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Some results suggest that attentional selection in global/local processing occurs at two
stages: an early stage, where global and local information of a hierarchical stimulus is
filtered or weighted according to the current goal, and a late stage, where the contents
of the stimulus are bound to their respective level. Because it is assumed that binding
improves attentional selectivity, accuracy should increase with response time. To see
whether this prediction holds, a global/local experiment was conducted with hierarchical
letters as stimuli, and where selection difficulty was varied by blocking vs. randomizing
the target levels. The results show that accuracy indeed increased with response time,
although to a lesser extent under randomized levels. Because an increasing accuracy is
also compatible with a gradually improving selectivity, corresponding sequential sampling
models were fit to the distributional data. The results show that a discretely improving
attentional selectivity accounts better for the data. Moreover, the parameters of the
corresponding model indicate that randomizing the target level impaired the efficiency
of early selection as well as that of content-to-level binding.
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INTRODUCTION
Many objects in our environment not only consist of multi-
ple parts, but also have a hierarchical structure. For instance,
human bodies are composed, beside other parts, of arms, which,
in turn, are composed of hands, fingers, etc. An important ques-
tion therefore is how such objects are perceived and represented.
Does the visual system first process the parts and then use the
results to construct a mental representation of the whole object
(e.g., Wundt, 1874)? Or is the global shape of the object per-
ceived first and then parsed into its components, as assumed
by Gestalt psychologists (e.g., Wertheimer, 1922, 1923)? Great
progress concerning this question has been made after Navon
(1977) introduced hierarchical letters as stimuli (see Figure 1). By
presenting these stimuli and requiring his participants to either
identify the letter at the global or the local level, he found that
responses to global letters were faster and more reliable than those
to local ones. Moreover, the interference from global to local
was larger than vice versa. These results led Navon to propose
his perceptual global precedence hypothesis, which states that
global features are processed before local ones by early perceptual
mechanisms. Later studies, however, found that the level that is
preferentially processed depends, besides the participants’ exper-
tise (Beaucousin et al., 2011), on various stimulus factors such
as global/local size ratio, local density, retinal position, spatial
uncertainty, etc. (for an overview see Kimchi, 1992).

Furthermore, it has been shown that selective attention also
plays an important role for the relative strength of the stimu-
lus levels (e.g., Miller, 1981; Boer and Keuss, 1982). For instance,
Miller (1981) found that information from both levels is available
at the same time and processed in parallel. He therefore con-
cluded that a global advantage results from the fact that global

information is usually more salient and attention grabbing than
local information. For goal-directed behavior, however, response
selection cannot rely exclusively on stimulus-driven processes. If
this were the case, then the salient level would always determine
the response. In case of incongruent stimuli, i.e., stimuli whose
information at one level activates a response opposite to that acti-
vated by the information at the other level, this would always lead
to an error if the goal-relevant (target) level is less salient than the
irrelevant level. Therefore, selective attention is usually required
to favor information processing at the target level.

A possible mechanism for attentional selection is perceptual
filtering of relevant physical stimulus attributes (Desimone and
Duncan, 1995). Because local and global units differ in abso-
lute physical size, a spatial filter might be applied for selection
(Lamb and Robertson, 1988), operating analogous to a zoom
lens (Eriksen and St. James, 1986; Müller and Hübner, 2002).
By adjusting the diameter of the zoom lens, processing can be
biased in favor of the one or the other level. Moreover, global
and local information also differ in their spatial-frequency con-
tent. Accordingly, it has been hypothesized that spatial-frequency
filtering is used for selecting information from a certain level
(Ivry and Robertson, 1998). Such an idea is not unreasonable,
because it has been shown that attention can be focused on indi-
vidual spatial-frequency channels (e.g., Hübner, 1996a,b). Thus,
different stimulus features seem to be appropriate for attentional
filtering.

From what we have considered so far, a simple model that
might account for many of the reported results seems to be
straightforward. Information extracted from either stimulus level
feeds simultaneously into a decision process and the relative con-
tribution of the individual levels to the decision depends on
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FIGURE 1 | Two examples of the hierarchical letters presented in the

experiment. Both stimuli are incongruent. In the experiment the stimuli
were presented in white on a black background.

stimulus-dependent as well as intentional factors. Goal-directed
behavior is accomplished by biasing, i.e., by adjusting early
attentional filters in such a way that information at the target
level is processed preferentially and, consequently, determines the
response.

However, such a biasing account alone is not sufficient to
explain all available data. The reason is that early perceptual fil-
tering is not effective under all circumstances. Filtering might be
sufficient if stimulus position and target level remain constant
across trials, because in this case it is easy to adjust the zoom
lens or a spatial-frequency filter in such a way that information
at the target level dominates. In other situations, however, filter-
ing is not sufficient for a reliable performance. One reason is that
attention is not fully under voluntary control and also depends,
among others, on its previous state. For instance, if the target level
varies randomly across trials, so that individuals have frequently
to switch between levels, then attention can be adjusted only sub-
optimally, which is reflected by a reduced performance and an
increased interference between the levels (Hübner, 1997, 2000).

Considering these selection difficulties and other results,
Hübner and Volberg (2005) concluded that a simple filter
model, as outlined above, is insufficient as a general account of
global/local processing, and that, to guarantee a reliable goal-
directed performance, an additional mechanism is required. In
their content-to-level binding (CLB) theory they proposed such
a mechanism. They assumed that, at the beginning of stimu-
lus processing, and possibly modulated by filtering or biasing,
the contents of the different levels in a hierarchical object are
identified and represented independently of their respective level.
Consequently, to obtain a complete object representation that can
be used, for instance, to resolve response conflicts, the contents
have subsequently to be actively linked to their respective level.
This view also agrees with neuroscientific results showing that the
processing of information at early stages is affected by the output
of processes at later stages (e.g., Hon et al., 2009).

The idea of content-to-level binding is specifically supported
by results from experiments in which participants had to indi-
cate the identity of the letter at a pre-specified target level of

a hierarchical letter that was masked shortly after its presenta-
tion (Hübner and Volberg, 2005). If the CLB theory is right,
then masking should disturb the binding process, which, in
turn, should produce binding errors between levels and identities
(Treisman and Gelade, 1980). Consequently, participants should
frequently report the letter at the non-target level, which is indeed
the case (e.g., Hübner and Volberg, 2005; Flevaris et al., 2010;
Hübner and Kruse, 2011).

This short overview shows that global and local information of
a hierarchical object are processed in parallel, and that the relative
strength of processing in a given pathway depends on stimulus
features as well as on attentional adjustments. Moreover, if goal-
directed response selection is difficult, e.g., because attentional
biasing or filtering is ineffective, a further selection process is
needed. According to CLB theory, this process binds the differ-
ent contents to their respective level. Thus, it seems that there
are two stages of stimulus selection: an early stage and a late
stage. Interestingly, two selection stages have also been proposed
for the flanker task (Gratton et al., 1992; Hübner et al., 2010) to
account for the phenomenon that accuracy for incongruent stim-
uli usually increases during response selection. As far as I know,
global/local processing has not yet been analyzed in this respect.
Therefore, one aim of the present study was to investigate whether
accuracy increases in this task as well. As we will see, this is indeed
the case, which indicates that stimulus selectivity (i.e., the abil-
ity to restrict perceptual processing to the task-relevant item)also
improves during global/local processing.

A further aim of the present study was then to investigate how
stimulus selectivity improves. As already mentioned, according to
the CLB theory, selectivity increases abruptly. After stimulus onset
attentional selectivity obtained by filtering or biasing is relatively
low, but then advances due to the output of a late stage, where
stimulus contents are bound to their levels. However, one might
question that selectivity improves in a single step. An alternative
idea is that selectivity increases gradually. For instance, one could
assume that early mechanisms, i.e., perceptual filtering, improve
steadily during stimulus processing. The questions of whether a
discrete or a gradual increase of selectivity accounts better for
the performance in global/local tasks should be answered by
applying corresponding sequential sampling models. The discrete
increase was represented by the dual-stage two-phase (DSTP)
model (Hübner et al., 2010), whereas the “shrinking-spotlight”
(SSP) model (White et al., 2011) exemplified the gradual increase.

The DSTP model (Hübner et al., 2010), which is described in
detail in the Modeling section, includes an early and a late stage
of attentional stimulus selection (for a graphical illustration see
Figure 5). At the early stage, information is weighted according
to its relevance. For instance, if the target level is local, then the
attentional weight for information transmitted through the “local
channel” is increased relative to that for the “global channel.” The
weighted information determines the initial rate of evidence accu-
mulation. Selectivity is then further improved by an additional
(late) stimulus-selection process that proceeds by content-to-level
binding. If successful, the rate of evidence is increased, as in our
example in Figure 5.

The SSP model (White et al., 2011) has specifically been devel-
oped to account for flanker-task data (see also Hübner and Töbel,
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2012). However, the metaphor of a gradually shrinking spotlight
is similar to the idea of a zoom lens and, therefore, can easily be
adapted to the global/local task. For instance, if the target level
is local, then one could assume that the attentional “spotlight”
initially encompasses the global shape of the stimulus and then
shrinks until it encloses only a single local item. Due to the shrink-
ing, selectivity improves continuously. For changing the focus of
attention in the opposite direction, one would have to assume that
the “spotlight” can also expand. In any case, more abstractly, one
can assume that selectivity generally improves gradually in the
direction of the target level (for a more detailed description of
the SSP model see below).

EXPERIMENT
To get a deeper insight into the dynamics of information rep-
resentation and selection in global/local tasks and the involved
processes an experiment was designed, in which the participants
had to categorize the letter at a pre-cued target level, and where
task difficulty was varied by blocking vs. randomizing the tar-
get level. It was expected that information selection is generally
less efficient under randomized levels (Hübner, 1997; Hübner
et al., 2001), which should be observable by an increased interfer-
ence (congruency effects) between the levels. Moreover, accuracy
should improve more slowly with RT when the target level varies
across trials. Whether this is the case should be examined by
considering so-called conditional accuracy functions (CAFs).

To examine how selectivity changes during processing, the
DSTP model and the SSP model should be fit to the distributional
data. If stimulus selectivity improves gradually, then the SSP
model should generally fit the data better than the DSTP model.
Given this is not the case, then, with respect to the DSTP model it
was expected that late selection (content-to-level binding) plays a
greater role when target level varies across trials, which should
be reflected by differences between the corresponding model
parameters.

METHOD
Participants
17(mostly psychology) students from the Universität Konstanz,
Germany, participated in the experiment. All had normal or
corrected-to-normal vision, were right-handed by self-report,
and were paid 8 C for their participation. One student was
excluded from analyses because of his high error rate (>25%).
The remaining 16 participants (13 females) had a mean age of 25
years. The experiment was performed in accordance with the ethi-
cal standards laid down in the 1964 Declaration of Helsinki and its
later amendments. In agreement with the ethics and safety guide-
lines at the Universität Konstanz, we obtained a verbal informed
consent statement from all individuals prior to their participation
in the study. Potential participants were informed of their right to
abstain from participation in the study or to withdraw consent to
participate at any time without reprisal.

Apparatus and Stimuli
Stimuli were presented on a 18′′ color-monitor with a resolution
of 1280 × 1024 pixels and a refresh rate of 60 Hz. Stimulus pre-
sentation as well as response registration was controlled by the
same personal computer (PC).

For constructing hierarchical letters (for examples see
Figure 1), four different letters (A, S, H, E) were used and
divided into two response categories (E, S and A, H). By com-
bining all letters, 16 hierarchical letters were created, where
global letters were constructed from identical local letters in a
5 × 5 grid. A stimulus was congruent if the letters at both lev-
els belonged to the same response category; otherwise it was
incongruent. The size of the global letters was 4.48◦ of visual
angle horizontally and 5.72◦ vertically. The respective size of
the local letters was 0.72◦ × 1.08◦. The local letters were con-
structed by outlines. Stimuli were presented in white on a black
background.

Procedure
Participants were seated at a viewing distance of approximately
60 cm in front of the screen. A trial started with the presenta-
tion of a cue (the letter “l” or “g” to indicate a local or global
target level, respectively) at the center of the screen for 300 ms,
followed by a blank screen for 400 ms. After the presentation of a
fixation cross for 300 ms and a subsequent blank screen of 100 ms
the stimulus was presented for 100 ms at the center of the screen.
The next trial started 1000 ms after the response. An illustration
of the procedure is shown in Figure 2. The task of the participants
was to identify the response category of the letter at the cued tar-
get level by pressing one of two response buttons of a computer
mouse. After some training (1 block of 32 trials), 28 blocks of
64 trials for each participant were run in a single 1 h session. This
resulted in 224 trials per condition. Blocks with constant-level and
randomized-level alternated. The block type at the beginning was
balanced across participants.

RESULTS AND DISCUSSION
Responses faster than 100 ms or slower than 1200 ms were
excluded from data analysis (<0.15% of all data).

The mean latencies of correct responses were subjected to
a three-factor ANOVA for repeated measurements on the fac-
tors block type (constant level, or randomized level), target
level (global, or local), and congruency (congruent, or incon-
gruent). The analysis revealed significant main effects of block
type, F(1, 15) = 62.8, p < 0.001, η2

p = 0.807, and congruency,

F(1, 15) = 98.5, p < 0.001, η2
p = 0.868. Responses were faster for

a constant target level, compared to a randomized one (511 vs.
553 ms), and for congruent compared to incongruent stimuli

FIGURE 2 | The procedure applied in the experiment. In this example
the cue (g) indicates global as target level.
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(521 vs. 543 ms). However, there was also a significant interac-
tion between block type and congruency, F(1, 15) = 14.5, p < 0.01,
η2

p = 0.492, indicating that the congruency effect was smaller
under constant levels, compared to randomized ones (�15 vs.
�29 ms). Moreover, there was an interaction between target level
and congruency, F(1, 15) = 10.8, p < 0.01, η2

p = 0.420. The con-
gruency effect was smaller for the local compared to the global
target level (�18 vs. �28 ms).

Mean error rate was 8.81%. Subjecting the error rates to
an ANOVA of the same type as for the mean RTs also
revealed significant main effects of block type, F(1, 15) = 10.6,
p < 0.01, η2

p = 0.415, and congruency, F(1, 15) = 93.7, p < 0.001,

η2
p = 0.862. The error rate was smaller when the target level was

constant, compared to when it was randomized (7.87 vs. 9.785%),
and smaller for congruent than for incongruent stimuli (6.15 vs.
11.5%). However, congruency interacted significantly with block
type, F(1, 15) = 5.28, p < 0.05, η2

p = 0.260, indicating that the
congruency effect was smaller for constant target levels than for
randomized ones (�4.02 vs. �6.63%). Finally, the three-way
interaction between all factors was significant, F(1, 15) = 6.66,
p < 0.05, η2

p = 0.308. It indicates that the congruency effect was
larger for the global target level than for the local one, but
only under randomized levels(constant: global �3.95% vs. local
�4.09%; randomized: global �8.56% vs. local �4.70%).

Obviously, there was no global advantage in the experiment,
which is in line with other studies using similar stimulus con-
ditions (e.g., Volberg et al., 2009). One crucial condition was
that the stimuli were presented at the center of the screen.
Moreover, the applied outline letters possess a relatively high pro-
portion of high spatial frequencies (Hübner and Kruse, 2011).
Together, these features favored local processing, so that there
was even a small but reliable local advantage in RT with respect
to congruency. In the error rates the local advantage in congru-
ency occurred only under randomized levels. Furthermore, as
expected, randomizing the target levels generally reduced perfor-
mance in RT and the error rates.

Distributional data
For inspection and modeling, cumulative distribution functions
(CDFs) were constructed for the latencies of correct responses.
Error data were represented by conditional accuracy functions
(CAFs), because they directly show how accuracy (selectiv-
ity)varies with RT, and because, in contrast to CDFs for error RTs,
CAFs can also be computed for participants that produce few or
no errors in some conditions, e.g., for congruent stimuli.

CDFs were constructed for each block type (constant tar-
get level, randomized target level), target level (global, local),
and congruency condition (congruent, incongruent) by quantile-
averaging (0.1, 0.3, 0.5, 0.7, and 0.9) the corresponding data
(Ratcliff, 1979). By this procedure, the data for each participant,
condition, task, and response type were sorted into 6 bins com-
prising 10, 20, 20, 20, 20, and 10% of the data, respectively. The
resulting CDFs are shown in Figure 3. As can be seen, for most
conditions the functions diverge, which is similar to the results
obtained with the flanker task (Hübner et al., 2010) and shows
that the congruency effect in the latencies increased with RT.
Furthermore, it is obvious that randomizing the targets level had

FIGURE 3 | The data points represent the cumulative distribution

functions for the RTs of correct responses for the different conditions

in the experiment, whereas the solid lines show the respective

performance of the DSTP model. The error bars represent the
95%-confidence intervals of the theoretical function, estimated from the
results of the jackknife procedure.

its main effect on slower responses. The fastest correct responses
were hardly affected.

CAFs were constructed by sorting the data of each partici-
pant, condition, and task into four 25% bins, and by calculating
the mean RT and proportion of correct responses for each bin.
The obtained values were then averaged across participants (e.g.,
Ridderinkhof, 2002). The CAFs are shown in Figure 4. It can
be seen that accuracy was lowest for the fastest responses to
incongruent stimuli. However, it increased with RT and almost
approached the same high level as the accuracy for congruent
stimuli, at least under constant target levels. In contrast, when the
target level was randomized, some congruency effect remained
also for slow responses. Together, these data demonstrate that
selectivity also improves with RT in the global/local task, although
the improvement is limited under randomized levels.

MODELING AND DISCUSSION
The DSTP model and the SSP model were fit to the distribu-
tional data for assessing model performance and for estimating
the respective parameter values for the different conditions. To
understand the specific roles of the different model parameters,
a more detailed description of the respective model is provided
before the corresponding fit results are reported.

The DSTP model
The core of the DSTP model is response selection, which is
divided into a first and a second phase (Phase 1 and Phase 2),
each represented by a diffusion process (cf. Ratcliff, 1978; Ratcliff
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FIGURE 4 | The data points represent the conditional accuracy

functions for the different conditions in the experiment, and the error

bars show the 95%-confidence intervals. The solid lines represent the
corresponding performance of the DSTP model.

and Rouder, 1998) RS1 and RS2, respectively (for a graphical
illustration see Figure 5). Basically, a diffusion process is charac-
terized by a drift rate parameter, reflecting the evidence available
for responses A and B, and by two corresponding threshold
parameters A and –B. Noisy samples of evidence are accumulated
in time, beginning at state X0 until threshold A or –B is reached,
which then triggers the corresponding response. It is assumed that
X0 = 0, and that A and B represent the correct and wrong button
press, respectively.

In the first phase of response selection, evidence (for driving
RS1) is provided by an early stage of information selection, where
global and local stimulus features (e.g., spatial areas or spatial fre-
quencies) or corresponding channels are biased or weighted in
favor of the target level. The product of stimulus information and
the respective attentional weights are represented by component
rates μtl and μnl. The parameter μtl represents the rate of evi-
dence provided by the target level in favor of the correct response,
whereas μnl stands for the evidence contributed by the informa-
tion at the non-target level for that response. Both rates sum up
to the total rate μRS1 for process RS1, i.e., μRS1 = μtl + μnl. The
sign of μnl is positive if the stimulus is congruent, but negative
if it is incongruent. Thus, the overall rate for RS1 is reduced for
incongruent stimuli, compared to congruent ones, and can even
be negative.

If response selection would simply proceed by process RS1
alone, then accuracy would remain at a relatively low level.
However, as we have seen, at least for constant target levels, accu-
racy improved substantially with RT (see Figure 4). To model
this improvement, a further and more sophisticated late-selection

process (here, content-to-level binding, CLB) is running in paral-
lel with RS1. The dynamics of late selection is also implemented
as a diffusion process with rate μCLB. It is assumed that it binds
either C, the content of the target level, or D, the contend of the
non-target level to the target level, depending on whether it hits
threshold C or –D, respectively. Thus, selecting D by late selec-
tion represents a binding error, i.e., the event that the content of
the non-target level was erroneously linked to target level.

If the late-selection process finishes before a response is
selected by RS1, then, from that point onwards, response selec-
tion enters Phase 2 and continues by process RS2 (see Figure 5).
The rate of RS2 depends on the binding result. If the information
at the target level was linked to the target level, then the rate is
μRS2. Due to the assumed high quality output of the binding pro-
cess, the rate for RS2 is usually higher than that for RS1 in Phase 1.
Such a situation is shown in the example in Figure 5. In case the
information at the non-target level was erroneously linked to the
target level, the rate depends on the stimulus type. If the stimulus
is congruent, then the rate is also μRS2. However, if the stimulus
is incongruent, then the rate μRS2 is negative, which produces an
error with high probability.

For the specific model version applied in this study, the num-
ber of free parameters was reduced by assuming symmetric
thresholds for response and information selection. Consequently,
the model has 7 parameters: Thresholds A = B for response
selection in Phase 1 and Phase 2; the component rates for the
target and non-target level, μtl and μnl; the rate μRS2 for RS2;
the rate, μCLB, and thresholds C = D for the binding pro-
cess; and finally, a non-decisional parameter, ter , representing the
time consumed by non-decisional processes (filtering and motor
processes).

Fit procedure
A computer-simulation version of the DSTP model was fit to the
CDFs for correct responses and to the proportion of errors in
the bins of the CAF for a given condition. In all, for each of the
four main conditions (target-level × block type)there were 6 bins
for correct responses to congruent stimuli, 4 bin for errors in the
congruent condition, 6 bins for correct responses to incongruent
stimuli, and 4 bins for errors in the incongruent conditions.

The fit procedure was the same as in Hübner et al. (2010).
Specifically, the PRAXIS algorithm (Brent, 1973; Gegenfurtner,
1992) was applied to find parameter values that minimized the G2

(Wilks likelihood ratio chi-square) squared statistics (cf. Ratcliff
and Smith, 2004):

G2 = 2
J∑

i=1

Npi ln

(
pi

πi

)
,

In this equation, J is the number of bins, pi is the proportion
of observations in the ith bin, and πi is the proportion in this
bin predicted by the considered model. N is the number of all
observations. For computing the degrees of freedom (df ) of the
goodness-of-fit statistics, let J be the number of bins for each main
condition, respectively, and M the number of model parameters.
We then have df = 2(J − 1) − M. For the DSTP model with 7
parameters we have df = 2(10 − 1) − 7 = 11.

www.frontiersin.org February 2014 | Volume 5 | Article 61 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Hübner Selectivity in global/local processing

FIGURE 5 | A graphical illustration of the dual-stage two-phase (DSTP)

model. An early stage of stimulus selection (i.e., sensory filtering/weighting)
provides component rates according to the information at the target level
(μtl ) and at the non-target level (μnl ), which sum up to the drift rate μRS1 for
Phase 1 of response selection. Because the stimulus is incongruent in this
example, μnl is negative. In parallel with response selection in Phase 1, a late
stimulus selection process (CLB) runs with rate μCLB until it reaches one of

the two boundaries. Here, the upper boundary was hit, which leads to the
binding of the target letter to the target level. After binding, response
selection enters Phase 2, which is characterized by a new (higher) drift rate
μRS2. The decision is completed as soon as the response selection process
hits one of the two response boundaries reflecting the choice alternatives.
The duration for the non-decisional processes (sensory filtering, motor
execution, etc.) is captured by the parameter ter .

For N the average number of valid trials per person in the
corresponding fit condition was used. This was uncritical in the
present case, because G2 was not appropriate for significant test-
ing, and merely served as goodness-of-fit measure (cf. Ratcliff and
Smith, 2004). Starting from different sets of parameter values to
avoid local minima, each fit was continued until G2 was mini-
mized. For each of the required several hundred cycles, 8 × 105

trials were simulated.
To be able to test parameter differences between the condi-

tions, some measure of parameter variability was needed. One
way would have been to fit the model to individual data. However,
the data of a given participant are rather noisy, which makes
model fitting difficult. Therefore, a jackknife procedure (e.g., Gray
and Schucany, 1972) was applied. By this procedure a jackknife
subsample Pi of parameter values was computed for each partic-
ipant i (i = 1 · · · N) by temporarily omitting participant i and by
fitting the model to the averaged data computed from the remain-
ing N − 1 participants. That is, the set of parameter values Pi

are the parameters obtained by fitting the model to the average
data including all participants except participant i. This proce-
dure was repeated for each subject and the mean values across
these subsamples were then taken as estimates of the parame-
ters. The subsamples for each parameter were then entered into
an ANOVA for repeated measurements on the factors block type
(constant level, or randomized level), and target level (global, or
local). The resulting artificially large F-values had then to be cor-
rected according to the formula: Fc = F/(N − 1)2, where Fc is the
corrected F value (Ulrich and Miller, 2001).

Fit results for the DSTP model
The theoretical CDFs for correct responses and the CAFs are
shown as line graphs in Figures 3 and 4, respectively. The theo-
retical data were computed by simulating the model performance
with the means of the estimated parameter values, which are
shown, together with the goodness-of-fit measures in Table 1. As
can be seen, the DSTP model fit the data rather well.

If we consider the rate parameters for Phase1 of response
selection, then it is clear that the component rate, μtl, for the
information at the target level is larger when the target level is
global compared to local, F(1, 15) = 19.1, p < 0.001, η2

p = 0.569.
The component rate, μnl, for the non-target level differs as well
between the levels, F(1, 15) = 8.34, p < 0.05, η2

p = 0.357. It is also
larger for the global target level than for the local one. Here, how-
ever, this means that information at the local non-target level has
a stronger effect on the global target level than vice versa, and
corresponds to the corresponding interactions in the mean data.
Taken together, both effects largely outweigh each other, which
explains why there was no global advantage. Although informa-
tion at the global target level produced a larger early activation,
information at the local non-target level was more difficult to
ignore.

The parameters also demonstrate that the component rates
for the non-target level are larger for randomized target levels,
F(1, 15) = 12.3, p < 0.01, η2

p = 0.450, which reflects the fact that
the interference between the levels was generally increased when
the participants had frequently to switch attention between the
levels.

Frontiers in Psychology | Perception Science February 2014 | Volume 5 | Article 61 | 6

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Hübner Selectivity in global/local processing

Table 1 | Parameter estimates obtained by fitting the DSTP model to the distributional data of the four conditions in the experiment.

Parameters

Target level µtl µnl A/B µCLB C/D µRS2 ter G2 df BIC

CONST.

Global 0.1501 0.0261 0.0597 0.3160 0.0904 1.204 0.3018 7.90 11 50.6

Local 0.1301 0.0225 0.0619 0.3210 0.0865 1.020 0.2917 10.4 11 53.1

RAND.

Global 0.1431 0.0440 0.0648 0.1986 0.0884 0.938 0.2920 14.9 11 57.5

Local 0.1300 0.0297 0.0651 0.2190 0.0861 0.971 0.2977 14.1 11 56.7

L*** L*; B** B***; L***; B×L*** B***; L*; B×L*

μtl , component rate for the target level; μnl , component rate for the non-target level; A/B, response thresholds; μCLB, rate for level selection; μRS2, rate for response

selection in Phase 2; ter , mean non-decision time (in seconds); G2, Wilks likelihood ratio chi-square; df, degrees of freedom; BIC, Bayesian information criterion. L,

Level factor; B, block-type factor, ***p < 0.001, ***p < 0.01, *p < 0.05.

The values of the parameter of late stimulus selection, μCLB,
show that the rate was reduced when the target levels were
randomized, F(1, 15) = 735, p < 0.001. This suggests that level
uncertainty not only impaired early selection (filtering), but also
content-to-level binding. The increased difficulty of binding is
also reflected by the confusion errors. A closer look at the details
of the simulations revealed that level confusions were practically
absent in the constant-level condition (<0.2%), but occurred
on about 1% of the trials when target level was randomized.
Although the latter rate is still relatively low, it should be noted
that task confusions almost always produced errors for incongru-
ent stimuli and mainly occurred for slow responses. In contrast,
task confusions had no negative effects for congruent stimuli.
Thus, task confusions are one reason why, under randomized lev-
els, accuracy for slow responses to incongruent stimuli did not
reach the same high level than that for congruent ones.

The rate for late selection also differed between the target
levels, F(1, 15) = 48.9, p < 0.001. It was higher for the local tar-
get level. Moreover, there was a significant two-way interaction
between target level and block type, F(1, 15) = 22.3, p < 0.001,
indicating that binding the global target level to its information
suffered more from a randomized target level than the binding of
the local target level to its information.

Finally, concerning the rate, μRS2, for response selection in
Phase 2, it was, on average, larger for the global than for the
local target level, F(1, 15) = 5.27, p < 0.05, and reduced under
randomized target levels, F(1, 15) = 16.8, p < 0.001. However,
there was also a significant interaction between these two factors,
F(1, 15) = 7.66, p < 0.05, showing that randomizing the target
level had a larger negative effect for the global than for the local
target level. As a result, under randomized target levels the rate
for the global level was even numerically smaller than that for the
local one.

Taken together, the modeling results not only nicely reflect the
mean data, they also allow one to interpret the results in more
detail. It can be seen that information at the global level strongly
contributed to response selection in both phases. However, local
information intensely interfered with global information, which
outweighed the stronger global activation. Moreover, with respect
to late selection, the global level suffered more from randomized

target levels than the local level. This means, according to the CLB
theory, that the level-to-content binding was less efficient for the
global level, compared to local, when the target level varied across
trials. The process was not only slower, its output rate for response
selection was also smaller, compared to the local level.

The SSP model
According to the SSP model (White et al., 2011) stimulus selec-
tivity improves gradually with RT. Similar to the DSTP model,
it assumes that response selection proceeds by a diffusion pro-
cess, and that each item provides some perceptual evidence p in
favor of its associated response. For the present simulations it was
assumed that there were only two effective items: the global let-
ter, and the local letter. The weight for each letter is determined
by the proportion of attention allocated to the level of that let-
ter. Selectivity, and consequently the drift rate for incongruent
stimuli, improves continuously as the relative amount of attention
allocated to the target level is gradually increased over time. This is
achieved by shrinking the diameter of the attentional “spotlight”
at a linear rate, rd, from its initial size, sd0, to a minimum (0.001).
Because the total amount of attention always sums up to 1, perfor-
mance for congruent stimuli does not change with RT. Altogether,
the SSP model has 5 free parameters (see Table 2).

For the present objective, the important characteristic of the
model is that the rate for response selection increases gradually
with time, at least for incongruent stimuli, due to an improv-
ing selectivity of attention. Attention might thereby operate on
stimulus location, spatial frequencies, or even both.

Fit results for the SSP model
The SSP model was fit to the distributional data with the same
procedure as the DSTP model. The obtained mean parame-
ters and the corresponding goodness-of-fit measures are given
in Table 2. Obviously, the fit of the SSP is generally worse (in
terms of G2) than that for the DSTP model. In Figures 6 and 7
the obtained theoretical CDFs and CAFs are shown as solid line
graphs, respectively. As can be seen by inspecting the CAFs, the
SSP model has some difficulties to adapt to the different slopes in
the different conditions. It seems that the gradual-improvement
mechanism is not very flexible in this respect. Tables 1 and 2

www.frontiersin.org February 2014 | Volume 5 | Article 61 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Hübner Selectivity in global/local processing

Table 2 | Parameter estimates obtained by fitting the SSP model to the distributional data of the four conditions in the experiment.

Parameters

Target level p A/B rd sd0 ter G2 df BIC

CONST.

Global 0.2754 0.0546 0.0319 1.340 0.3191 34.3 (32.8) 13 (11) 64.8 (75.5)

Local 0.2654 0.0549 0.0316 1.354 0.3182 27.5 (26.1) 13 (11) 58.0 (68.8)

RAND.

Global 0.2512 0.0605 0.0135 1.143 0.3124 41.5 (27.9) 13 (11) 72.0 (70.5)

Local 0.2165 0.0574 0.0298 1.345 0.3229 24.0 (22.3) 13 (11) 54.5 (64.9)

B* B*; L*; B×L*

p, perceptual input; A/B, response thresholds; rd , rate of decrease in spotlight; sd0, spotlight width; ter , mean non-decision time (in seconds); G2, Wilks likelihood

ratio chi-square; df, degrees of freedom; BIC, Bayesian information criterion. The numbers in parenthesis represent the fit performance for the alternative SSPc

model (see text for details). L, Level factor; B, block-type factor, *p < 0.05.

FIGURE 6 | The data points show the cumulative distribution functions

for the RTs of correct responses for the different conditions in the

experiment, and solid lines represent the corresponding performance

of the SSP model. The error bars represent the 95%-confidence intervals
of the theoretical functions, estimated from the results of the jackknife
procedure. The dashed lines show the performance of the SSPc model
(see Text for details).

also provide the BIC (Bayesian information criterion) model-
selection statistics (Schwarz, 1978), which takes the number of
model parameters into account. According to this statistics, the
model with the smaller BIC should be preferred. As can be seen,
because the SSP has fewer free parameters than the DSTP model,
its BIC is slightly superior for one condition (local target level
under randomized levels).

The statistical analysis of the parameters revealed (see Table 2)
that the perceptual evidence provided by the letter items was sig-
nificantly lower under randomized than under constant target

FIGURE 7 | The data points represent the conditional accuracy

functions for the different conditions in the experiment, and the error

bars show the respective 95%-confidence intervals. The solid and
dashed lines represent the performance of the SSP model and SSPc
model, respectively.

levels, F(1, 15) = 4.64, p < 0.05, η2
p = 0.236. Moreover, the rate,

rd, at which the spotlight shrunk was reliably smaller in the ran-
domized condition, F(1, 15) = 7.71, p < 0.05, η2

p = 0.339, and
for the global relative to the local level, F(1,15) = 5.33, p < 0.05,
η2

p = 0.262. However, there was also a significant interaction
between block type and target level, F(1,15) = 4.64, p < 0.05,
η2

p = 0.236, indicating that the shrinking rate was especially small
for the global level under randomized target levels. Inspection of
Figure 7 reveals that for this condition the SSP model produced a
relatively low accuracy for fast responses to incongruent stimuli.
For slow responses, however, the model predicts the same high
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accuracy than for congruent stimuli, which substantially differs
from the data and leads to the relatively poor fit for this condition.

That accuracy for incongruent stimuli converges to that
for congruent ones is an inherent feature of the SSP model.
Accordingly, it cannot account for non-converging CAFs. In con-
trast, as we have seen, the DSTP model has no problems in this
respect. This is due, among others, to the possibility of content-
to-level binding errors that can occur at the late stage of stimulus
selection. The late binding mechanism nicely corresponds to the
idea of an abruptly changing selectivity. However, one of the
reviewers suggested that non-converging CAFs might also be
explained by a gradual-improvement account if one assumes goal
(target level) confusions. For the present case, one could assume
that the goal was forgotten on some trials during the cue-stimulus
interval, and that, therefore, the non-target level was processed,
which produced errors also for slow responses. That performance
was reduced mainly for the global target level can be explained
by additionally assuming that shrinking the spotlight to the local
level was easier, which motivated the participants to select it by
default.

To see how the SSP model performs if such a goal-confusion
mechanism is included, I extended the model accordingly. First of
all, an additional parameter was implemented that represents the
probability of goal confusion. Furthermore, because the shrinking
rate differed significantly between the target levels, two instead of
one such parameters were needed. That is, I used one parameter,
rdt , for representing the shrinking rate in case the target level is
processed, and another parameter, rdn, if the non-target level was
erroneously chosen. Thus, the extended model, which I refer to as
“SSPc” model, has 7 parameters.

Fitting the SSPc model to the averaged data revealed a goal-
confusion rate of 9.9% for the global condition under randomized
levels. The shrinking rates for the global and local level in this
condition were 0.0117 and 0.0312, respectively. For the other
three conditions the confusion rate was practically zero. The
dashed lines in Figures 6 and 7 show the corresponding theoret-
ical functions. Obviously, the fit to the CAF for the incongruent
global condition under randomized levels improved substantially.
Accuracy remained relatively low even for slow responses and did
not approach that for responses to congruent stimuli.

In Table 2 the performance measures for the SSPc model are
represented by the values in parenthesis. As can be seen, the
goodness-of-fit (G2) improved substantially for the critical third
conditions, but improved only slightly for the other conditions.
Nevertheless, performance remained generally worse than that
of the DSTP model. Moreover, due to the additional two param-
eters, the BIC values are now generally larger for the SSPc model.
Thus, the improvement in fit by assuming confusions did not
outweigh the overall costs for the additional parameters.

GENERAL DISCUSSION
The present study was concerned with the question of how rel-
evant information is selected from hierarchical objects. Based
on previous results, it was hypothesized that attentional selec-
tivity should improve during response selection. Consequently,
accuracy for incongruent stimuli should increase with RT. To
examine whether this prediction holds, a global/local experiment

was conducted, in which the difficulty of information selection
was additionally varied by blocking vs. randomizing the target
level. The obtained CAFs (conditional accuracy functions) clearly
show that accuracy for incongruent stimuli was low after stimulus
onset, but then increased with RT (see Figure 4). This indicates
that attentional selectivity improved during response selection.

According to the DSTP model (Hübner et al., 2010) the
increase in selectivity results from two selection stages: an early
filtering stage with low selectivity and a late stage with high
selectivity. For the present task it was further assumed that
late selection proceeds by content-to-level binding. In any case,
stimulus selectivity improves discretely in the DSTP model.
However, an increasing accuracy with RT could also be due
to a gradually improving selectivity, as assumed by the SSP
model (White et al., 2011). Therefore, to investigate which
account is more appropriate, the two models were fit to the
data. Comparing the performance measures of the two mod-
els (see Tables 1 and 2) revealed that the goodness-of-fit (G2)
of the SSP model was generally worse than that of the DSTP
model. However, because the SSP model has fewer param-
eters, the model-selection criterion BIC was slightly smaller
in one condition (local target level under randomized lev-
els). Nevertheless, taken all conditions together, the DSTP
model accounts better for the global/local data than the SSP
model.

The DSTP model outperformed the SSP model especially in
the global condition under randomized target levels. On cor-
responding incongruent trials accuracy did not approach that
for congruent ones, even for the slowest responses. According
to the DSTP model, one reason for this result are level confu-
sions. The reduced efficiency of late selection under a variable
target level caused an increased number of level confusion
(binding errors). That is, on some trials the letter at the non-
target level was selected for response selection in Phase 2,
which almost always produced a slow error. That such bind-
ing errors indeed occur in global/local tasks has been demon-
strated in various studies by applying a masking procedure (e.g.,
Hübner and Volberg, 2005; Flevaris et al., 2010; Kruse and
Hübner, 2012). The fact that the CAFs for the local target level
converged in the present case, despite randomization, can be
explained by assuming that level-to-content binding was eas-
ier for the local level, which largely prevented binding errors.
This assumptions is also supported by the variation of other
parameters.

Whereas the possibility of late selection errors is a basic prop-
erty of the DSTP model, the SSP does not have such a mechanism.
Therefore, it generally predicts the same high accuracy for slow
responses to congruent and incongruent stimuli, which, obvi-
ously, was empirically not the case. However, it was possible to
implement a similar mechanism by assuming that the target level
(goal) can completely be forgotten on some trials and that the
easier level is then selected by default. With this extension the
fit improved substantially, but only for the critical condition. For
the other conditions the possibility of level confusions had prac-
tically no effect. As a consequence, the overall improvement of
fit performance did not outweigh the costs (in terms of BIC) for
the additionally needed parameters. Thus, even after including a
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mechanism for level confusion in the SSP model, the DSTP model
remains the superior model.

The fit of the DSTP model to the data provides a detailed pic-
ture of the contribution of the assumed processes. By considering
the component rates for local and global information, it is possi-
ble to assess the contributions of the levels to response selection
in its first phase, i.e., before late stimulus selection took place.
The size of these parameters reflect the efficiency of sensory fil-
tering or target-level biasing at the early stage of information
selection. As can be seen in Table 1, the component rates for
the target levels were substantially larger than those for the non-
target levels. Nevertheless, there was also a difference between
the levels. If the target level was global, then the correspond-
ing rate was larger than when it was local, which indicates that
more attention was allocated to the former than to the latter
level. However, at the same time, the component rate for the
local non-target level was larger than that for the global non-
target level. This means that irrelevant local information was
more difficult to filter out or to ignore than irrelevant global
information.

Randomizing the target levels affected both early and late stim-
ulus selection. Filtering out irrelevant information was generally
more difficult under this condition. That late selection was more
difficult when the target level changed frequently is reflected by
the decreased rates for the late stimulus-selection process as well
as by a reduced output rate of that stage, i.e., by the decreased
rates for response selection in Phase 2. The negative effect was
especially strong for the global target level.

Taken together, the present data clearly show that stimu-
lus selectivity improves during response selection in global/local
tasks. Concerning the question of how this improvement devel-
ops in time, it was found that the DSTP model, which assumes a
discrete improvement, produced a better fit than the SSP model,
which exemplifies a gradual improvement. The discrete selection
mechanism of the DSTP model and the corresponding possibil-
ity of binding errors accounted especially well for the decrease
in accuracy under randomized target levels. However, this fea-
ture does differentiate qualitatively between the two improvement
accounts. After extending the SSP model by a mechanism that
produces goal (target level) confusions, it also predicted a simi-
lar reduction in accuracy, although its overall fit remained poorer
than that of the DSTP model. Interestingly, the goal-confusion
mechanism also comprises a discrete selection step, but at an
earlier stage than assumed by the DSTP model. Thus, the ques-
tion of whether level confusions occur before or during response
selection or both offers a further way to investigate how stimulus
selectivity improves. Up to know, assuming a discrete improve-
ment of attentional selectivity accounts best for the performance
in the global/local task, at least quantitatively and for the present
study. Future research will show whether this predominance can
be generalized to other phenomena in global/local processing
such as level-repetition effects, hemispheric asymmetries, etc.
(Hübner and Volberg, 2005).
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