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When we hold an object while looking at it, estimates from visual and haptic cues
to size are combined in a statistically optimal fashion, whereby the “weight” given
to each signal reflects their relative reliabilities. This allows object properties to be
estimated more precisely than would otherwise be possible. Tools such as pliers and tongs
systematically perturb the mapping between object size and the hand opening. This could
complicate visual-haptic integration because it may alter the reliability of the haptic signal,
thereby disrupting the determination of appropriate signal weights. To investigate this we
first measured the reliability of haptic size estimates made with virtual pliers-like tools
(created using a stereoscopic display and force-feedback robots) with different “gains”
between hand opening and object size. Haptic reliability in tool use was straightforwardly
determined by a combination of sensitivity to changes in hand opening and the effects of
tool geometry. The precise pattern of sensitivity to hand opening, which violated Weber’s
law, meant that haptic reliability changed with tool gain. We then examined whether the
visuo-motor system accounts for these reliability changes. We measured the weight given
to visual and haptic stimuli when both were available, again with different tool gains,
by measuring the perceived size of stimuli in which visual and haptic sizes were varied
independently. The weight given to each sensory cue changed with tool gain in a manner
that closely resembled the predictions of optimal sensory integration. The results are
consistent with the idea that different tool geometries are modeled by the brain, allowing
it to calculate not only the distal properties of objects felt with tools, but also the certainty
with which those properties are known. These findings highlight the flexibility of human
sensory integration and tool-use, and potentially provide an approach for optimizing the
design of visual-haptic devices.
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INTRODUCTION
When humans manipulate objects with their hands while look-
ing at them, visual and haptic size information is integrated in a
manner that is highly consistent with statistically optimal mod-
els of sensory integration (Ernst and Banks, 2002; Gepshtein and
Banks, 2003; Helbig and Ernst, 2007a). Such models describe
how, under the assumptions that estimates from each sense
are on average unbiased, and their noises are independent and
Gaussian distributed, the minimum-variance unbiased estimate
(ŜVH ; Equation 1) is a weighted sum of visual and haptic esti-
mates (ŜV , ŜH) where the weight given to each signal (wV , wH)
is proportional to the inverse of its variance (Equation 2; for a
review see Oruç et al., 2003).

ŜVH = wV ŜV + wHŜH (1)

wV = 1/σ2
V

1/σ2
V + 1/σ2

H

where wV + wH = 1 (2)

The empirical findings that humans perform similarly to this
model demonstrate that the brain ‘knows’ how much to rely on
each sensory signal in a given situation. This is not trivial because
relative weights of visual and haptic estimates must be adjusted
moment-by-moment since they vary continuously as a function
of the precise properties of particular viewing situations. For
example, the reliabilities of visual and haptic size estimates almost
certainly vary differently as a function of object size. And more
challengingly, the reliability of visual estimates varies substantially
with variations in any number of “geometrical” properties of the
stimulus including the type of surface texture, the object’s ori-
entation with respect to the viewer, and viewing distance (Knill,
1998a,b; Gepshtein and Banks, 2003; Knill and Saunders, 2003;
Hillis et al., 2004; Keefe et al., 2011).

Given the adeptness with which humans use tools, one might
expect similar visual-haptic integration processes to operate
when we manipulate objects with tools. This process is compli-
cated, however, by the fact that in tool use haptic signals must
be acquired via the handles of the tool, thereby systematically
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disrupting the relationship between hand opening/position and
(visual) object properties. We have previously shown that, in
making the decision of whether to integrate signals or not, the
brain compensates for the spatial offset between visual and haptic
signals introduced by simple tools (Takahashi et al., 2009). When
we feel objects without a tool the degree of visual-haptic integra-
tion decreases with increasing spatial separation between signals,
indicating the brain is sensitive to the probability that they refer to
different objects, in which case combining them would produce
errors (Gepshtein et al., 2005). We observed similar patterns of
changes in visual-haptic integration in tool use, except the deci-
sion to integrate was modulated not by the separation between
the hand (the origin of the haptic signal) and visual object, but
by the separation between the tool tips and the object, as if the
haptic signal was treated as coming from the tool-tip (Takahashi
et al., 2009). This suggests the brain can correctly decide the extent
to which visual and haptic information should be integrated, not
based on the proximal sensory stimuli, but on their distal causes
(Körding and Tenenbaum, 2006; Körding et al., 2007), taking into
account the dynamics and geometry of tools.

Here we consider the problem of weighting visual and haptic
“cues” (sensory estimates of size) appropriately when manipulat-
ing objects with tools. As well as spatially separating the signals,
tools typically also alter the “gain” between the hand opening and
object size (consider pliers and tongs, for example). In principle,
this could make determining correct cue weights difficult: differ-
ent tool geometries cause differences in the extent to which the
haptic signal at the hand is multiplied up or down relative to
object size, and the absolute sensitivity, or precision, of sensory
systems generally varies with signal magnitude. Thus, different
tool gains could introduce variations in the precision (reliabil-
ity) of haptic size estimates that would ideally be accounted for.
Here we determined the nature of the variations in the reliability
of haptic size estimates with different tool geometries, and exam-
ined whether visual and haptic signals are weighted appropriately
to take account of them.

There are various possibilities for how variations in tool
geometry might affect the reliability of haptic size estimates,
with rather different implications for what appropriate visual-
haptic cue weights would be. We find it more straightfor-
ward to discuss the possible effects of different tool geometries
in terms of sensitivity—Just Noticeable Differences (JNDs)—
of haptic size rather than reliabilities, because experimental
data and theoretical ideas such as Weber’s law are typically
expressed in these units. Following previous researchers (for
example see Clark and Yuille, 1990; Landy et al., 1995; Knill
and Richards, 1996; Ernst, 2005), we assume, however, that
cue reliability relates straightforwardly to single-cue sensitiv-
ity (JND). Consider haptic size-discrimination data, measured
using a standard two-interval, forced-choice (2-IFC) task, in
which the participant grasps two stimuli (standard and com-
parison) between thumb and index finger, and reports which
was larger. If the resulting data are fitted with a cumulative
Gaussian psychometric function, the JND can be expressed as
the standard deviation of the psychometric function which,
when divided by

√
2, is assumed to yield the standard devi-

ation of the underlying estimate of haptic size (σH). The

reliability of the underlying estimate is the reciprocal of its vari-
ance (1/σ2

H).
The possible effects of variations in the gain of pliers-like tools

on haptic size sensitivity could depend on either “high-level”
aspects, such as how object size is ultimately represented in the
brain, or “low-level” aspects, such as how the sensitivity of the
basic sensory apparatus varies with hand opening. Consider first
the case where the limiting factor is the precision with which dif-
ferent object sizes are represented in high-level processing. This
could arise because the neural population that represents size
contains more neurons tuned to smaller sizes and fewer tuned
to larger sizes, for example, in which case absolute sensitivity to
object size would decrease with increasing size. For haptic esti-
mates of object size derived from tools to be correct we must
assume that, consistent with our previous findings regarding spa-
tial offsets (Takahashi et al., 2009), the brain is able to correctly
rescale haptic signals about hand opening so that object size
estimates are encoded accurately in high-level processing, inde-
pendent of the tool gain. Then, if there are no significant low-level
(sensory) limits then haptic sensitivity to a given object size will be
determined only by the high-level constraints, and will be unaf-
fected by the tool (i.e., the hand opening) used to hold it. Thus,
in this case there would be no need to adjust cue weights to take
account of tool geometry.

Although high-level limits on sensitivity must presumably
exist to some degree, it is hard to envisage a system that is unaf-
fected by altering the input signal (at the hand), and so we
consider low-level factors to be more likely to limit sensitivity.
Their implications are also more difficult to visualise. We there-
fore consider the implications of this second case in more detail.
Here, we assume that underlying sensitivity to changes in hand
opening is unchanged by tool use, and so the impact of differ-
ent tools on haptic sensitivity to object size depends directly on
(i) how sensitivity to hand opening varies with magnitude of
hand opening, and (ii) the relationship between object size and
the hand opening required to feel it with a given tool (the tool
“gain”). In many sensory domains, the relationship between JND
and stimulus magnitude is described well by Weber’s law, which
here implies that JNDs in hand opening should be a constant pro-
portion of hand opening. Empirical measurements of so-called
finger-span discrimination indicate, however, that while JNDs do
generally increase with hand opening, they also depart signifi-
cantly from Weber’s law (Stevens and Stone, 1959; Durlach et al.,
1989). Indeed, it can be argued that this result is unsurprising,
given that judging size from hand opening requires the compari-
son of the positions of two “systems” (finger and thumb), each of
which contains highly non-linear relationships between position
and the state of muscles and joint angles (Durlach et al., 1989;
Tan et al., 2007). We note, however, that, presumably due to tech-
nical challenges in presenting haptic stimuli in quick succession,
previous measurements of finger-span discrimination did not use
a two-interval, forced-choice task to measure sensitivity. Durlach
et al. (1989), for example, used a one-interval forced-choice (is
the stimulus length, l, or l + �l ?). The data may therefore reflect
not only perceptual sensitivity but also the precision of memory
representations of size. Thus, it remains unclear whether haptic
size sensitivity follows Weber’s law or not.
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Figure 1 considers the implications of these two alternatives
(Weber’s law, and non-linear sensitivity functions) for weighting
visual and haptic signals appropriately in tool use. The top row
of panels shows the Weber’s law case. Figure 1A shows a hypo-
thetical sensitivity function for hand opening (i.e., haptic size, for
an object felt directly with the hand), assuming a Weber fraction
of 0.1. A similar function is also plotted for visual size, assum-
ing a slightly different Weber fraction (0.15). Figure 1B shows
sensitivity to object size when felt with pliers-like tools of three dif-
ferent gains (expressed as the ratio of tool-tip separation to hand
opening; Figure 2). To calculate these values we assumed that the
underlying sensitivity function for hand opening was constant,
and that using the tool introduced no additional external (or
internal) noise. We calculated the hand opening that would result
from feeling a given object size with a particular tool (for example,
feeling a 20 mm object with a 0.7:1 tool results in a hand opening
of 20/0.7 = 28.6 mm). Next, we used the function in Figure 1A to
“look up” the appropriate JND in hand opening. Finally, we trans-
formed this “hand JND” into a JND in units of object size, by
calculating the change in object size that, given the tool geometry,
would produce 1 JND change at the hand. Obviously, given our
assumptions, the sensitivity to changes in object size when using
the 1:1 tool is the same as with no tool (Figure 1A). It can also be

seen, however, that if haptic size sensitivity follows Weber’s law,
sensitivity to changes in object size is unaffected by tool gain. This
makes intuitive sense because while the 0.7:1 tool, for example,
magnifies the signal at the hand, the absolute sensitivity decreases
by exactly the same amount, and so there is no net change in
sensitivity to object size. Figure 1C plots the optimal cue weights
for estimating object size from vision and haptics, for each of the
three tool gains in Figure 1B, calculated using Equation 2. It can
be seen that because both size estimates follow Weber’s law, and
tool gain does not affect sensitivity (or therefore reliability) of
object size estimates, the relative reliabilities are unchanged with
object size and tool gain, and so the appropriate signal weights
remain constant. This is an interesting outcome in that it would
simplify the brain’s task, because there is no need to adjust visual
and haptic weights for different tool gains. It also implies, how-
ever, that there is no opportunity to optimise haptic sensitivity
in visual-haptic interfaces by using tool gain to improve haptic
sensitivity.

The bottom row of panels in Figure 1 plots the same functions
as the row above, but calculated assuming haptic size sensitivity
at the hand is non-linearly related to hand opening (Figure 1D).
The pattern is quite different to the Weber’s law case. Figure 1E
shows that haptic sensitivity to object size now depends directly

FIGURE 1 | Implications of different hypothetical hand-opening

sensitivity functions for the signal weights of haptic size estimates with

different tool gains. The top row shows the case where sensitivity to hand
opening (JND as a function of hand opening) follows Weber’s law: (A)

sensitivity to hand opening; (B) the sensitivity in A re-plotted in units of

object size, with different tool gains (0.7:1, 1:1, and 1.4:1; see main text for
details), and a hypothetical visual sensitivity function; (C) the optimal signal
weights that result from the sensitivities in panel (B), calculated using
Equation 2. Panels (D–F) show the same calculations assuming a non-linear
hand-opening sensitivity function.
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FIGURE 2 | A cartoon of the three different tools used. Tool gain is
expressed as the ratio of tool opening (object size) to hand opening. In the
experiment the visual tools were rendered using 3D graphics and closely
resembled these pictures. Haptic stimuli (force planes) were generated at
the hand when the tool-tip touched the object. Note that the hand was not
visible.

on the tool gain and, for a given object size, can be made bet-
ter or worse by choosing particular tools. Thus, if (i) sensitivity
to changes in hand opening do not follow Weber’s law, and
(ii) low-level sensory limits directly determine haptic sensitivity
to object size when using tools, the optimal visual and haptic
weights for the same object in the world will change as a func-
tion of tool gain (Figure 1F), and so the brain should adjust them
accordingly.

In Experiment 1 we examined how sensitivity to haptic size
varies with hand opening in our experimental setup, using a
two-interval, forced-choice procedure. We then measured the
effect of different tool gain ratios on haptic sensitivity, using vir-
tual tools created using a stereoscopic display and force-feedback
robots. This allowed us first to establish whether or not sensi-
tivity to object size is determined primarily by low-level sensory
factors (i.e., in the manner modeled in Figure 1). Second, we
could measure the shape of the haptic-size sensitivity functions
with and without tools, allowing us to understand the expected
effects on signal weights of different tool gains. Experiment 1
demonstrated that the reliability of haptic size estimates does
vary with tool gain. We therefore examined in Experiment 2
whether the brain takes account of these changes, and adjusts sig-
nal weights based on the reliability changes induced by different
tool gains. We measured weights given to the different signals
at different object sizes, and with different tool gains, by mea-
suring the perceived size of stimuli in which visual and haptic
size was varied independently (so-called cue-conflict stimuli). We
explore the implications of the results both for sensory integra-
tion mechanisms in visuo-motor behavior, and for the design of
visual-haptic interfaces.

EXPERIMENT 1: MEASUREMENT OF HAPTIC SIZE
SENSITIVITY
MATERIALS AND METHODS
Participants
Six right-handed participants took part in all conditions (3 males
and 3 females; 19–36 years old). All participants had normal
or corrected-to-normal vision, including normal stereoacuity,
and none had any known motor deficits. The participants were
naïve to the purpose of the experiment. The study was approved
by the School of Psychology Ethics Review Committee, Bangor
University, and all participants gave informed consent before
taking part.

Apparatus
Participants viewed 3-D stereoscopic visual stimuli in a con-
ventional “Wheatstone” mirror stereoscope, consisting of sep-
arate TFT monitors (refresh rate 60 Hz) for each eye, centred
on the body midline. Haptic stimuli were generated using two
PHANToM 3.0 force-feedback robots (SenseAble Technologies,
Inc.), one each for the index finger and thumb of the right hand.
The robots allow participants’ index fingers and thumbs to move
in all six degrees of freedom (DoF), but sense and exert forces
on the tips in translation (three DoF) only. The 3-D positions of
the tips of the finger and thumb were continuously monitored
by the robots (at 1000 Hz) and touching a virtual object resulted
in appropriate reaction forces, simulating the presence of haptic
surfaces in space. Participants could not see their hand, which was
occluded by the stereoscope mirrors. The setup was calibrated so
the visual and haptic “workspaces” were coincident. Head posi-
tion was stabilized using a chin-and-forehead rest. Participants’
heads were angled down approximately. 33◦from straight ahead
(thus, the fronto-parallel plane was angled back approximately
33◦from earth-vertical).

Stimuli
The stimuli were positioned on a (head-centric) fronto-parallel
plane, at a distance of 500 mm from the eyes. The haptic stim-
ulus consisted of two parallel planes (stiffness = 1.05 N/mm),
whose surfaces were oriented at 90◦ to the fronto-parallel plane.
Their separation (height in the fronto-parallel plane) was varied
to change object “size.”

In the no-tool condition, at the start of each trial, partici-
pants saw two spheres indicating the positions of the finger and
thumb. In the tool conditions, participants saw a virtual pliers-
like tool attached to the finger and thumb markers (Figure 2).
Because of the 3-DoF limit on the robots’ position sense and
force production, and because we wanted to be sure the “opposi-
tion space” between finger and thumb was oriented orthogonally
to the haptic surfaces, the visual tool was constrained to move
in the fronto-parallel plane. We also presented a background
fronto-parallel force plane (present in both no-tool and tool-use
conditions), making it easier for participants to keep their fin-
gers/tool in the correct orientations (a trial would not commence
if the finger/thumb positions were not oriented in the fronto-
parallel plane). Otherwise, the tool moved freely in this x, y plane,
following the hand in real time, and opening and closing by rotat-
ing about the pivot (see Figure 2). Thus, the motion was akin
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to sliding the hand/tool along a surface such as a table, and felt
intuitive and easy to carry out. We conducted pilot experiments
(without a tool) to verify that the presence of the force plane did
not affect size discrimination performance.

There were three differently colored tools, representing object-
size: hand-opening ratios of 0.7:1 (green), and 1:1 (blue), and
1.4:1 (red) (Figure 2). Tool gain was varied by moving the posi-
tion of the pivot. All tools were 18 cm long, measured from the
finger position to the corresponding tool tip. Different colors
were used as an aid to learning/recalling the tool geometry. When
a tool-tip touched the virtual object, the appropriate force was
generated at the hand.

Procedure
Size discrimination performance was measured in each condition
using a two-interval, forced choice (2-IFC) procedure. On each
stimulus interval, two visually presented “start zones” appeared
(yellow spheres indicating the lateral position of the haptic
stimulus, but not its size). Participants moved their hand to insert
the finger/thumb spheres (no-tool condition), or the tool tips
(tool condition) into the start zones, which then changed color
to green, indicating that the participant should grasp the object.
All visual information (including the finger/thumb spheres and
visible tool) was extinguished on moving inward from the start
zones, so only haptic information was available to judge object
size. On each trial, participants completed two such intervals,
then pushed a visual-haptic virtual button to indicate which
interval contained the bigger object. Thresholds were obtained
for six “base” hand openings (30, 40, 50, 60, 70, and 80 mm).
Object sizes were therefore the same as the hand openings for the
1:1 tool-gain condition, and corresponded to object sizes of 21,
28, 35, 42, 49, and 56 mm in the 0.7:1 tool-gain condition, and
42, 56, 70, 84, 98, and 112 mm in the 1.4:1 tool-gain condition.
On each trial the standard size was presented in one interval, and
a comparison stimulus in the other, randomly ordered. A method
of constant stimuli was used to generate comparison sizes, which
on each trial were chosen at random from the set: base hand
opening ± 1, 3, 6, or 9 mm. Base hand opening was selected at
random on each trial. Participants completed 30 repetitions of
each stimulus level, at all hand openings, and did not receive feed-
back about their performance. We did not measure performance
at hand openings smaller than 30 mm because the smallest com-
parison stimulus (21 mm) was close to the minimum separation
of the end effectors of the force-feedback robots.

To control the timing of the haptic presentation across condi-
tions, participants were trained to grasp the stimulus for approx-
imately 1 s in each interval and then release it. Trials on which
contact time was outside the window 900–1200 ms generated an
error signal, and were discarded. We added a small random jit-
ter to the vertical position of the haptic object on each trial, so the
task had to be carried out by judging object size (plane separation)
rather than on the position in space of a single surface.

Trials were blocked by (i) no-tool, and (ii) tool conditions
(counterbalanced order). We intermingled the three different
tool-gain conditions (chosen randomly on each trial) to prevent
adaptation of the relationship between felt hand opening and
visual size. Participants carried out a block of practice trials in

both tool and no-tool conditions to familiarise themselves with
the task, and the different tools.

RESULTS
For each observer, in each condition, the size discrimination
data were fitted with a cumulative Gaussian, using a maximum-
likelihood criterion. Following previous work, JND was defined as
the standard deviation (σ) of the best-fitting psychometric func-
tion (e.g., Ernst and Banks, 2002; Knill and Saunders, 2003; Hillis
et al., 2004).

HAPTIC SENSITIVITY WITHOUT A TOOL
Figure 3 shows size-discrimination performance (JNDs) as a
function of object size, in the no-tool condition, averaged across
the six participants. Clearly the average sensitivity function is
non-linear, and this was reflected in the individual sensitivity
functions (see Supplementary material). All participants showed
increasing JNDs at large object sizes, and two out of the six
showed clear non-monotonic trends, with JNDs also increas-
ing at small sizes. For a further three JNDs appeared to have
reached their minima at around 30 mm hand opening. Thus, hap-
tic size judgements in our experiment departed substantially from
Weber’s law (Stevens and Stone, 1959; Durlach et al., 1989). We
were unable to measure thresholds at hand openings smaller than
30 mm and so we cannot determine if all participants would have
shown such increases at smaller sizes. The resting positions of the
thumb and finger in natural movements correspond to non-zero
hand openings (Ingram et al., 2008). Non-monotonic sensitiv-
ity could therefore in principle arise from the comparison of two
position systems (for finger and thumb; Durlach et al., 1989), each
of which shows decreased absolute sensitivity either side of resting
position (i.e., at smaller or larger hand openings).

HAPTIC SENSITIVITY WITH DIFFERENT TOOL GAINS
Figure 4A plots the average sensitivity function in each of the
three tool conditions. The data are plotted in “object units” (JNDs

FIGURE 3 | Sensitivity to hand opening in the no-tool condition. The
figure plots JNDs in hand opening as a function of hand opening, averaged
across the six observers (for individual results, see Supplementary
material). The dashed line shows a second-order polynomial fit to the data,
used to generate predictions for the tool conditions. Error bars denote ± 1
standard error.
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FIGURE 4 | Haptic sensitivity with different tool gains. (A) Object size
JNDs as a function of object size, averaged across the six observers.
Different colors denote the different tool gains. The gray dashed line shows
the fit to the no-tool data in Figure 3, extrapolated to the whole range of
object sizes. This is the predicted sensitivity function is only object size per
se determines changes in sensitivity (i.e., a high-level limit). The red, blue,
and green dashed lines show the predictions assuming that low-level
hand-opening sensitivity limits performance. They were calculated in the
same manner as in Figure 1, by combining the fit to the basic
hand-opening sensitivity with the geometrical effects of the tool (see main
text). (B) The same data re-plotted in units of hand opening. The dashed
gray line again shows the fit to the sensitivity function in the no-tool
condition, and the gray zone around it shows ± 1 standard error. Error bars
in both plots are standard errors.

in object size as a function of object size). The gray dotted line
shows the predictions for all tool-gain conditions if sensitivity
is determined by high-level object representation. The curve is
simply an extrapolation of the fitted polynomial function for the
no-tool condition, from Figure 3. The colored dashed lines are
predicted sensitivity functions for each tool condition assuming
that low-level factors limit sensitivity. These are again calcu-
lated based on the polynomial fit to the average no-tool data
in Figure 3, but using the calculation described in Figure 1 (i.e.,
assuming that size sensitivity with tools is a straightforward com-
bination of the sensitivity to hand opening and the geometrical
effects of the tool).

JNDs were very similar in the no-tool and 1:1 tool conditions,
indicating that basic sensitivity was unaffected by the use of a tool

per se. Moreover, variations in the tool gain ratio caused clear
changes in sensitivity to object size. It can clearly be seen that the
data are better fitted by the three separate tool curves, rather than
a single sensitivity function (see Supplementary material for more
details). Figure 4B re-plots the JNDs from Figure 4A in units of
hand opening, rather than object-size units. If our straightfor-
ward model of sensitivity during tool use assumed in Figure 1
is correct, the sensitivities in hand-opening units should all lie
on a single continuous function that represents the (unchanging)
underlying sensitivity to hand opening. Figure 4B shows that this
is indeed the case.

Taken together, Experiment 1 suggests that the sensitivity—
and therefore in principle the reliability—of haptic size estimates
sensed using tools with different gain ratios is governed primarily
by perceptual sensitivity to hand opening, and not by high-level
limits on size representation (see Discussion). This finding,
coupled with the observed violation in Weber’s law, means
that the geometry of different tools does alter the reliability of
haptic size estimates. A reliability-based cue-weighting process
should therefore take these changes into account. We turn to this
question in Experiment 2.

EXPERIMENT 2: SIGNAL WEIGHTS IN TOOL USE
Here we first established the stimulus parameters required for
“two-cue” (vision-plus-haptics) conditions such that, for the
same object sizes, changing tool gain should alter the reliabil-
ity of the haptic signal, and so alter the signal weights. We then
measured the actual weights given to each cue in these conditions
using a cue-conflict paradigm.

METHODS
Overview
Some previous studies have used a 2-IFC task to measure perfor-
mance when both visual and haptic signals are available (Ernst
and Banks, 2002; Gepshtein and Banks, 2003; Gepshtein et al.,
2005). This method has two key strengths. First, it allows highly
accurate and precise measurement of signal weights. Participants
are asked which of two intervals is larger: a cues-consistent
comparison stimulus (SH = SV ), or a cue-conflict standard stim-
ulus (SH �= SV ), for a range of comparison sizes. The Point of
Subjective Equality (PSE) of the resulting psychometric function
provides an estimate of the comparison size required to match
the perceived size of the cue-conflict standard, and from this reli-
able measures of cue weights can be derived (Ernst and Banks,
2002). This allows quantitative tests of the observed data against
point predictions. Second, it provides a measure of the discrim-
ination threshold when both cues are available simultaneously.
This is a hard test of whether information from both cues is
actually integrated on individual trials because, assuming that
single-cue discrimination performance represents the best the
observer can achieve, improvements with two cues must indi-
cate use of information from both sources. In contrast, a measure
only of bias can resemble optimal signal weighting if the system
uses a single signal on each trial, but switches between them in
a reliability-dependent way (Serwe et al., 2009). Unfortunately,
however, a 2-IFC task was unsuitable here because it would have
required participants to compare sizes across tool conditions on a
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single trial. For example, to measure the perceived size of objects
felt with the 1:1.4 tool the resulting percept would have to be
compared with perceived size using the 1:1 tool. The tools were
necessarily rendered invisible during the judgement (to control
visual reliability) and this, combined with changing tool type
within a trial, introduces substantial uncertainty about the tool
being used on a given interval. We piloted a 2-IFC task, and
found that participants were frequently confused, and therefore
chose to guess on a high proportion of trials (measured discrim-
ination performance far exceeded single-cue performance). We
therefore adopted a variant of a matching task here, so as to mea-
sure perceived size (and cue weights) from trials containing a
single interval. The lower accuracy and precision of this method
precluded detailed quantitative evaluation of the changes in sig-
nal weights with reliability. We therefore designed the stimulus
parameters for Experiment 2 to produce a qualitative change in
the pattern of signal weights if reliability-based signal weighting
took place. We also based our analyses on average rather than
individual data.

Participants
Six right-handed participants took part in this experiment
(2 males and 4 females; 19–36 years old). Four of them also par-
ticipated in Experiment 1, but all participants were naïve to the
specific purpose of this experiment. All participants had nor-
mal or corrected-to-normal vision with normal stereo acuity,
and no known motor deficits. As before, the study was approved
by the School of Psychology Ethics Review Committee, Bangor
University, and all participants gave informed consent before
taking part.

Apparatus and stimuli
The same apparatus was used as in Experiment 1. The haptic
stimuli, and the visually defined pliers-like tools were generated
in the same manner as in Experiment 1.

The visual stimulus was a rectangular object in the same posi-
tion and orientation (though not necessarily the same size) as
the haptic stimulus. We used a random-dot stereogram stimu-
lus very similar to that used by Ernst and Banks (2002) so that
we could vary the reliability of the visual size estimates as needed.
The visual stimulus is shown schematically in Figure 5. It con-
sisted of a random-dot-defined square “bar” represented by a
plane 20 mm in front of a random-dot background plane. The
whole stimulus was 80 mm wide and 200 mm tall. Visual size was
the height of the bar (i.e., visual size varied in the same direction
as haptic size). The dot diameter was 4.0 mm, ± up to 1.0 mm
random jitter (drawn from a uniform distribution). Average dot
density was 0.20 dots per mm2. We used anti-aliasing to achieve
sub-pixel accuracy of dot positions. In addition, because ran-
dom dot placement could effectively make the stimulus larger or
small than intended on particular trials, we chose 3% of the dots
comprising the bar, and moved them to the edges, ensuring the
stimulus was always the intended size. The viewing distance to
the ground plane was 500 mm. We manipulated visual reliability
(added noise) in the same manner as Ernst and Banks (2002). To
do this, we added a random displacement in depth to each dot,
drawn from a uniform distribution, where 100% noise indicates

FIGURE 5 | A schematic diagram of the visual stimulus used in

Experiment 2. (A) A profile view of a stimulus with 0% noise. (B) A
cartoon of a stimulus with non-zero visual noise. Viewing distance was
500 mm. See main text for specific details.

that dot displacements were drawn from a range ±100% of the
20 mm “step” between background and bar (Figure 5).

Specifying the stimulus parameters
Using the same method as Experiment 1, we first measured
haptic-alone size sensitivity (JNDs) for the three tool gain ratios
(0.7:1, 1:1, and 1.4:1), at three object sizes: 40, 60, and 80 mm.
Note that here, haptic object size (as opposed to hand open-
ing) was the same in different tool-gain conditions, because we
wanted to examine the effects on signal weights of feeling the
same object with different tools. Thus, hand opening varied with
tool gain. The comparison sizes in “object units” were ±1, 3, 6,
and 9 mm. This meant that with the 0.7:1 tool, the standard sizes
in units of hand opening were 57.1, 85.7, and 114.3 mm (compar-
ison sizes = standard ± 1.4, 4.3, 8.6, and 12.9 mm) and with the
1.4:1 tool, standard sizes at the hand were 28.6, 42.9, and 57.1 mm
(comparison = standard ± 0.7, 2.1, 4.3, and 6.4 mm).

Object size sensitivity in each condition is shown Figure 6A.
As we hoped, the different tool gains resulted in qualitatively
different patterns of haptic sensitivity at different object sizes.
Specifically, for the 40 mm object sensitivity was better with the
0.7:1 tool than with the 1.4:1 tool, and for the 80 mm object the
pattern was reversed. This means we could manipulate haptic reli-
ability in a manner that should result in clear differences in signal
weights with variations in tool gain.

We wanted visual reliability not to be too low, because we
wished to observe a clear contribution of both vision and hap-
tics to the overall size estimate. Nor did we want visual reliability
to be too high, because our manipulation of haptic reliability
might then not have measurable effects. We therefore chose a
visual noise level intended to approximately match each partic-
ipant’s visual sensitivity, with the 60 mm object and 1:1 tool,
to his or her average haptic sensitivity across all conditions. It
was not necessary to match visual reliabilities separately in all
conditions because (i) we found in pilot testing that visual size
JNDs with our stimuli varied with object size by only a small
amount (0.86 mm with 20 mm variation in object size), and (ii)
we were not testing point predictions. We therefore used data on
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FIGURE 6 | Sensitivity to object size and predicted signal weights for

Experiment 2. (A) Haptic object-size JNDs for the three different object
sizes, felt with each tool type. The gray dashed line shows the estimated
visual sensitivity after adjusting each participant’s visual noise level to
approximately match his or her average haptic sensitivity (see main text).
Error bars are ± 1 standard error. (B) Predicted haptic weights in each
experimental condition, calculated using the sensitivity data from panel (A),
where wV = 1 − wH

the relationship between visual noise and JND from a previous
pilot experiment (N = 7) as a “lookup table” to specify the visual
noise levels required in each case (see Supplementary material for
details). The average of the predicted visual sensitivities is shown
in Figure 6A (dashed gray line).

Figure 6B shows the predicted pattern of signal weights based
on the data from Figure 6A, and calculated using Equation 2
(assuming the relationship between sensitivity and reliability
described in the Introduction). It can be seen that for the smallest
object size, optimal integration predicts that haptics will receive
more weight with the 0.7:1 tool than with the 1.4:1 tool. At the
middle object size, the prediction is for similar weights (close to
0.5) for all tool types. At the largest object size (80 mm) the the-
ory predicts a reversal of the pattern at 40 mm, with haptic weight
being lower with the 0.7:1 tool, and higher with the 1.4:1 tool.

Procedure
We measured the perceived size of stimuli when information was
available from vision and haptics simultaneously. We varied visual
and haptic sizes independently (cue-conflict stimuli) to measure

the weight given to each. Each trial consisted of a stimulus presen-
tation period and a response period. In the stimulus presentation
period, visual and haptic stimuli were presented simultaneously
and participants explored the virtual objects using a tool. The
stimulus period closely resembled the previous haptic-only trial,
except for the presence of the visual stimulus. Once again the tool
tips were first inserted in start zones, then all visual information
(including the tool) was extinguished at the commencement of
grasp closure. When the tool tips touched the haptic object, the
visual stimulus appeared. As before, participants were trained to
respond within a 900–1200 ms temporal window.

In the response period, a visual rectangular cuboid appeared
on the screen (width 100 mm, depth 20 mm), and participants
adjusted its height (in 5 mm increments from 20 to 120 mm) to
match the stimulus they had just experienced. The start “size” was
randomized. In pilot experiments we found similar patterns of
results for visual responses and haptic responses (reporting which
of a range of felt sizes matched the stimulus) and so we tested only
visual responses here (Helbig and Ernst, 2007b).

In no-conflict conditions, visual object size was equal to haptic
object size (40, 60, or 80 mm). In conflict conditions, visual object
size was varied ± 10 mm from the haptic object size, allowing us
to determine the weights given to vision and haptics (assuming
wH = 1 − wV ; see below). Each participant’s visual noise level
was constant in all conditions, and set so as to match his or her
visual and haptic sensitivities when viewing the 60 mm object and
feeling it with the 1:1 tool (see earlier). The experiment was run in
a series of blocks containing both no-conflict ( SV = SH) and cue-
conflict (SV = SH ± 10 mm). Each block therefore contained 27
combinations of stimuli (3 haptic object sizes × 3 visual sizes × 3
tool gains), randomly interleaved. Each participant completed 20
judgements per stimulus combination.

RESULTS
Figure 7 shows mean perceived size as a function of variation in
visual object size for each tool-gain condition. The three pan-
els show the data for the three haptic object sizes (40, 60, and
80 mm), respectively. If size estimates were based only on the hap-
tic signal, the data would lie on horizontal lines. Conversely, if
estimates relied on vision alone, the curves would lie on a line
with a slope around 1.0. Clearly, the observed data are between
these two extremes. This is consistent with estimates based on a
weighted combination of both signals (Helbig and Ernst, 2007b).
It can also be seen that, at all haptic object sizes, the data for the
different tool-gain conditions are separated vertically. Relative to
the 1:1 tool, perceived size was on average 2–3 mm larger with the
0.7:1 tool, which magnified the hand opening relative to object
size, and a similar amount smaller with the 1.4:1 tool, which
reduced the hand opening. These are relatively small effects, given
the variation in actual hand opening across conditions (with the
60 mm haptic object, for example, hand openings in the three
tool conditions were 85.7, 60 and 42.9 mm). This result there-
fore suggests that haptic size estimates when using a tool are
rescaled to account for the tool gain, but that this “compensation”
is incomplete (we return to this issue in the Discussion).

Figure 8 plots the average weights given to vision and hap-
tics for each combination of object size and tool gain, based on
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FIGURE 7 | Perceived size results from Experiment 2. Each panel shows perceived size as a function of variations in the visual object size, for each tool type,
averaged across all participants. Panels (A–C) show the data for haptic object sizes of 40, 60, and 80 mm, respectively. Error bars denote ± 1 standard error.

FIGURE 8 | Observed signal weights in Experiment 2. The figure plots
haptic signal weight for each “base” object size, and tool type, averaged
across all participants. The weights were calculated from the effect of
varying visual size in each case (the slopes of the lines in Figure 7), and
assuming that wH = 1 − wV . See main text for details of this calculation.
Error bars denote ± 1 standard error.

the slopes calculated from Figure 7. To calculate the weights, we
assumed that perceived size (ŜVH) is a weighted sum of visual and
haptic estimates (ŜV , ŜH), as specified in Equations 1 and 2 (Ernst
and Banks, 2002). We assumed that was unbiased. As noted above,
we cannot assume that ŜH is unbiased. But because in each con-
dition we fixed haptic size and varied visual size, by making the
reasonable assumption that the bias in the haptic size estimate is
constant for a constant object size and tool gain, the slope of the
perceived size data as a function of visual size directly represents
the weight given to that signal (i.e., changes in haptic bias only
would shift the data up or down on the y-axis, but not alter the
slope). The visual weight, wV , was therefore defined as the slope
of the best fitting linear regression to the data in each case, where
wH = 1 − wV .

It can be seen that signal weights varied with both object size,
and tool gain, in a manner similar to the predictions in Figure 6B.
For the 40 mm object, the 0.7:1 tool resulted in more weight
given to haptics, and the 1.4:1 tool resulted in more weight given
to vision. As predicted, this pattern was reversed for the 80 mm
object. Because we had clear predictions we did not conduct an
omnibus ANOVA, but instead ran specific planned comparisons
(one-tailed t-tests) to evaluate the statistical significance of the
predicted effects. These tests showed that for the 40 mm object the
weight given to haptics with 1.4:1 tool gain was significantly lower
than with 0.7:1 tool gain [t(5) = 4.92; p < 0.01]. For the 80 mm
object, the haptic weight with the 1.4:1 tool was significantly
higher than with the 0.7:1 tool [t(5) = 2.23; p ≤ 0.05].

DISCUSSION
In Experiment 1 we found that variations in haptic size sensitiv-
ity, as measured with a 2-IFC task, did not follow Weber’s law
but instead followed a more complex pattern with increased hand
opening. We also found that haptic size sensitivity when using
virtual tools that altered the relationship between object size and
hand opening was a straightforward combination of sensitivity at
the hand, and the effects of the tool geometry. Thus, the “gain”
of pliers-like tools alters the reliability of haptic size information,
and so should be accounted for by an optimal visual-haptic inte-
gration process. In Experiment 2, we found that the brain took
account of these changes in haptic reliability introduced by dif-
ferent tool geometries, and adjusted the weighting of haptic and
visual signals in a manner broadly consistent with statistically
optimal sensory integration.

Said another way, our results show that the visuo-motor sys-
tem was able to adjust appropriately the weight given to size
estimates from vision and haptics with changes in haptic relia-
bility introduced by using different tool mappings. This extends
our knowledge about the flexibility of sensory integration mech-
anisms, in particular by suggesting that the brain can repre-
sent not only distal properties of the world sensed via a “tool
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transformation,” but also the certainty (reliability) with which
that information is known. This potentially confers the capabil-
ity to combine visual and haptic signals rationally across a wide
range of situations encountered in the world. Caution should be
exercised in generalising our findings to the use of real tools,
however. While our manipulation of tool gain accurately repre-
sented the functioning of a real tool, our virtual stimuli differed
from real-world situations in several regards. In particular, move-
ment of the tool itself was artificially constrained, and it had no
perceptible mass. We used virtual stimuli to provide the degree
of experimental control required for our approach, including
varying visual reliability parametrically, varying visual and hap-
tic sizes independently (to measure cue weights), and switching
rapidly between tool types. But it remains to be determined
whether the visuo-motor system operates similarly in real-world
tool use.

THE CORRESPONDENCE PROBLEM IN VISUAL-HAPTIC INTEGRATION
WITH DIFFERENT TOOL GAINS
On its own the finding that haptic sensitivity to object size was
simply determined by the sensitivity at the hand, and the effects
of tool geometry, is perhaps unsurprising: the task simply requires
two signals, both of which are modified by the tool geometry
in the same way, to be discriminated from one another, and the
overall magnitude of the two estimates does not matter. That is,
discrimination need not be carried out in units of the object’s size
in the world, taking into account the tool geometry, but could
simply be carried out in the more basic units of hand opening. For
integration of two different sensory signals to be effective, how-
ever (Experiment 2), the brain must transform the two signals
into common units. That is, it must solve a sensory “correspon-
dence problem”—knowing the statistics of the mapping between
estimates that are sensed in fundamentally unrelated units (Ernst,
2005; Roach et al., 2006). This is important not only for estab-
lishing the relative reliabilities of signals, as studied here, but also
for more fundamental aspects of sensory integration (Landy et al.,
1995). For example, the combined estimate should also generate
an accurate (least biased) combined estimate of the object’s size,
which is also not possible if the relationship between visual size
and (altered) haptic size estimates is not accounted for. Moreover,
knowledge of the mapping between signals is also important in
making the basic decision about whether to integrate signals or
not. As in other sensory domains, visual and haptic signals can
often refer to different objects in the world. To avoid combining
unrelated signals the brain must therefore determine how likely
it is that they share a common cause (Ernst, 2005; Körding and
Tenenbaum, 2006; Roach et al., 2006; Körding et al., 2007; Shams
and Beierholm, 2010). Recent work suggests this process could
be achieved by comparing the statistical similarity of the differ-
ent signals across dimensions such as spatial location, temporal
synchrony, and also signal magnitude (e.g., Deneve and Pouget,
2004; Gepshtein et al., 2005; Shams et al., 2005; Roach et al.,
2006; Bresciani et al., 2006; Ernst, 2007; Knill, 2007; Körding
et al., 2007; Girshick and Banks, 2009; Takahashi et al., 2009).
This makes sense because the probability that two signals relate
to the same object is normally directly related to how similar the
estimates are.

Our method does not allow us to determine whether infor-
mation was combined optimally, in the sense of producing the
minimum-variance combined estimate (Ernst and Banks, 2002).
Nonetheless, the observed changes in perceived size with varia-
tions in visual size in Experiment 2 are consistent with optimal
integration of information from vision and haptics in all three
tool-gain conditions, suggesting the brain solved this sensory cor-
respondence problem essentially correctly. As in previous work,
sensory integration occurred appropriately despite the spatial off-
set between visual signals (at the object) and haptic signals (at
the tool handle) (Gepshtein et al., 2005; Takahashi et al., 2009).
Moreover, signals appeared to be combined correctly, with appro-
priate weightings, across variations in tool gain. Thus, even when
the proximal signals (visual size and hand opening) were dis-
crepant visual and haptic estimates were appropriately combined
on the basis of the distal object properties, taking into account the
tool geometry.

Remapping of haptic signals
In principle, this correspondence of visual and haptic signals
could be established by a remapping process that transforms
the haptic signal at the hand to take account of the tool geom-
etry, allowing accurate estimates of object size in the world,
independent of the tool used to feel it. The perceived-size data
from Experiment 2 (Figure 7) are broadly consistent with such a
process. Assuming that visual size estimates were unbiased, and
using our estimates of the weights given to each signal (wV , wH)
we can calculate the haptic size estimate (ŜH) by rearranging
Equation 1. Figure 9 plots ŜH calculated in this way for each tool-
gain condition as a function of haptic object size (Figure 9A) and
hand opening (Figure 9B). It can be seen that perceived size esti-
mates with gains other than 1:1 were driven predominantly by
object size, and not by hand opening. Figure 9B shows for exam-
ple that, for the same hand opening, haptic size estimates altered
substantially as a function of tool gain. Moreover, Figure 9A
shows that ŜH varied with haptic object size with a slope of near
1.0. This suggests the brain was transforming the proximal esti-
mate (hand opening at the handle of the tool) in order to estimate
the distal haptic size (object size in the world), allowing size esti-
mates, and decisions about sensory integration, to be based on
these common units.

An important idea in motor control is that the brain con-
structs internal “forward models” of limbs allowing movements
of the hand and arm in space to be predicted from motor
commands (Wolpert et al., 1995). In principle such a model
could be extended to include representation of the tool geom-
etry (which is relatively simple compared to the relationship
between joint angles and space) allowing tools to be controlled
using the same underlying systems normally used to control
the arm (Takahashi et al., 2009). This is similar to the more
general idea that tools are “incorporated” into our sense of
body position in space—the “body schema” (Maravita and Iriki,
2004). Relatedly, there is some experimental evidence for effector-
independent control processes for grasping, implying that motor
outputs take tool geometry into account (Gentilucci et al.,
2004; Johnson-Frey, 2004; Umilta et al., 2008; Gallivan et al.,
2013).
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FIGURE 9 | Bias in haptic size estimates (ŜH ) with different tool gains in Experiment 2. The figure shows ŜH in each condition as a function of haptic
object size (A) and hand opening (B). See main text for details of how these values were derived. Error bars denote ± 1 standard error in each case.

Researchers have also studied the “reverse” of this pro-
cess, showing that tool use can affect perceptual and cognitive
processes including perception of the extent of peri-personal
space, the allocation of spatial attention, and perception of our
limbs (e.g., Farnè and Làdavas, 2000; Holmes et al., 2004; Bonifazi
et al., 2007; Cardinali et al., 2009; Sposito et al., 2012), as well
as motor output (Cardinali et al., 2009, 2012). These results are
interesting, and point to the existence of general internal mod-
els that allow forward and reverse operations. The conclusions
that can be drawn regarding the accuracy of the internal mod-
els underlying complex tool use are limited, however, for two
reasons. First, although humans frequently use articulated tools,
which introduce complex alterations to the hand/object map-
ping, the above studies focused almost exclusively on the effects of
using tools that only extend reachable space. Second, the accuracy
of the tool model could not be assessed because studies typi-
cally measured indirect consequences of using tools such as shifts
in spatial attention, indexed by measures such as reaction time
changes. Changes in motor output offer a more direct measure
(e.g., Cardinali et al., 2009, 2012), but is difficult to make quan-
titative predictions regarding movement kinematics, particularly
for aftereffects of tool use.

The finding that haptic size estimates change systematically
with changes in tool gain is consistent with the existence of inter-
nal models for relatively complex transformations, allowing the
magnitude of distal signals (object size) to be computed from the
proximal signals (hand opening) sensed via a tool. It is interesting
to note, however, that the “compensation” for tool geometry
we observed, although substantial, is incomplete, ŜH with being
biased slightly toward the actual hand opening. This could reflect
uncertainty in the internal model of the tool (we do not have
sufficient data to examine whether the effect reduces with time,
as the internal model of the tool is refined, for example). It could
also reflect uncertainty about which tool is currently being used
in our task, because vision of the tool was extinguished during the
size judgement to control visual reliability. Consider an estimate
of the current tool gain based on a (Bayesian) combination of

sensory input about what the current mapping state is, knowl-
edge from previous experience of this mapping, and a prior for
hand:object-size mapping built up from experience. Reducing
uncertainty in either the sensory data or the knowledge of the
mapping will lead to a greater influence of the prior (the typical
mapping), which is presumably a 1:1 mapping between object
size and hand opening (i.e., when there is no tool).

The full range of tool transformations that the visuo-motor
system can model internally remains to be determined. In prin-
ciple, equipped with an appropriate set of mathematical basis
functions, any tool mapping, no matter how abstract, could be
modeled. If one assumes, however, that our tool modeling capa-
bility did not evolve independently, but instead takes advantage
of mechanisms that evolved for controlling our limbs in vary-
ing situations (caused by growth, fatigue, holding objects of
different weights etc.), it seems likely that this architecture will
impose constraints on the classes of transformation that can
be modeled (consistent with findings from classical adaptation
literature).

Estimating signal reliability in remapped haptic estimates
Neural models of population coding offer a plausible neural
mechanism by which the task of appropriately weighting differ-
ent sensory signals could be achieved (see for example Zemel
et al., 1998; Pouget et al., 2002; Knill and Pouget, 2004; Natarajan
and Zemel, 2011; Fetsch et al., 2012). These models describe
how neural populations can represent the probability distribu-
tion associated with an estimate of properties of the world, and
so can represent both the magnitude and uncertainty (noise) of
the estimate in a manner that is analogous to statistical models of
cue integration (Ernst and Banks, 2002). In simple terms, nois-
ier inputs, caused either by internal or external factors result in
“wider” population responses, and vice versa. The product of two
such probabilistic distributions (one for each signal), appropri-
ately normalized, is equivalent to the statistically optimal sensory
integration described earlier (Pouget et al., 1998; Deneve et al.,
2001; Ernst and Banks, 2002; Knill and Pouget, 2004).

www.frontiersin.org February 2014 | Volume 5 | Article 109 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Cognition/archive


Takahashi and Watt Visual-haptic integration with pliers

A key feature of such a mechanism is that by operating on
probability distributions it could achieve optimal, reliability-
based signal weighting moment-by-moment, without requiring
the explicit calculation of signal reliabilities or weights, or explicit
knowledge about the circumstances under which different signals
are reliable (see Natarajan and Zemel, 2011). For quantitatively
meaningful outputs to emerge, however, the two neural popu-
lations for the two senses must be appropriately calibrated with
respect to one another (this is the sensory correspondence prob-
lem, described above). If we assume the brain’s internal tool
“model” operates at the level of the whole neural population cod-
ing for haptic size, then it could effectively scale, or remap, the
output of each neuron in the population according to the geo-
metrical transformation between hand opening and object size
introduced by the tool. This “single” operation would remap the
whole probability distribution and so in theory would achieve
both appropriate rescaling of the magnitude of the haptic size
estimate and of the “width” (uncertainty) of the distribution,
allowing reliability-based combination with other signals in the
manner we observed.

This process also provides a mechanism by which basic sen-
sory factors limit the reliability of high-level (object size) esti-
mates from haptics during tool use, because the low-level noise
propagates through all levels of the system. The haptic-alone dis-
crimination performance in Experiment 1 does not, on its own,
provide compelling evidence for our claim for low-level limita-
tions on high-level haptic size estimates with tools because, as we
discussed above, the task could have been carried out in hand-
opening “units.” The agreement between observed and predicted
signal weights in Experiment 2 suggests, however, that the single-
signal results accurately reflected the system’s sensitivity in the
two-signal case, when haptic estimates were presumably necessar-
ily transformed into higher level (object-size) units in order to be
combined with visual size estimates. Taken together, these results
suggest that haptic-size sensitivity in tool use is indeed limited by
low level sensory factors and not higher-level size-representation
mechanisms.

Rapid switching between visuo-motor mappings
The process described above—remapping between neural pop-
ulations that encode the same object properties specified by
different senses—could also describe “classical” adaptation, for
example to prism displacement. We deliberately randomly inter-
leaved tool types in both our experiments (on average the tool
gain was 1:1) specifically to prevent such adaptation to a con-
stant “offset.” The agreement between our predicted and observed
signal weights is therefore consistent with participants switching
between different visuo-motor mapping “states” on a trial-by-
trial basis, and weighting signals correctly on each trial. This
is consistent with other work on tool use suggesting that tool
mappings are learned and can then be selected or switched
by contextual information or information about tool dynam-
ics (Imamizu et al., 2003; Massen and Prinz, 2007; Imamizu
and Kawato, 2008; Botvinick et al., 2009; Beisert et al., 2010;
Ingram et al., 2010). Similar ability to switch between (presum-
ably learned) mappings has been observed in visuo-motor adap-
tation more generally (Cunningham and Welch, 1994). Perhaps

the most commonly observed example of this is our ability to
rapidly compensate for the effects of putting on and removing
prescription spectacles, once we have sufficient experience with
them (see Schot et al., 2012). Important questions remain, how-
ever, regarding the limitations on learning and switching between
tool models, including the degree of complexity of tool transfor-
mation that can be dealt with effectively (see earlier), how many
different tool models can be learned, and what are the signals that
indicate the current tool mapping state to the system? Even in
our relatively straightforward experiment there are several possi-
bilities for what the system might be learning. For example, the
different tools could be modeled independently, in which case
information about one “tool mapping” would confer no infor-
mation regarding a similar, but novel tool. Alternatively, the class
of “simple gain tools” could be learned, along with a variable
gain parameter, in which case our effects would transfer to novel
tools of the same class. Indeed, it remains possible that nothing is
learned, and that the current mapping state is recovered on each
trial. Further studies are required to explore these possibilities.

Implications for designing tools and other visual-haptic interfaces
Clearly there are many factors that must be borne in mind when
designing tools and haptic interfaces, of which we have studied
just one (haptic size sensitivity). Nonetheless, our data do provide
pointers for how size sensitivity can be optimized in visual-haptic
(or haptic-only) devices. The critical finding is that, because sen-
sitivity to hand opening does not follow Weber’s law, there is a
particular tool gain that maximises haptic sensitivity for a par-
ticular object size. This is illustrated in Figure 10, which plots
JNDs in object size as a function of both object size, and tool gain,
using average data from Experiments 1 and 2, and assuming the

FIGURE 10 | Effects of tool gain and object size on haptic size

sensitivity. The figure plots object size JNDs as a function of both object
size, and tool gains. Continuous data were obtained by using the fit to the
empirical data from Experiment 1 (no-tool condition), and assuming again
that sensitivity in object-size units was a straightforward combination of
sensitivity to hand opening and the effects of tool geometry (Figure 1). The
regions of the figure where no data are plotted correspond to hand
openings beyond our measured data. JNDs ≥20 mm are not represented
accurately, but are plotted as a “flat” dark red region.
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straightforward relationship already described between sensitiv-
ity to hand opening, and sensitivity to object size with different
tool gains (Experiment 1). The diagonal dashed line represents
the locus of best haptic-size sensitivity in this space. In principle,
armed with this information, a haptic device can be optimized for
size sensitivity (similar analyses could also be carried out for other
transformations). Because optimal tool gain varies continuously
with object size, however, it will be critically important to answer
the questions posed earlier regarding our ability to learn multiple
mappings, and to switch between them, to determine how haptic
interfaces are to be truly optimized for complex environments.

CONCLUSIONS
Tools commonly change the mapping between object size and
hand opening. This potentially alters the reliability of haptic size
estimates, complicating the problem of weighting visual and hap-
tic estimates correctly in sensory integration. We first confirmed
that pliers-like tools do indeed introduce such changes in haptic
precision, and therefore reliability. We then examined the extent
to which the brain takes account of these changes in visual-haptic
integration during tool use. Our results suggest that the brain
compensates (albeit incompletely) for changes in proximal hap-
tic signals introduced by different tool geometries, allowing it to
dynamically and appropriately adjust the weighting given to hap-
tic and visual signals in a manner consistent with optimal theories
of sensory integration. These findings reveal high levels of flexibil-
ity of human sensory integration and tool use, as well as providing
an approach for optimizing the design of visual-haptic devices.
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