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Early neural mechanisms for the measurement of binocular disparity appear to operate in a
manner consistent with cross-correlation-like processes. Consequently, cross-correlation,
or cross-correlation-like procedures have been used in a range of models of disparity
measurement. Using such procedures as the basis for disparity measurement creates a
preference for correspondence solutions that maximize the similarity between local left
and right eye image regions. Here, we examine how observers’ perception of depth
in an ambiguous stereogram is affected by manipulations of luminance and orientation-
based image similarity. Results show a strong effect of coarse-scale luminance similarity
manipulations, but a relatively weak effect of finer-scale manipulations of orientation
similarity.This is in contrast to the measurements of depth obtained from a standard cross-
correlation model. This model shows strong effects of orientation similarity manipulations
and weaker effects of luminance similarity. In order to account for these discrepancies,
the standard cross-correlation approach may be modified to include an initial spatial
frequency filtering stage. The performance of this adjusted model most closely matches
human psychophysical data when spatial frequency filtering favors coarser scales. This
is consistent with the operation of disparity measurement processes where spatial
frequency and disparity tuning are correlated, or where disparity measurement operates
in a coarse-to-fine manner.
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INTRODUCTION
The retrieval of depth information from binocular disparity
depends crucially on the correct linkage of corresponding image
points between left and right eyes. Finding a successful, biologi-
cally plausible, solution to this correspondence problem has been
a central task for researchers in binocular vision for many years
(e.g., Marr and Poggio, 1979; Pollard et al., 1985; Jones and Malik,
1992; Qian and Zhu, 1997; Chen and Qian, 2004; Read and Cum-
ming, 2007). While a number of constraints on possible matches
have been proposed, based on the likely distributions of dispari-
ties in natural scenes (e.g., Marr and Poggio, 1979; Pollard et al.,
1985; Zhang et al., 2001; Hibbard and Bouzit, 2005; Goutcher and
Hibbard, 2010), one of the most important aspects in binocular
matching is local image similarity.

Similarity-based matching is essential for any model that
seeks to mimic the performance of human observers. Corre-
spondence matching biases have been found based on similarity
of contrast (Anderson and Nakayama, 1994; Smallman and
McKee, 1995; Goutcher and Mamassian, 2005), contrast polar-
ity (Watanabe, 2009), luminance (Goutcher and Hibbard, 2010),
color (den Ouden et al., 2005), orientation, motion direction, and
speed (van Ee and Anderson, 2001). Similar matching constraints
have also been demonstrated in motion perception, for which an
analogous matching problem exists (Hibbard et al., 2000). Such
results provide compelling evidence to support computational

assertions of the importance of feature similarity. The impor-
tance of similarity must, however, be matched against the need
for flexibility in disparity measurement. Mechanisms for dispar-
ity measurement must be able to tolerate dissimilarity between
matching features, which occurs frequently in natural images.

Dissimilarity of matching features is most obviously seen in
the case of orientation. Differences in the orientations of match-
ing proximal features will arise if the distal feature is slanted away
from the horopter (i.e., slanted in depth, or present in the periph-
eral visual field). Models must, therefore, be able to tolerate some
degree of orientation difference so as to encode these orienta-
tion disparities. Similarly, differences in luminance and contrast
must also be tolerated. While luminance and contrast differences
between eyes do degrade stereoacuity (Simons, 1984; Halpern and
Blake, 1988; Schor and Heckmann, 1989; Reynaud et al., 2013),
stereopsis is still viable. Indeed, such differences also appear to
support distinct stereoscopic perceptions. When presented with
vertically oriented squarewave grating patterns containing differ-
ences in luminance or contrast between the two eyes, observers
report that individual bars are rotated in the depth plane, the so-
called venetian blind effect (Cibis and Haber, 1951; Fiorentini and
Maffei, 1971; Filley et al., 2011; Dobias and Stine, 2012).

Early models of correspondence matching sought to explicitly
encode the properties of “image primitives” to allow for similarity-
based matching (e.g., Marr and Poggio, 1979; Pollard et al.,
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1985). More recently, however, similarity-based matching has been
implicit in models that measure disparity using cross-correlation
(Banks et al., 2004; Filippini and Banks, 2009; Allenmark and
Read, 2010, 2011) or cross-correlation-like (Fleet et al., 1996; Qian
and Zhu, 1997; Chen and Qian, 2004) procedures. Such mod-
els encode similarity by cross-correlating spatially extended image
patches. Using spatially extended patches means that local image
regions with similar structures will elicit stronger responses. Note,
however, that unlike earlier models, where matching decisions
are based on explicit measurements of feature similarity (e.g.,
Marr and Poggio, 1979; Jones and Malik, 1992), measurement of
similarity in cross-correlation models is conflated with measure-
ment of variability in disparity. Furthermore, similarity biasing
only holds if correlation windows are large enough to allow for
the presence of local image structures, and if there is no prior
image transformation. The local correlation window needs to be
large enough to allow sufficient spatial variation in luminance for
unambiguous matching, but no so large that it covers regions with
widely differing depths (Kanade and Okutomi, 1994). Allowing
for image transformations, such as scaling or rotation, prior to
cross-correlation could reduce the latter constraint, by allowing for
the explicit encoding of local variation in depth. Recently, Vidal-
Naquet and Gepshtein (2012) have provided a general approach
for the inclusion of image transformations in cross-correlation
models of disparity measurement.

Other models, such as those based on the disparity energy
model (Ohzawa et al., 1990; De Angelis et al., 1991), apply
cross-correlation-like processes, in a manner consistent with the
responses of binocular neurons in primary visual cortex. In these
models, similarity matching depends upon the use of identi-
cal receptive field structures in left and right eyes. The energy
model creates disparity selective responses similar to those seen
in complex cells in primary visual cortex (V1) by summing the
squared responses of pairs of binocular simple cells, arranged in
quadrature phase. Disparity tuning is generated in this model
through differences in the position, or phase, of left and right
eye simple cell receptive fields. Using identical left and right
eye receptive field structures for the simple cell components,
and summing across spatial location, orientation and frequency
channels, allows these energy-based models to be arranged to
reflect the cross-correlation of local samples (Fleet et al., 1996;
Allenmark and Read, 2011). Physiological evidence suggests, how-
ever, that the arrangement of binocular neurons in V1 is subtly
different from that required for processing truly analogous to
cross-correlation.

As expected in a cross-correlation account of disparity mea-
surement, disparity selective neurons in V1 are fed by left and right
eye receptive fields that differ primarily in terms of their relative
positions or phases, with very similar tuning to spatial frequency
and orientation in the two eyes (Prince et al., 2002a,b). However,
differences in orientation tuning for left and right eye receptive
fields have been shown in both V1 (Bridge and Cumming, 2001)
and V4 (Hinkle and Connor, 2002) binocular neurons. Such cells
could encode orientation disparities in a manner that would be
useful for the perception of the three-dimensional orientation of
surfaces, particularly the slant of surfaces away from the fronto-
parallel plane (Greenwald and Knill, 2009) Such neurons would

also allow for an encoding of similarity biases more complex than
the immediate route offered by existing cross-correlation models.

In addition to potential orientation differences between left and
right eye receptive fields, human disparity measurement seems
to differ from strict cross-correlation with regards to its use of
spatial pooling processes. Psychophysical evidence suggests that
larger correlation windows are used for the measurement of larger
disparities (Smallman and MacLeod, 1994; Tsirlin et al., 2008;
Allenmark and Read, 2011). Additionally, physiological evidence
shows that disparity tuning and spatial frequency tuning are cor-
related (Prince et al., 2002a), with larger disparities detected by
neurons with lower spatial frequency tuning. Such coarse-to-fine
processing has long been used in computational models of dispar-
ity measurement (e.g., Marr and Poggio, 1979; Chen and Qian,
2004) and is implicit in the phase-shift disparity energy model,
where disparity tuning is limited by the wavelength of binocu-
lar simple cell receptive fields (Fleet et al., 1996; Qian and Zhu,
1997; Chen and Qian, 2004). These findings suggest that the
effects of coarse and fine scale manipulations of similarity may
deviate markedly from those arising in cross-correlation models
of disparity measurement.

Physiological evidence suggesting deviations from disparity
measurement through cross-correlation point to a limit in the
usefulness of such models as approximations of neural processing.
In this paper, we examine this issue by measuring the visual sys-
tem’s capacity to match ambiguous periodic stereo stimuli using
multiple similarity-based matching cues, and compare obtained
matching biases to those predicted by a cross-correlation model
of disparity measurement. We find that manipulations of lumi-
nance and orientation similarity both bias stereoscopic matching,
as predicted by the cross-correlation model. However, the effects of
orientation differences are smaller than predicted by this model,
and the effects of luminance differences larger. Our results are
instead consistent with a model of disparity measurement that
is biased toward information for binocular matching available
at particular spatial frequencies, reflecting the deviations from
cross-correlation evident in human visual cortex.

MATERIALS AND METHODS
PSYCHOPHYSICAL EXPERIMENT
Observers
Psychophysical data was collected for three participants, including
both authors. The remaining participant was an experienced psy-
chophysical observer, but was naïve as to the nature of the stimuli,
and purpose of the experiment. All participants had normal or
corrected-to-normal vision. Participants gave written, informed
consent before completing the experiment. Local research ethics
boards approved all experimental procedures.

Apparatus
Data were collected in Essex and in Stirling. In Essex, the stimulus
display and data collection were controlled using a Dell Preci-
sion T3600 computer running Windows 7, hosting an NVIDEA
Quadro K5000 graphics card, in conjunction with a DATAPixx
visual stimulator. Stimuli were presented on a 19 inch Sony Trini-
tron CRT monitor. Luminance was calibrated using a Minolta
LS-100 photometer. The maximum luminance of the monitor
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was 139.7 cdm−2. The spatial resolution of the monitor was
1280 × 1024 pixels and the refresh rate was 100 Hz. The view-
ing distance was 57 cm. At this distance, 1 pixel subtended
1.6 arcmin.

In Stirling, stimulus display and data collection were con-
trolled using a MacPro computer, with stimuli presented on a
49 cm × 31 cm Apple Cinema HD display. The monitor refresh
rate was 60 Hz, with a resolution of 1920 × 1200 pixels. Each pixel
subtended 1.1 arcmin at the 76.4 cm viewing distance. The maxi-
mum luminance of the monitor was 45.7 cdm−2. Luminance was
calibrated to vary on a linear scale using a SpyderPro2 calibration
device (© Colourworks Inc.).

All stimuli were created using MATLAB in combination with
the Psychophysics Toolbox extensions (Brainard, 1997; Pelli,
1997; Kleiner et al., 2007). Dichoptic viewing was achieved using
NVIDIA 3D vision liquid-crystal shutter goggles in Essex, and
a modified Wheatstone stereoscope in Stirling. Stimulus genera-
tion was adapted on each display to maintain identity of angular
size.

Stimuli
For convenience, all stimuli will be described in terms of varia-
tions in luminance around the mean value, such that the mean
luminance is zero and the maximum deviations are ±1. Stimuli
were presented such that the range of −1 to 1 was mapped to
the full luminance range of the monitor. Ambiguous stereograms
were created by concatenating a series of “tiles”, similar to the
method used by Goutcher and Hibbard (2010). For each stim-
ulus, two basis tiles (a and b) were created and were arranged
such that different tiles fell on corresponding locations in left and
right images (see Figure 1A). These tiles were 0.57◦ wide by 2.27◦
high. Left and right eye images each contained eight repeats of the
ab (or ba) tile pair, such that the total size of the stimulus was
9.12◦ wide by 2.27◦ high. Initially, each pixel was independently
assigned a value drawn from a uniform white noise distribution.
This was then filtered in the spatial frequency domain, by mul-
tiplication with a Gabor (an oriented, two-dimensional sinusoid,
windowed by a Gaussian distribution) of standard deviations 6.4
and 19.2 arcmin (orthogonal and parallel to it’s orientation) result-
ing in noise centered on a spatial frequency of 6.25 cpd. Finally,
each tile was windowed by a high exponent Gaussian, in order to
remove abutting edges between a and b tiles. The luminance range
of the sample was set to ±0.5 the maximum luminance of the
display.

An alternate arrangement of ab tile pairs in one eye, and ba
tile pairs in the other, leads to a stimulus containing ambigu-
ous disparity information. Observers perceive this stimulus as a
fronto-parallel surface with either crossed, or uncrossed disparity,
equal to the 1.14◦ size of a single ab tile pair. The disparity sign per-
ceived by observers depends upon any prior preference for crossed
or uncrossed disparities, combined with any similarity matching
bias present in the stimulus. We manipulated image similarity by
adjusting the mean luminance of tile pairs, and/or by adjusting the
orientation difference prior to filtering. By alternately raising and
lowering the mean luminance of tile pairs, similarity matching is
biased toward either crossed or uncrossed disparity solutions (see
Figure 1B).

In Figure 1B, raising and lowering the mean luminance of
alternate ab tile pairs in each eye biases luminance similarity
matching toward a crossed disparity solution. Conversely, rais-
ing and lowering alternate ba tile pairs in each eye will bias
luminance similarity matching toward an uncrossed disparity
solution. Biases in orientation similarity matching can be pro-
duced in much the same way by filtering alternate ab or ba tile
pairs with differently oriented Gabors (see Figure 1C). In order
to manipulate matching similarity, luminance shifts of 0, ±2,
±4, ±6 and ±8%, and orientation shifts of 0, ±12.25, ±22.5,
±34.75 and ±45◦ were used. All combinations of luminance
and orientation differences were used, resulting in 81 conditions
in total, including cases where luminance and orientation sim-
ilarity were biased in the same or in opposite directions (see
Figures 1D,E). Examples of the experimental stimuli are shown in
Figure 2.

Procedure
At the beginning of each trial, a central vertical line, of length
16 arcmin, was presented above and below the location of the
stimulus. A central fixation cross was also presented. When the
observer pressed a response key, the fixation cross was replaced by
the stimulus, which was presented for 200 ms before being replaced
by the fixation cross. This remained in view until the observer
responded, at which point the next stimulus was presented.

The observer’s task was to determine whether the stimulus had
crossed or uncrossed disparity, in other words, whether it appeared
nearer or further away in depth than the vertical reference lines,
which remained on the screen at all times. Responses were made
using the computer keyboard. New noise samples were created
for every trial. Over the course of five blocks, observers com-
pleted 40 trials of each combination of luminance and orientation
similarity.

CROSS-CORRELATION MODEL
All stimuli used in the psychophysical experiment were analyzed
using a cross-correlation model of disparity matching. This local
cross-correlation model is widely used as an approximation of the
first stages of disparity estimation (Banks et al., 2004; Palmisano
et al., 2006; Filippini and Banks, 2009; Allenmark and Read, 2010,
2011; Goutcher and Hibbard, 2010; Vlaskamp et al., 2013). Under
this model, a sample patch at a particular location in one image is
compared with samples from the other image, as a function of the
difference in the sampling location in the two images. Differences
in sampling locations are equivalent to disparity, while the level
of correlation indicates the similarity between two image samples.
When sampling with the correct disparity, the match between the
samples, and thus the correlation, will be high. When sampling at
an incorrect location, the match will poor, and thus the correlation
will be low (see Figure 3).

For each stimulus, we compared rectangular samples with
crossed and uncrossed disparities the size of one tile of the
stereogram. These are the two smallest disparities that pro-
vide the best candidate matches for the unbiased stimuli. These
were taken from the center of each stimulus image, save for
the horizontal shifts required to create the sampling dispar-
ities (see Figure 3). Below, we report results for a square
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FIGURE 1 | Illustration of the general structure of the stimulus, and

the manipulation of luminance and orientation ambiguity. (A) The
stimulus is built from tiles of filtered random dot textures, a and b. In
one eye, these are arranged in a repeating ab sequence. In the other
eye, they are arranged in a repeating ba sequence. With no difference in
luminance or orientation, these stimuli can equally be matched with a
crossed or uncrossed disparity (B) With the addition of a difference in
luminance between pairs of ab units in each stimulus, matching can be
biased toward a particular disparity. (C) Similarity in orientation between

corresponding ab pairings can also be used to bias disparity matching.
Luminance and orientation similarity can be introduced so as to bias in
(D) the same or (E) competing directions. The direction of matching
based on similarity in luminance and orientation are indicated by the red
and blue lines on the figures, respectively. Spatial frequencies for the
experimental stimuli were identical across all orientation and luminance
similarities, and are shown in this figure for illustrative purposes only. The
labeling of ab pairings indicated in this figure were not present in actual
experimental stimuli.

correlation window with a width of 2.16◦. We calculated the
cross-correlation between the two samples, L(x,y) and R(x,y),
given by:

C =
∑

(x,y)[L(x, y) − μL] ∑
(x,y)[R(x, y) − μR]√∑

(x,y)[L(x, y) − μL]2
√∑

(x,y)[R(x, y) − μR]2

where, μL and μR are the mean luminance of the left
and right samples. The psychophysical experiment was simu-
lated, calculating the cross-correlation with a crossed and an
uncrossed disparity for each trial, and choosing which of the two
had the larger correlation. One hundred trials were simulated
for each stimulus configuration presented in the psychophysi-
cal experiment. Independent samples of Gaussian white noise,
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FIGURE 2 | Examples of the experimental stimuli. Since stimuli are
periodic, either crossed or parallel fusion of left and right columns will
demonstrate the effects of manipulating similarity-based matching. White
vertical lines indicate the plane of fixation. Examples of experimental
stimuli are shown for each case from Figure 1. (A) An example stimulus
containing no luminance or orientation bias. (B) Matching is biased through
manipulation of luminance similarity only. (C) Matching is biased through
manipulation of orientation similarity only. (D) Manipulations of orientation
and luminance similarity are applied in the same direction.
(E) Manipulations of orientation and luminance similarity are applied in
opposite directions.

with a mean luminance of zero and a standard deviation of
10%, were added to the left and right eyes’ samples on each
trial.

For stimuli such as ours, in which the disparity is constant
across the image, using a large correlation window will tend to
improve performance. To investigate the effects of spatial scale,

rather than using windows of different sizes, we bandpass fil-
tered the images in the Fourier frequency domain. Each stimulus
was filtered so as to retain only those components lying within
±1 octave of a central spatial frequency. Central frequencies of
0.47, 0.54, 0.63, 0.76, 0.95, 1.26, 1.38, 1.52, 1.69, 1.90, 2.17,
2.53, 3.04, and 3.79 cpd were used. This simulated the band-
pass filtering performed by binocular cells in the primary visual
cortex.

RESULTS
PSYCHOPHYSICAL EXPERIMENT
The psychophysical results are presented in Figure 4. Results
are plotted in separate graphs for the three observers. For each
observer, a clear luminance bias is evident (Figures 4A–C).
Orientation also biased matching in the direction predicted
(Figures 4D–F). However, orientation differences had a rather
modest effect on disparity matching. Conversely, manipulations
of luminance similarity had a substantially greater biasing effect.
In particular, it should be noted that effects of orientation differ-
ences were observed only on occasions where luminance biasing
was weak (Figures 4G–I). Below, we compare these results to
simulations conducted with both the standard and modified
cross-correlation model.

CROSS-CORRELATOR MODELS
The results of the standard cross-correlator are shown in Figure 5.
The mean of the psychophysical results, across the three observers,
are plotted in the first row of Figure 5 as a function of (A) lumi-
nance bias, (B) orientation bias, and finally (C) as a function of
both. This allows the effect of the luminance and orientation biases
to be seen clearly, while also showing the full two-dimensional psy-
chometric function. Equivalent results for the cross-correlation
model are shown in Figures 5D–F, in the second row. The
cross-correlation model shows relatively little effect of luminance

FIGURE 3 |The cross-correlation model. (A) Illustration of the
correlation window size relative to the experimental stimulus. Using
correlation windows greater in size than the range of similarity
manipulations ensures that normalization of mean luminance does not
degrade model performance. Offset in window positions shows a
disparity shift consistent with the periodic structure of the stimulus.
(B) Output of the standard cross-correlation model. Results show the
correlation as a function of disparity. The black line shows the results

with no luminance bias. This shows peaks in the correlation function of
equal magnitude for crossed and uncrossed disparities. Outputs are also
shown for a luminance bias of 0.25 (red line) and 0.5 (blue line). As the
luminance bias increases, the correlation increases for one sign of
disparity, and decreases for the other. Note that, although the output of
the correlation model is shown here at a range of disparities, the
decision stage of the model only considers disparities consistent with
the periodic structure of the stimulus.
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FIGURE 4 | Psychophysical results for author PH (lefthand column),

author RG (central column), and the naïve observer (righthand column).

(A–C) show the proportion of “far” results as a function of the luminance
bias. Separate lines indicate the results for each level of orientation similarity,
as indicated by the legend. A clear effect of luminance similarity is evident for
all levels of orientation similarity. (D–F) show the results plotted as a function

of orientation bias. When matching is not biased by luminance similarity (the
cyan curve) a clear effect of orientation is evident for all three observers. With
a large luminance matching bias, orientation has little or no effect on disparity
matching. (G–I) plot the psychophysical data as a heat-map to illustrate the
full two-dimensional psychometric function. The color of the pixels indicates
the proportion of “far” responses.

similarity matching. Only when orientation similarity provides
no biasing signal is any sizeable effect of luminance similarity
observable. Conversely, the effects of orientation similarity can
be seen at all levels of luminance similarity. Although multiple
window sizes were tested for this cross-correlation model, we
have reported data only for a window size of 2.16◦. Decreasing
window size reduces the general effectiveness of both orienta-
tion and luminance similarity matching. At the smallest window
sizes, no effect of orientation or luminance manipulations is
evident.

These results, in which the cross-correlation is calculated using
the information available at all spatial scales, are in stark con-
trast to the pattern of orientation and luminance biasing shown
in the human psychophysical data. However, different results are

obtained when we calculate the cross-correlation in bandpass-
filtered versions of the stimuli. The third row of Figure 5 shows the
results for the model applied after filtering at the lowest spatial fre-
quency (0.47 cpd), in Figures 5G–I. Now, a clear luminance effect
is evident at all levels of orientation bias. An orientation effect is
only evident when the luminance bias is relatively low. The oppo-
site pattern of results is shown when the images are filtered at the
highest spatial frequency (3.79 cpd). These results are plotted in
Figures 5J–l, in the fourth row. Now, a clear effect or orienta-
tion is evident at all levels of luminance bias. A clear luminance
effect is only evident when there is no orientation bias. We calcu-
lated the sum-of-squared-differences between the psychophysical
and model results to determine which frequency gave the closest
match to our results. The results of the best-fitting model, with a

Frontiers in Psychology | Perception Science January 2014 | Volume 4 | Article 1014 | 6

http://www.frontiersin.org/Perception_Science/
http://www.frontiersin.org/Perception_Science/archive


“fpsyg-04-01014” — 2014/1/6 — 20:09 — page 7 — #7

Goutcher and Hibbard Similarity matching in disparity measurement

FIGURE 5 | Results of the cross-correlation model. Top row: The mean
of the psychophysical results plotted in Figure 4, across the three
observers. Results are plotted (A) as a function of luminance bias (B) as
a function of orientation bias and (C) as a two-dimensional heat-map,
where color shows the proportion of “far” responses. Second row
(D–F): The results of the standard cross-correlation model. Unlike the
psychophysical results, the model shows a strong effect of orientation,
and an effect of luminance only when there is no orientation bias. Third

row (G–I): The results of a cross-correlation model after filtering at a low
spatial frequency (0.47 cpd). The model now shows a strong effect of
luminance bias, and a weaker effect of orientation bias. Fourth row
(J–L): The results of a cross-correlation model after filtering at a high
spatial frequency (3.79 cpd). This model shows a strong effect of
orientation and a weaker effect of luminance. Fifth row (M–O): The
correlation model with filtering at 1.4 cpd shows the closest fit to the
psychophysical data.
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central frequency of 1.4 cpd, are shown in Figures 5M–O, in the
bottom row. The relatively strong effect of luminance, and a clear,
but weaker effect of orientation, is similar to that present in the
psychophysical results.

The difference between the psychophysical and model results is
plotted in Figure 6. Results are shown for the standard, unfil-
tered correlation model in Figure 6A, and for the best-fitting
model in Figure 6B. The sum-of-squared differences between
the psychophysical and model results is shown in Figure 6C,
as a function of the spatial-frequency of the bandpass-filtering
applied. The horizontal line on this plot shows the results
for the model with no filtering. It is clear from this plot
that a good fit to the psychophysical data is obtained when
the images are filtered at low spatial frequencies, and the fit
becomes poor when the images are filtered at high spatial
frequencies.

DISCUSSION
Our investigation of similarity effects in the perception of ambigu-
ous stereograms has revealed substantial differences between
human disparity measurement processing, and the predic-
tions of the standard cross-correlation model. While human
observers demonstrate strong effects of luminance similarity
manipulations, and relatively weak effects of orientation sim-
ilarity cues, the standard local cross-correlation model shows
an opposing pattern of results. A modified version of this
model, which first filters the stimulus in the spatial fre-
quency domain, provides a substantially better match to human

psychophysical data. We consider the implications of these
results for the encoding of image similarity in disparity mea-
surement. In discussing these issues, we suggest ways in which
our findings should constrain models of human stereoscopic
matching.

One of the primary advantages of using local cross-
correlation as a mechanism for disparity measurement is that
it is able to implement many known constraints on stereo
matching, without the need for explicit consideration of such
rules (Anderson and Nakayama, 1994; Filippini and Banks, 2009;
Goutcher and Hibbard, 2010). Cross-correlation models exhibit
performance consistent with minimal relative disparity match-
ing (Goutcher and Hibbard, 2010; Vlaskamp et al., 2013), dis-
parity gradient limits (Filippini and Banks, 2009) and coarse-
scale luminance and contrast similarity matching (Anderson
and Nakayama, 1994; Goutcher and Hibbard, 2010), even
though such models do not explicitly apply these rules for
matching. Our results show, however, that the similarity-based
matching emerging from the cross-correlation model differs
markedly from results for human observers. This therefore
suggests that the elegant measure of similarity offered by cross-
correlation models is not the one used by the human visual
system.

Previous research has suggested that deviations from the stan-
dard cross-correlation model may be due to initial spatial filtering
processes in human vision. For example, Allenmark and Read
(2010) showed that human observers perceive surfaces with
large sinusoidal variations in depth (surfaces in which depth

FIGURE 6 | Differences between the psychophysical data and the

model results for (A) the standard correlation model and (B) the

best-fitting correlation model. Color indicates the difference in
proportion of “far” responses between the models and the averaged
human psychophysical data. These differences are summarized in
(C), which shows the sum-of-squared differences between the

psychophysical and model data as a function of the spatial frequency of
filtering. The horizontal line shows the result for the standard
cross-correlation model with no filtering. (D) An example of a luminance
biased stimulus in original (top row) and filtered (bottom row) states. The
filter applied has a spatial frequency of 1.4 cpd, which corresponds to
that used in the best-fitting model.
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undulates smoothly) just as readily as they perceive square-waves
variations (surfaces in which depth changes abruptly). This is in
contrast to the prediction made by their cross-correlation model.
Since depth is constant within local regions in squarewave grat-
ings (apart from at their edges), the standard cross-correlation
model predicts that observers ought to be better at perceiving
square-wave gratings than sinewave gratings, where there are no
regions of constant depth. This follows directly from the implicit
assumption in cross-correlation models that surfaces are locally
fronto-parallel; this assumption is met by squarewave gratings, but
not by sinewave gratings (see also, Vidal-Naquet and Gepshtein,
2012). In a later paper, Allenmark and Read (2011) were able
to account for their results by proposing a link between the
magnitude of disparity, and the size of the correlation window
used to match disparity. Such a correlation has been demon-
strated in psychophysical results (Smallman and MacLeod, 1994).
They argued that large disparities are detected by correlators with
large matching windows. If so, then large windows (larger than
the regions of constant depth) would be involved in the detec-
tion of depth in squarewave corrugations with large disparities.
This removes the expected advantage in the perception of square
waves, since with larger sampling windows disparity will not
be constant across the sample. This example shows the impor-
tance of considering the nature of spatial sampling underlying
cross-correlation.

The results of our modified cross-correlation model are broadly
consistent with this account. While Allenmark and Read (2011)
suggest a link between correlation window size and disparity, we
consider the related issue of the spatial frequencies to which binoc-
ular cells are tuned. If large disparities are preferentially encoded
by neurons with large receptive fields, tuned to low spatial fre-
quencies, then similarities and differences at higher frequencies
will have limited effects on the disparity matching process. Such
a process has clear computational advantages – when match-
ing on a coarse-scale/low frequency (e.g., to detect the location
in depth of an object) it is advantageous to ignore depth vari-
ations at a finer scale/higher frequency (e.g., those pertaining
to the three-dimensional surface structure of the object) that
would tend to reduce the matching strength at the correct dis-
parity. Deviations from the standard model may therefore reflect
the typical structure of natural scenes, where coarse-scale/low
frequency changes are likely to be identical between left and
right images, but fine details are subject to greater variation
(Li and Atick, 1994).

From a computational standpoint, this account of the pat-
tern of similarity matching in our experiment may arise from
two distinct mechanisms. While we have shown that preceding
disparity measurement with a spatial frequency filter centered at
1.4 cpd leads to similarity matching biases equivalent to human
observers, it is not clear how the visual system makes such selec-
tive use of information at this frequency band. One possibility is
that disparity measurement depends upon selective use of infor-
mation at a single spatial frequency channel, or on a weighted
combination of multiple channels, where weighting, or chan-
nel choice, is contingent on the disparity being signalled. In this
case, due to size-disparity correlation, one may expect similarity
matching to vary with the disparities available in the stimulus.

Alternatively, the coarse-scale/low frequency preferences could
arise due to coarse-to-fine matching mechanisms. In this case, one
may expect the weight assigned to differing spatial frequencies to
remain constant despite changes in the disparity of the stimulus.
Whichever mechanism one assumes, however, the selective use
of information in particular spatial frequency bands indicates a
marked difference from the standard cross-correlation model in
human disparity measurement.

While our modified model addresses the role of coarse-
scale/low frequency measurements of similarity, a direct role for
orientation differences could still be present. The calculation of
a cross-correlation from binocular energy neurons assumes that
responses are pooled over neurons with identical orientation and
frequency tuning in each eye (Allenmark and Read, 2011). How-
ever, although binocular neurons are tuned to broadly similar
orientations and spatial frequencies in each eye, there is evidence
for differences in the exact orientation tuning in the two monoc-
ular receptive fields (Bridge and Cumming, 2001). Greenwald
and Knill (2009) have argued that the information provided by
a system showing such responsiveness to orientation disparities
would provide valuable information about the slant of surfaces
in depth (see also Vidal-Naquet and Gepshtein, 2012, for a more
general approach to handling differences in local binocular image
structure). Differences in orientation tuning between the two
eyes could therefore reduce the influence of orientation similarity
matching, and allow for easier measurement of disparity for such
slanted surfaces. The weakness of orientation similarity match-
ing in our experiment could therefore stem from a combination
of both the tuning of the visual system to coarse-scale measure-
ments of similarity, and from deviations from the assumption
of the standard cross-correlation model that depth is locally
uniform.

Given this possible role for direct effects of orientation, an
important question remains unanswered. While manipulations of
similarity within our stimulus are defined in terms of differences
in orientation and in luminance, our modeling results suggest that
what is important is not the property that is manipulated, but the
scale at which that manipulation occurs. Our manipulations of
orientation similarity are comparatively ineffective because they
occur at relatively high spatial frequencies. In order to ascertain
whether this low frequency bias is a general effect, one would need
to examine further similarity manipulations occurring at differing
scales. In the specific case of orientation similarity, this is partic-
ularly difficult as low frequency orientation differences are likely
to result in binocular rivalry, making comparisons of matching
similarity difficult. However, previous research has demonstrated
that global rivalry impacts on local binocular fusion (Takase et al.,
2008), which would seem to be consistent with our account of low
frequency dominance in binocular matching.

The suggested departures from the combinations of disparity
sensitive neurons required for the implementation of the standard
cross-correlation model allow for some simple means for adjusting
the relative strengths of different similarity matching dimensions.
We have shown that a simple manipulation of spatial frequency can
account for the pattern of luminance and orientation similarity
matching found in human observers, where the standard model
cannot. Similar deviations may also allow for manipulations of the
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strength of contrast, speed or color similarity matching, should
the application of these constraints differ from the predictions of
standard cross-correlation.

ACKNOWLEDGMENTS
Author Ross Goutcher would like to thank Pascal Mamassian for
his helpful advice in the development of an early version of the
stimulus used in this paper. This research was supported by BBSRC
Grant No. BB/G004803/1 (Ross Goutcher).

REFERENCES
Allenmark, F., and Read, J. C. A. (2010). Detectability of sine- versus square-wave

disparity gratings: a challenge for current models of depth perception. J. Vis.
10:17. doi: 10.1167/10.8.17

Allenmark, F., and Read, J. C. A. (2011). Spatial stereoresolution for depth corru-
gations may be set in primary visual cortex. PLoS Comput. Biol. 7:e1002142. doi:
10.1371/journal.pcbi.1002142

Anderson, B. L., and Nakayama, K. (1994). Towards a general theory of stereopsis:
binocular matching, occluding contours, and fusion. Psychol. Rev. 101, 414–445.
doi: 10.1037/0033-295X.101.3.414

Banks, M. S., Gepshtein, S., and Landy, M. S. (2004). Why is spatial stere-
oresolution so low? J. Neurosci. 24, 2077–2089. doi: 10.1523/JNEUROSCI.
3852-02.2004

Brainard, D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436. doi:
10.1163/156856897X00357

Bridge, H., and Cumming, B. G. (2001). Responses of macaque V1 neurons to
binocular orientation differences. J. Neurosci. 21, 7293–7302.

Chen, Y., and Qian, N. (2004). A coarse-to-fine disparity energy model with both
phase-shift and position-shift receptive field mechanisms. Neural Comput. 16,
1545–1577. doi: 10.1162/089976604774201596

Cibis, P. A., and Haber, H. (1951). Anisopia and perception of space. J. Opt. Soc.
Am. 41, 676–683. doi: 10.1364/JOSA.41.000676

De Angelis, G. C., Ohzawa, I., and Freeman, R. D. (1991). Depth is encoded in the
visual cortex by a specialized receptive field structure. Nature 352, 156–159. doi:
10.1038/352156a0

den Ouden, H. E. M., van Ee, R., and de Haan, E. H. F. (2005). Colour
helps to solve the binocular matching problem. J. Physiol. 567, 665–671. doi:
10.1113/jphysiol.2005.089516

Dobias, J. J., and Stine, W. W. (2012). Temporal dynamics of the venetian blind
effect. Vision Res. 60, 79–94. doi: 10.1016/j.visres.2012.02.013

Filippini, H. R., and Banks, M. S. (2009). Limits of stereopsis explained by local
cross-correlation. J. Vis. 9, 8.1–8.18. doi: 10.1167/9.1.8

Filley, E. T., Khutoryansky, N., Dobias, J. J., and Stine, W. W. (2011). An
investigation of the Venetian blind effect. Seeing Perceiving 24, 241–292. doi:
10.1163/187847511X580366

Fiorentini, A., and Maffei, L. (1971). Binocular depth perception without
geometrical cues. Vision Res. 11, 1299–1305. doi: 10.1016/0042-6989(71)90012-5

Fleet, D. J., Wagner, H., and Heeger, D. J. (1996). Neural encoding of binocular
disparity: energy models, position shifts and phase shifts. Vision Res. 36, 1839–
1857. doi: 10.1016/0042-6989(95)00313-4

Goutcher, R., and Hibbard, P. B. (2010). Evidence for relative disparity matching in
the perception of an ambiguous stereogram. J. Vis. 10:35. doi: 10.1167/10.12.35

Goutcher, R., and Mamassian, P. (2005). Selective biasing of stereo cor-
respondence in an ambiguous stereogram. Vision Res. 45, 469–483. doi:
10.1016/j.visres.2004.08.025

Greenwald, H. S., and Knill, D. C. (2009). Orientation disparity: a cue for 3D
orientation? Neural Comput. 21, 2581–2604. doi: 10.1162/neco.2009.08-08-848

Halpern, D. L., and Blake, R. R. (1988). How contrast affects stereoacuity. Perception
17, 483–495. doi: 10.1068/p170483

Hibbard, P. B., and Bouzit, S. (2005). Stereoscopic correspondence for ambiguous
targets is affected by elevation and fixation distance. Spat. Vis. 18, 399–411. doi:
10.1163/1568568054389589

Hibbard, P. B., Bradshaw, M. F., and Eagle, R. A. (2000). Cue combination in
the motion correspondence problem. Proc. Biol. Sci. 267, 1369–1474. doi:
10.1098/rspb.2000.1152

Hinkle, D. A., and Connor, C. E. (2002). Three-dimensional orienta-
tion tuning in macaque area V4. Nat. Neurosci. 5, 665–670. doi:
10.1038/nn875

Jones, D. G., and Malik, J. (1992). Computational framework for determining stereo
correspondence from a set of linear filters. Imag. Vis. Comput. 10, 699–708. doi:
10.1016/0262-8856(92)90015-U

Kanade, T., and Okutomi, M. (1994). A stereo matching algorithm with an adaptive
window – theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell. 16,
920–932. doi: 10.1109/34.310690

Kleiner, M., Brainard, D., and Pelli, D. (2007). What’s new in Psychtoolbox-3?
Perception 36S, 14. doi:10.1068/v070821

Li, Z., and Atick, J. J. (1994). Efficient stereo coding in the multiscale
representation. Network Comput. Neural Syst. 5, 157–174. doi: 10.1088/
0954-898X/5/2/003

Marr, D., and Poggio, T. (1979). A computational theory of human stereo
vision. Proc. R. Soc. Lond. B Biol. Sci. 204, 301–328. doi: 10.1098/rspb.
1979.0029

Ohzawa, I., DeAngelis, G. C., and Freeman, R. D. (1990). Stereoscopic depth dis-
crimination in the visual cortex: neurons ideally suited as disparity detectors.
Science 249, 1037–1041. doi: 10.1126/science.2396096

Palmisano, S., Allison, R. S., and Howard, I. P. (2006). Effect of decorrelation on
3-D grating detection with static and dynamic random-dot stereograms. Vision
Res. 46, 57–71. doi: 10.1016/j.visres.2005.10.005

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: trans-
forming numbers into movies. Spat. Vis. 10, 437–442. doi: 10.1163/
156856897X00366

Pollard, S. B., Mayhew, J. E., and Frisby, J. P. (1985). PMF: a stereo correspon-
dence algorithm using a disparity gradient limit. Perception 14, 449–470. doi:
10.1068/p140449

Prince, S. J. D., Cumming, B. G., and Parker, A. J. (2002a). Range and
mechanism of horizontal disparity in macaque V1. J. Neurophysiol. 87,
209–221.

Prince, S. J. D., Pointon, A. D., Cumming, B. G., and Parker, A. J. (2002b). Quantita-
tive analysis of the responses of V1 neurons to horizontal disparity in random-dot
stereograms. J. Neurophysiol. 87, 191–208.

Qian, N., and Zhu, Y. (1997). Physiological computation of binocular disparity.
Vision Res. 37, 1811–1827. doi: 10.1016/S0042-6989(96)00331-8

Read, J. C. A., and Cumming, B. G. (2007). Sensors for impossible stimuli may
solve the stereo correspondence problem. Nat. Neurosci. 10, 1322–1328. doi:
10.1038/nn1951

Reynaud, A., Zhou, J., and Hess, R. F. (2013). Stereopsis and mean luminance. J. Vis.
13, 1–11. doi: 10.1167/13.11.1

Schor, C., and Heckmann, T. (1989). Interocular differences in contrast and spa-
tial frequency: effects on stereopsis and fusion. Vis. Res. 29, 837–847. doi:
10.1016/0042-6989(89)90095-3

Simons, K. (1984). Effects on stereopsis of monocular versus binocular degradation
of image contrast. Invest. Ophthalmol. Vis. Sci. 25, 987–989.

Smallman, H. S., and MacLeod, D. I. (1994). Size-disparity correlation in stereopsis
at contrast threshold. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2169–2183. doi:
10.1364/JOSAA.11.002169

Smallman, H. S., and McKee, S. P. (1995). A contrast ratio constraint on stereo
matching. Proc. Biol. Sci. 260, 265–271. doi: 10.1098/rspb.1995.0090

Takase, S., Yukumatsu, S., and Bingushi, K. (2008). Local binocular fusion
is involved in global binocular rivalry. Vision Res. 48, 1798–1803. doi:
10.1016/j.visres.2008.05.010

Tsirlin, I., Allison, R. S., and Wilcox, L. M. (2008). Stereoscopic transparency:
constraints on the perception of multiple surfaces. J. Vis. 8, 5.1–5.10. doi:
10.1167/8.5.5

van Ee, R., and Anderson, B. L. (2001). Motion direction, speed and orientation in
binocular matching. Nature 410, 690–694. doi: 10.1038/35070569

Vidal-Naquet, M., and Gepshtein, S. (2012). Spatially invariant com-
putations in stereoscopic vision. Front. Comput. Neurosci. 6:47. doi:
10.3389/fncom.2012.00047

Vlaskamp, B. N. S., Guan, P., and Banks, M. S. (2013). The venetian-blind effect: a
preference for zero disparity or zero slant? Front. Psychol. Percept. Sci. 4:836. doi:
10.3389/fpsyg.2013.00836

Watanabe, O. (2009). Stereo transparency in ambiguous stereograms generated by
overlapping two identical dot patterns. J. Vis. 9, 24.1–24.9. doi: 10.1167/9.12.24

Frontiers in Psychology | Perception Science January 2014 | Volume 4 | Article 1014 | 10

http://www.frontiersin.org/Perception_Science/
http://www.frontiersin.org/Perception_Science/archive


“fpsyg-04-01014” — 2014/1/6 — 20:09 — page 11 — #11

Goutcher and Hibbard Similarity matching in disparity measurement

Zhang, Z., Edwards, M., and Schor, C. M. (2001). Spatial interactions minimize
relative disparity between adjacent surfaces. Vision Res. 41, 2995–3007. doi:
10.1016/S0042-6989(01)00179-1

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 07 September 2013; accepted: 20 December 2013; published online: 08
January 2014.

Citation: Goutcher R and Hibbard PB (2014) Mechanisms for similarity matching in
disparity measurement. Front. Psychol. 4:1014. doi: 10.3389/fpsyg.2013.01014
This article was submitted to Perception Science, a section of the journal Frontiers in
Psychology.
Copyright © 2014 Goutcher and Hibbard. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

www.frontiersin.org January 2014 | Volume 4 | Article 1014 | 11

http://dx.doi.org/10.3389/fpsyg.2013.01014
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Perception_Science/archive

	Mechanisms for similarity matching in disparity measurement
	Introduction
	Materials and methods
	Psychophysical experiment
	Observers
	Apparatus
	Stimuli
	Procedure

	Cross-correlation model

	Results
	Psychophysical experiment
	Cross-correlator models

	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




