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Cluster randomized trials assess the effect of an intervention that is carried out at the
group or cluster level. Ajzen’s theory of planned behavior is often used to model the
effect of the intervention as an indirect effect mediated in turn by attitude, norms and
behavioral intention. Structural equation modeling (SEM) is the technique of choice to
estimate indirect effects and their significance. However, this is a large sample technique,
and its application in a cluster randomized trial assumes a relatively large number of
clusters. In practice, the number of clusters in these studies tends to be relatively small,
e.g., much less than fifty. This study uses simulation methods to find the lowest number
of clusters needed when multilevel SEM is used to estimate the indirect effect. Maximum
likelihood estimation is compared to Bayesian analysis, with the central quality criteria
being accuracy of the point estimate and the confidence interval. We also investigate the
power of the test for the indirect effect. We conclude that Bayes estimation works well
with much smaller cluster level sample sizes such as 20 cases than maximum likelihood
estimation; although the bias is larger the coverage is much better. When only 5–10
clusters are available per treatment condition even with Bayesian estimation problems
occur.
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INTRODUCTION
With cluster randomized trials complete groups of individu-
als, rather than the individuals themselves, are randomized to
treatment conditions. Although cluster randomized trials are less
efficient than individually randomized trials, they are often pre-
ferred in practice for ethical, practical, organizational, or financial
reasons, and also to lower the risk of control group contamina-
tion (Gail et al., 1996; Moerbeek, 2005). It may be considered
unethical to require doctors or therapists to offer a new and
promising treatment to some of their patients and to withhold it
from others. In educational research it may be more cost-efficient
to sample many subjects from a limited number of schools rather
than to sample subjects spread over a large number of schools.
Control group contamination occurs when information on the
intervention leaks to the control and the risk is higher when both
treatment and control conditions are available within each group.

Cluster randomized trials are common in the health and
behavioral sciences, examples are school-based smoking pre-
vention interventions, body weight reduction trials in general
practices, and psychological treatments in groups. Their popu-
larity is demonstrated by four books that are solely devoted to
this design (Murray, 1998; Donner and Klar, 2000; Hayes and
Moulton, 2009; Eldridge and Kerry, 2012). The main issue with
cluster randomized trials is that, as subjects are nested within
groups, the outcomes of subjects within the same group cannot
be considered to be independent. The correct statistical model

that takes such dependencies into account is generally referred
to as multilevel model, mixed effects model or random coeffi-
cients model (Raudenbush and Bryk, 2002; Hox, 2010; Snijders
and Bosker, 2012). This model considers groups of individuals as
random effects and the results of the trial can be generalized to the
population, provided the number of groups is large enough and
the groups can be considered a random sample from this popula-
tion. Ignoring the multilevel data structure or treating groups as
fixed may result in incorrect conclusions with respect to the effect
of the intervention (Moerbeek et al., 2003).

The aim of a cluster randomized trial, and of randomized con-
trolled trials in general, is to evaluate the effect of an intervention
that aims to change behavior, for instance to lower calorie intake
of overweight subjects or to encourage smokers to quit smoking.
The effect of the intervention on behavior may be indirect, as
is stated for example by the Ajzen’s theory for planned behavior
(Ajzen, 1991; Conner and Armitage, 1998), which is also known
as the Theory of Planned Behavior or the Theory of Reasoned
Action. This model states that an individual’s behavior is influ-
enced by his or her intention, which in its turn is influenced by
attitude and social norm. The latter two variables are assumed to
not have a direct effect on behavior, so the effects of these vari-
ables on behavior are mediated by intention. The theory has been
proven to be very effective in psychology and marketing research
(Sheppard et al., 1988) but is also useful in experimental research
(MacKinnon et al., 2002b). It is assumed that the intervention will
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affect behavior indirectly via the mediators attitude and intention.
Such mediation is called chain mediation or a three path model.
The variables attitude, intention and behavior are measured at
the first (i.e., subject) level of the multilevel data structure while
the intervention is offered at the second (i.e., group) level. The
model is then a 2 → 1 → 1 → 1 model in the notation of Krull
and MacKinnon (2001). Mediation can be estimated and tested
using structural equation models as has been studied for models
without multilevel data structures over the past decades (Sobel,
1982; Baron and Kenny, 1986; MacKinnon et al., 2002a, 2007;
Shrout and Bolger, 2002; Taylor et al., 2007; MacKinnon, 2008).
An extension to mediation in multilevel models has been stud-
ied more recently (Raudenbush and Sampson, 1999; Krull and
MacKinnon, 2001; Bauer et al., 2006; Dagne et al., 2007; Raykov
and Mels, 2007; Zhang et al., 2009; Preacher et al., 2011). A spe-
cial focus on cluster randomized trials was made by Krull and
MacKinnon (2001), Pituch et al. (2005, 2010), and Pituch and
Stapleton (2012).

The drawback of structural equation modeling (SEM) is that it
is a large sample technique while the number of clusters in a clus-
ter randomized trial is often small, say less than fifty. This may
result in estimation problems when maximum likelihood esti-
mation is used, such as convergence problems, inadmissible esti-
mates such as negative variances, biased chi-squared test statistics
and standard errors and low statistical power. Furthermore, it is
less robust against non-normality, which is a problem in media-
tion models where the indirect effect is not normally distributed.
Bayesian estimation methods do not assume large sample sizes
(Gelman et al., 2004), and in mediation analysis have the addi-
tional advantages that they directly incorporate the nonnormal
mediation effect, and that they are conceptually simpler for
multilevel mediation models (Yuan and MacKinnon, 2009).

Simulation studies have shown that using fewer than 50 clus-
ters is problematic while using maximum likelihood estimation
(Maas and Hox, 2005; Meuleman and Billiet, 2009; Hox et al.,
2010). A recent simulation study suggested that a much lower
sample size at the cluster level of approximately 20 is sufficient
when Bayesian estimation methods are used (Hox et al., 2012).
The model used in this study did not include mediation effects,
though.

The aim of our paper is to study the lowest number of clusters
that is needed to accurately estimate and test mediation in cluster
randomized trials. We focus on convergence problems, accuracy
of the point estimate and confidence interval and power of the test
on the indirect effect from treatment condition to behavior. We
compare maximum likelihood to Bayesian methods and expect
the latter to perform better as it does not assume large sample
sizes and normality. Furthermore, since in Bayesian estimation
the parameter estimates all follow their proper distribution, we
expect no inadmissible solutions.

STATISTICAL MODEL AND ESTIMATION METHODS
Subjects are nested within clusters and for both the within-and
between level a structural equation model is formulated, see
Figure 1. Treatment condition is a cluster-level variable and only
appears at the between-level. It affects behavior only indirectly
through attitude and intention. All other variables are measured

at the subject level are assumed to vary both within and between
clusters, hence they are included in both the within- and between-
level model. Variables that are predicted from one or more others
are called endogenous variables and require a disturbance term
to capture unexplained variance. For the variable attitude a dis-
turbance term only appears at the between-level. This variable is
assumed to correlate with norms at both levels. The numbers in
Figure 1 refer to the population values in our simulation, which
is discussed in the next section.

Multilevel Structural Equation Modeling (MSEM) assumes
sampling at both individual and group levels. The individual data
are collected in a p-variate vector Yij with subscript i for individu-
als and j for groups. The data Yij are decomposed into a group
level (between groups) component YB = Ȳj and an individual
level (within groups) component YW = Yij − Ȳj. These two com-
ponents are orthogonal and additive: YT = YB + YW , and the
population covariance matrices are also orthogonal and additive:
�T = �B + �W . MSEM assumes that the population covari-
ance matrices �B and �W are described by distinct models for
the group level and the individual level structure. Full maximum
likelihood estimation for MSEM minimizes the fit function given
by

F =
N∑

i = 1

log |�i| +
N∑

i = 1

log (xi − µi)
′
�−1

i (xi − µi), (1)

where the subscript i refers to the observed cases, xi to those vari-
ables observed for case i, and µi and �i contain the population
means and covariances of the variables observed for case i (cf.
Mehta and Neale, 2005).

Maximum likelihood estimation assumes large samples, and
relies on numerical methods to integrate out random effects. In
comparison, Bayesian methods are reliable in small samples, and
deal better with complex models. The Bayesian approach is fun-
damentally different from classical statistics (Barnett, 2008). In
classical statistics, the population parameter has one specific value
that is unknown. In Bayesian statistics, we express the uncertainty
about the population value of a model parameter by specify-
ing a probability distribution of possible values. This probability
distribution is called the prior distribution, because it is spec-
ified independently from the data. After we have collected our
data, this prior distribution is combined with the Likelihood of
the data to produce a posterior distribution, which describes our
uncertainty about the population values after observing our data.
Typically, the variance of the posterior distribution is smaller
than the variance of the prior distribution, which means that
observing the data has reduced our uncertainty about the possible
population values.

Obtaining the posterior distribution is done by simulation,
using so-called Markov Chain Monte Carlo (MCMC) methods.
The general idea of MCMC is that instead of attempting to ana-
lytically solve for the point estimates, as with ML estimation, an
iterative simulation procedure is used to estimate the parameters.
It is beyond the scope of the current paper to provide a full intro-
duction to Bayesian modeling, we refer the non-informed reader
to, among many others, Kruschke (2011), van de Schoot et al.
(2013) and for a more technical introduction see Gelman et al.

Frontiers in Psychology | Quantitative Psychology and Measurement February 2014 | Volume 5 | Article 78 | 2

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Hox et al. Mediation in cluster randomized trials

Group level (between) 

Attitude

Intention

Norms

Behavior

di1 db
1

Intervention

da 1

 
Individual level (within) 

Attitude

Intention

Norms

Behavior

di
1

db
1

FIGURE 1 | The planned behavior model at the between-cluster level (Top panel) and within-cluster level (Bottom panel).

(2004) or Lynch (2007). For Bayesian multilevel modeling we
refer to Hamaker and Klugkist (2011) and Fahrmeir et al. (2013).

The mode of the marginal posterior distribution is an attrac-
tive point estimate of the unknown parameter, because it is the
most likely value, and therefore the Bayesian equivalent of the
maximum likelihood estimator. Since the mode is more difficult
to determine than the mean, the mean of the posterior distri-
bution is also often used. In skewed posterior distributions, the
median is an attractive choice. In Bayesian estimation, the stan-
dard deviation of the posterior distribution is comparable to
the standard error in classical statistics. However, the confidence
interval generally is based on the ½α and 100-½α percentiles
around the point estimate. In the Bayesian terminology, this is
referred to as the 100-α% credible interval. We will return to the
interpretation of frequentist and Bayesian intervals in the discus-
sion. Given the non-normality of the mediation effect, we have
chosen to use the median of the posterior distribution for the
point estimate, and the percentile-based 95% credible interval.

Bayesian methods have some advantages over classical meth-
ods. As mentioned before, in contrast to the asymptotic maxi-
mum likelihood method, they are valid in small samples. Given
the correct probability distribution, the estimates are always
proper, which solves the problem of negative variance estimates.
Finally, since the random draws are taken from the correct
distribution, there is no assumption of normality when variances

are estimated. In this study, we examine if Bayesian estimation
will help in drawing correct inferences in multilevel SEM if the
number of groups (clusters) is relatively small. The simulation
studies cited in the introduction typically find that at smaller
group level sample sizes the Maximum Likelihood based parame-
ter estimates themselves are unbiased, but that the corresponding
standard errors are underestimated, which leads to poor control
of the alpha level and undercoverage for the confidence intervals.
We expect that the credible intervals in our Bayesian estimation
will perform better at lower group level sample sizes.

DESIGN OF THE SIMULATION STUDY
Data are simulated on basis of the model in Figure 1. The number
of clusters per treatment condition was 5, 10, 25, or 50. The clus-
ter size was either 5 or 10. The eight combinations of the sample
sizes at the cluster and subject level are henceforth called popu-
lations and for each of them 5000 data sets were generated using
the program Mplus 7.0 (Muthén and Muthén, 2012). Treatment
condition was a dichotomous variable whereas attitude, norms,
intention and behavior were all multivariate normally distributed.
The effect of treatment on attitude was set at 0.5. All mediation
paths at the within-level were set to the medium effect size 0.5,
which implies that the mediation effect is 0.125. The error vari-
ance of the endogenous variable attitude was fixed to 2 at the
within-level and 1 at the between-level. The error variances of
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intention and behavior were fixed to 1 and 0.5 at the within-
and between-level. Hence, the intra-class correlation coefficients
for all three endogenous variables were 0.33. The population val-
ues used in the simulation are presented in the path model in
Figure A1.

The program Mplus was also used for model parameter esti-
mation. Default convergence criteria were used for maximum
likelihood estimation but not for Bayesian estimation. For the
Bayesian estimation we used the Mplus 7.0 default priors which
are a very flat normal distribution (N(0,1010)) for the path
coefficients and a flat inverse gamma distribution (IG(−1,0))
for the variances. By default, Mplus 7.0 uses two independent
MCMC chains, and uses the Gelman-Rubin potential scale reduc-
tion (PSR; Gelman and Rubin, 1992) to assess convergence.
Convergence is reached when the PSR criterion is less than 0.05
from 1. In our simulation, we have run four independent MCMC
chains, forced a chain length of at least 5000, and set the PSR crite-
rion to 0.01 for convergence to be reached. For the point estimate
we used the median of the posterior, and for the 95% credible
interval we used the percentile method.

The performance of the two estimation methods was based on
four criteria: convergence, parameter bias, coverage of the 95%
confidence interval (maximum likelihood estimation) or 95%
credible interval (Bayes estimation) and power. Our focus is on
the mediation effect from treatment condition to mediation.

RESULTS
Table 1 displays the mean, (standard deviation), relative bias,
coverage of the 95% CI, and percentage significant results over
5000 replications per cell for the mediation effect from treatment
condition to mediation.

Contrary to expectations, the Bayesian estimation ran into
biased estimates for all eight populations’ mediation effect
whereas the Maximum Likelihood estimation was able to pro-
vide only slightly biased estimates for the mediation effect so
long as there were about 50 clusters with 5–10 observations
each. However, as a consequence of the biased standard errors
in ML estimation, the 95% coverage and significance inter-
vals for the Bayesian estimation outperformed those of the
Maximum Likelihood estimation. Bayesian estimation rendered

overall higher coverage rates and higher significance rates for
the first four populations—until the number of clusters drops
below 25.

Table 2 displays information about the convergence of the
analyses for the Maximum Likelihood estimation. The pattern
in Table 2 suggests that as soon as the number of clusters drops
below 25, Maximum Likelihood runs into considerable conver-
gence problems. The types of convergence warnings are displayed
below Table 2; their frequencies (if any) are displayed in the final
column of the table.

DISCUSSION
The simulation results indicate that Bayesian estimation works
better at smaller second level sample sizes than Maximum
Likelihood estimation. Actually, Bayesian estimation results in a
larger bias than Maximum Likelihood estimation at all simulated
sample sizes. However, the standard errors in the ML estimation
were inaccurate at the lower sample sizes, and as a result the
Bayesian 95% CI shows a much better coverage than the ML
95% CI. This is not only the result of having more accurate stan-
dard errors, but also due to the fact that the mediation effect is
a multiplication of effects that are assumed to be normal, and
therefore the mediation effect does not follow a normal distribu-
tion. The Bayesian posterior 95% credible interval is established
by the percentile method, which follows the asymmetric distri-
bution of the mediation effect much better than the symmetric
intervals established by the Maximum Likelihood method (Yuan
and MacKinnon, 2009). The ML estimation method shows a bet-
ter power, but at the expense of having standard errors that are
estimated with a downward bias, resulting in poor type I error
control due to an operating alpha level which is higher than the
nominal 5% level.

At the smaller sample sizes ML estimation exhibits con-
vergence problems, as expected. Bayesian estimation can also
encounter estimation problems, but of a different kind. In MCMC
estimation, convergence means convergence of the chain to the
correct distribution. In our simulation we must rely on the
automatic convergence criteria available in Mplus. Textbooks on
Bayesian statistics caution users to always use diagnostic tools
such as plots of the iteration history (trace plots, cf. Gelman et al.,

Table 1 | Simulation study results for the eight populations using Maximum Likelihood and Bayes.

Estimator Outcome Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 6 Pop 7 Pop 8

50 (5) 50 (5) 50 (10) 50 (10) 25 (5) 25 (5) 25 (10) 25 (10) 10 (5) 10 (5) 10 (10) 10 (10) 5 (5) 5 (5) 5 (10) 5 (10)

ML Mean 0.1247 0.1256 0.1249 0.1244 0.1249 0.1259 0.1238 0.1242

(SD) (0.0713) (0.0624) (0.1105) (0.0902) (0.7643) (0.1730) (0.7178) (0.4009)

Bias −0.24 0.48 −0.08 −0.48 −0.08 0.72 −0.96 −0.64

95% Coverage 92% 92.9% 90.4% 91% 90.8% 88.6% 92% 89.6%

5% Significance 33.1% 51.8% 9.3% 16.8% 2.8% 4.8% 4.2% 4.8%

Bayes Mean 0.1125 0.1165 0.1046 0.1092 0.0869 0.0965 0.0662 0.0716

(SD) (0.0753) (0.0688) (0.1152) (0.0992) (0.2392) (0.2067) (0.6044) (0.5281)

Bias −10 −6.8 −16.32 −12.64 −30.48 −22.8 −47.04 −42.72

95% Coverage 94.6% 95.2% 95.4% 94.5% 99.2% 97.9% 100% 99.9%

5% Significance 50.3% 59.7% 15.2% 25.4% 1.2% 3.8% 0.1% 0.1%
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Table 2 | Convergence in the simulation study with ML estimation.

Pop Requested N Incomplete % Incomplete Complete Warnings % Warnings Warning types*

1, 50:5 5000 0 0 5000 0 0 –

2, 50:10 5000 0 0 5000 0 0 –

3, 25:5 5000 0 0 5000 2 0.04 2*1

4, 25:10 5000 0 0 5000 0 0 –

5, 10:5 5000 3 0.06 4997 2077 41.565 165*1, 1912*2, 1*4 + 3

6, 10:10 5000 0 0 5000 1734 34.68 14*1, 1720*2

7, 5:5 5000 1596 31.92 3404 3404 100 3404*2

8, 5:10 5000 543 10.86 4457 4457 100 4457*2

*Warning types.

1. Warning: The MLR standard errors could not be computed. The MLF standard errors were computed instead. The MLR condition number is −0.463D-03. Problem

involving parameter 17. This may be due to near of the random effect variance/covariance or incomplete convergence singularity.

2. The standard errors of the model parameter estimates may not be trustworthy for some parameters due to a non-positive definite first-order derivative product

matrix. This may be due to the starting values but may also be an indication of model non-identification. The condition number is 0.820D-11. Problem involving

parameter 20. The non-identification is most likely due to having more parameters than the number of clusters. reduce the number of parameters.

3. The model estimation did not terminate normally due to an ill-conditioned fisher information matrix. Change your model and/or starting values. The model

estimation did not terminate normally due to a non-positive definite fisher information matrix. This may be due to the starting values but may also be an indication

of model non-identification. The condition number is 0.371D-15. The standard errors of the model parameter estimates could not be computed. This is often due to

the starting values but may also be an indication of model non-identification. Change your model and/or starting values. Problem involving parameter 20.

4. One or more parameters were fixed to avoid singularity of the information matrix. The singularity is most likely distribution of the categorical variables in the

model. Model is not identified, or because of empty cells in the joint because the following parameters were fixed: 21.

2004; Lynch, 2007), and we completely agree with these recom-
mendations; we consider such inspections mandatory. Especially
with small sample sizes, we recommend inspection of autocor-
relations and setting much stricter criteria for convergence. In
addition, with smaller sample sizes, the use of informative priors
could be helpful. The disadvantage is of course, that in small sam-
ples such prior information can easily dominate the information
in the data. Here, we have taken the position that this is undesir-
able, and prefer to work with uninformative priors. If informative
priors are to be used, we recommend using several of these pri-
ors to determine to what extend the choice of a specific prior
determines the results.

In the section on the model and estimation method we intro-
duced the frequentist 95% confidence interval and the Bayesian
95% credible interval, tacitly implying that these are more or less
the same (they both abbreviate to 95% CI). The software used
(Mplus 7; Muthén and Muthén, 2012) encourages this view since
to employ Bayesian estimation we simply have to specify a dif-
ferent estimation method. We do think that users should realize
that by choosing Bayesian estimation, from a principled stand-
point, they have chosen to employ a different kind of statistics.
As a result, the 95% credibility interval now may correctly be
interpreted as the interval that contains the population param-
eter with 95% probability. In our power section in Table 1, we
refer to significance of results, based on frequentist and Bayesian.
p-values. In the Bayesian case, this is not the identical to the fre-
quentist p-value, it is the so-called posterior predictive p-value.
This is roughly interpreted as a standard p-value, but it is actually
a different entity. Bayesian modelers in general prefer that deci-
sions about parameters are based on credibility intervals and not
p-values, and that decisions about models are based on compar-
ative evidence, such as information criteria or Bayes factors. A
discussion of these issues is beyond the scope of this paper (for
a very thorough discussion see Barnett, 2008), but we believe that

applied researchers should be aware that doing a Bayesian analysis
is not just choosing a different estimation method.

One of the reviewers raised the issue that, since the medi-
ation effect is a product term of three coefficients, the priors
that are specified to be uninformative on the coefficients them-
selves, may become informative on the indirect mediation effect.
This concern is quite right. The default prior for regression
coefficients in Mplus 7 is a normal distribution with a mean
of zero and a very large variance. The distribution of prod-
ucts of random variables is generally hard to assess (see Glen
et al., 2004, for a discussion and a computational approach).
When the normal distributions have a mean of zero, the product
of three normally distributed variables is a complicated func-
tion that is symmetric with a peak at zero (see the explication
on the Mathematica website at http://mathworld.wolfram.com/
NormalProductDistribution.html). It appears that, even if the
standard deviation of the prior normal distributions are very
large, there is still a real possibility that their convolution is infor-
mative, and will tend to move the posterior toward zero. The fact
that the Bayesian estimates reported in Table 1 have a downward
bias in all simulated conditions suggests that this is in our sim-
ulation setup indeed the case. Using uniform priors, although
their convolution also does not lead to a uniform prior for the
mediation effect, may ameliorate the situation by producing a less
peaked prior for the mediation effect. This is clearly an area that
needs further research.
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APPENDIX

FIGURE A1 | The planned behavior model at the between-cluster level (Top panel) and within-cluster level (Bottom panel) with population parameter

values.
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