnemonic processing limitations. This assertion is based upon
work that demonstrates that the bandwidth of mnemonic pro-
cessing is limited, but the bandwidth of perceptual processing
is virtually limitless (Sperling, 1960; Averbach and Coriell, 1961;
Potter, 1976; Coltheart, 1980; Di Lollo, 1980; Jolicoesur and
Dell’Acqua, 1998; Vogel etal., 1998). These findings indicate that
selective attention may play as vital a role in VSTM as perception
(Schmidt etal., 2002).

LOAD THEORY AND DILUTION

Tsal and Benoni (2010) have recently proposed that the load effect
arises from diluting the display with additional neutral stimuli
and not p-Load itself. To support their proposition, they carefully
crafted a high-dilution display that was nevertheless low in p-Load.
This was accomplished by placing neutral stimuli — that putatively
dilute the flanker — at otherwise task-irrelevant locations. They
hypothesized that if dilution, not p-Load, determines the locus of
selection, then these high-dilution, low p-Load displays will fail to
produce a flanker effect. Their predictions were confirmed; neu-
tral but otherwise task-irrelevant distractors abolished the flanker
effect. Like the load effect, the dilution effect is robust and has
been replicated several times (Wilson et al., 2011; Benoni and Tsal,
2010, 2012).

The dilution alternative is incompatible with load theory; how-
ever, the current experiments are in line with both accounts.
Although the current experiments were not designed to exam-
ine dilution some loose parallels can be drawn. It is entirely
possible that dilution effects are experienced as m-Load. For
instance, increments in display size may place demands on capac-
ity restricted cognitive mechanisms like VSTM. When VSTM is
loaded, the identity of the flanker becomes diluted in mem-
ory and thus fails to reach the response selection stage. How
exactly dilution fits into this framework remains an open question,
but acknowledging m-Load may provide an avenue to reconcile
long-standing facets of load theory and the dilution account.
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CONCLUSION

To explain attentional “spill-over” phenomena, load theory
invokes unclear resources. We classified these resources into two
categories: processing demands stemming from (1) the need to
resolve feature-based competition, and (2) the need to readily
encode fleeting visual representations. We proposed that whereas
attentional resources satisfy the former condition, free mnemonic
resources satisfy the latter. We introduced the term m-Load to
describe task-imposed encoding restrictions and we presented a
new account that reflects how m-Load interacts with conventional
feature-based p-Load to produce the load effect. Lastly, we sug-
gested that m-Load may prevent the flanker effect by denying the
flanker’s entry into VSTM. This contributes to the growing body of
work on load theory and extends it to include two distinct classes
of processing challenges set by the task environment.
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