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The need to reduce the dimensionality
of movement systems, and thereby to
decrease cognitive load, has long been rec-
ognized as a central challenge for theo-
ries of motor control (Bernstein, 1967).
A large body of work in neurophysiology,
biomechanics, and computation has sub-
stantiated the view that control of body
movements is distributed among a man-
ageable number of degrees of freedom
corresponding to neuromuscular modules
(e.g., Bizzi et al., 1991), or proportionally
fixed groupings of muscles (see e.g., Ting
et al., 2012 for a recent review). Current
work in computational neuroscience pro-
vides evidence that the nervous system
uses such modules to achieve dimension-
ality reduction (e.g., Berger et al., 2013). It
is our opinion that a fully realized mod-
ular approach to speech movement will
have a profound impact on models of
speech.

In speech-related fields, researchers
had begun formulating ideas for mod-
ularizing speech movements even prior
to Bernstein’s influence. Cooper et al.
(1958), for instance, in proposing their
notion of the “action plan,” described
for speech an inventory of muscle activa-
tions not unlike Bernstein’s “muscle syn-
ergies”: “we may hope to describe speech
events in terms of a rather limited num-
ber of muscle groups. . . ” (p. 939). Later,
Turvey (1977) adopted the term coordi-
native structure to refer to similar neu-
romuscular groupings. Easton (1972) had
first defined coordinative structures as
neuromuscular organizations “underlying
all volitionally composed movements. . .
activated by a single command,” such
that “the CNS [central nervous system]
may be said to have at its disposal a
library, or set, of these responses” (p. 591).

However, Turvey et al. (1978) shifted focus
away from neurophysiology, observing
that coordinative structures are “formally
equivalent” to tasks in control space (1978,
p. 566). Subsequent speech researchers
have taken this lead, focusing on devel-
oping models of control space (e.g., Kelso
et al., 1986a; Tourville and Guenther,
2011), with little or no attention given to
modeling the neurophysiology of embod-
ied speech.

Meanwhile, researchers in other areas
have built a substantial volume of experi-
mental and modeling research around the
neuromuscular organization and biome-
chanics of non-speech movement, includ-
ing work on complex fine motor systems
such as the fingers (e.g., Overduin et al.,
2012) and eyes (e.g., Wei et al., 2010).
However, speech, along with many other
functions of the upper vocal tract, has
remained a conspicuous omission from
the literature on neuromuscular modu-
larization. This omission may be ascribed
at least in part to the relatively greater
complexity of both the muscular struc-
tures (e.g., Sanders and Mu, 2013) and
the multidimensional control space (e.g.,
Houde and Jordan, 1998; Tremblay et al.,
2003; Gick and Derrick, 2009; Ghosh et al.,
2010; Perkell, 2012) of speech. Kelso et al.
(1986b) describe this position clearly, stat-
ing that mapping their control paradigm
onto “real” body structures is “not feasible
for the speech articulators whose periph-
eral biomechanics are much more complex
(than upper limbs), e.g., the passive tis-
sue properties and muscular forces of the
tongue and lips.”

The great majority of evidence for
modularization derives from experiments
on non-human spinal structures (see
Tresch et al., 2002) and from direct

recordings of neuromuscular activity using
electromyography (see Kutch and Valero-
Cuevas, 2012). However, neither of these
methods is likely to be as effective for
understanding neural control of speech,
first because upper airway innervation is
predominantly cranial rather than spinal,
and second because of the known chal-
lenges of experimentally recording com-
prehensive or even representative neuro-
muscular activity from EMG, even in less
complex tasks than speech (Pittman and
Bailey, 2009) and in comparatively less
complex neuromuscular systems (Hug,
2011; De Rugy et al., 2013). Because
of this, we anticipate that biomechan-
ics will necessarily play a more central
role in accessing the modular neuro-
muscular structures that underlie speech
production.

In our view, neuromuscular modules
are built specifically to drive body struc-
tures that are biomechanically efficacious,
enabling them to operate feed-forward,
i.e., with little or no central feedback con-
trol. This has often been assumed as a
premise underlying modularization (e.g.,
Loeb et al., 2000; d’Avella et al., 2003;
Loeb, 2012), but has seldom been tested
(see Berniker et al., 2009 for a rare excep-
tion), and never applied to speech. Recent
advances in modeling speech biomechan-
ics (e.g., Nazari et al., 2011; Stavness
et al., 2012a,b) have enabled our group
to begin identifying some of the biome-
chanical properties that we consider to be
the hallmarks of speech production mod-
ules, most notably pervasive saturation
effects that enable feed-forward control of
speech structures (Gick et al., in press). At
least some of these biomechanically opti-
mized speech production modules corre-
spond well with speech “gestures,” long
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described as movement-related primitives
of speech (e.g., Browman and Goldstein,
1986).

While there remains some controversy
around whether these modules are best
defined in terms of their neural (e.g.,
d’Avella and Bizzi, 2005; Safavynia and
Ting, 2013), biomechanical (Dominici
et al., 2011; Kutch and Valero-Cuevas,
2012), or computational (Todorov, 2004;
Diedrichsen et al., 2010; Loeb, 2012; De
Rugy et al., 2013) properties, all of these
aspects of control will be necessary com-
ponents of a complete theory (see Bizzi
and Cheung, 2013), and at present none of
these aspects have been well explored for
speech and upper airway control.

Developing a theory of speech pro-
duction that accords with current work
on neuromuscular modularization, we
believe, has the potential to link a number
of fields and methodologies surrounding
a central question in cognitive science,
with implications for all aspects of speech
research, from phonetics and phonology
to the phylogenetic and ontogenetic devel-
opment of speech. In addition to bring-
ing another complex motor system into
the broader discussion of neural mod-
ules, modularizing speech at the neuro-
muscular level promises a major advance
for speech models, constituting a “miss-
ing link” between speech movement prim-
itives (Ramanarayanan et al., 2013) and
newly discovered cortical regions associ-
ated with speech production (Bouchard
et al., 2013).
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