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The problem of scene analysis has been studied in a number of different fields over the past
decades. These studies have led to important insights into problems of scene analysis, but
not all of these insights are widely appreciated, and there remain critical shortcomings in
current approaches that hinder further progress. Here we take the view that scene analysis
is a universal problem solved by all animals, and that we can gain new insight by studying
the problems that animals face in complex natural environments. In particular, the jumping
spider, songbird, echolocating bat, and electric fish, all exhibit behaviors that require robust
solutions to scene analysis problems encountered in the natural environment. By examining
the behaviors of these seemingly disparate animals, we emerge with a framework for
studying scene analysis comprising four essential properties: (1) the ability to solve ill-
posed problems, (2) the ability to integrate and store information across time and modality,
(3) efficient recovery and representation of 3D scene structure, and (4) the use of optimal

OH 44106-7071, USA
e-mail: michael.lewicki@case.edu

motor actions for acquiring information to progress toward behavioral goals.
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INTRODUCTION

In recent decades, research on scene analysis has advanced in many
different fields. Perceptual studies have characterized the many
cues that contribute to scene analysis capabilities. Computational
approaches have made great strides in developing algorithms for
processing real-world scenes. Animal behavior and neurobio-
logical studies have investigated animal capabilities and neural
representations of stimulus features. In spite of these advances,
we believe there remain fundamental limitations in many of the
ways scene analysis is defined and studied, and that these will
continue to impede research progress until these shortcomings
are more widely recognized and new approaches are devised to
overcome them. The purpose of this article is to identify these
shortcomings and to propose a framework for studying scene
analysis that embraces the complex problems that animals need
to solve in the natural environment.

A major limitation we see in current approaches is that they
do not acknowledge or address the complexity of the problems
that need be solved. Experiments based on simplistic, reflexive
models of animal behavior, or with the implicit assumption of
simple feature detection schemes, have little chance of provid-
ing insight into the mechanisms of scene analysis in complex
natural settings. An additional limitation lies with the exten-
sive use of “idealized” stimuli and stripped down tasks that yield
results which are often difficult to generalize to more ecologi-
cally relevant stimuli and behaviors. For example, scene analysis
experiments designed around auditory tone bursts are of limited
value in helping us to understand how complex acoustic patterns
such as speech are separated from noisy acoustic backgrounds.

Visual grouping experiments using bar-like stimuli are a far
cry from the situation a predator faces in detecting and track-
ing prey in a complex visual environment. At the same time,
computational approaches in the engineering and computer sci-
ence community, although often applied to natural scenes, have
provided only limited insight into scene perception in humans
and other animals. The disconnect here is due to the fact that
tasks are chosen according to certain technological goals that are
often motivated by industrial applications (e.g., image search)
where the computational goals are different from those in more
ecologically relevant settings. In the neuroscience community,
studies of animal behavior and physiology have focused largely
on specific stimulus features or assume feedforward processing
pipelines that do not address the more complex set of prob-
lems required for extraction of these stimulus features in natural
scenes.

Here we argue for a view of scene analysis that is broader, more
ecological, and which encompasses the diverse set of problems
faced by animals. We believe the study of animals is essen-
tial for advancing our understanding of scene analysis because,
having evolved in complex environments, they have developed
a wide range of robust solutions to perceptual problems that
make optimal tradeoffs between performance and resource con-
straints. This premise is important, because it provides a means
to develop testable theories and predictive models that do not just
describe a set of phenomena, but are based on optimal solutions
to well-defined computational goals. Our perspective is similar
to that advocated by Marr (1982): scene analysis is fundamen-
tally an information processing task and encompasses a complex
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set of interrelated problems. What those problems are, how-
ever, remain poorly understood. Therefore one of the primary
research objectives must be to identify the problems that need to be
solved.

CURRENT APPROACHES TO SCENE ANALYSIS

Here, we examine some of the current perceptual and com-
putational approaches to studying scene analysis. We highlight
concepts in these areas that are fundamental to scene analy-
sis and that can inform future experimental and computational
approaches. We also discuss the limitations that make current con-
cepts inadequate for understanding scene analysis in the natural
environment. Our discussion is guided by two fundamental ques-
tions: how do these approaches inform us about the problems
that humans and other animals actually need to solve? How do
they inform us about the computations required for the analysis
of natural scenes?

PERCEPTUAL STUDIES OF SCENE ANALYSIS

Grouping and selective attention

Many perceptual approaches to scene analysis have their roots in
the Gestalt studies of visual grouping and related problems of
selective attention. These cast scene analysis as a problem of per-
ceptual organization where different elements of the image must
be appropriately grouped or “parsed,” e.g., into foreground vs.
background or local features belonging to the same contour or
surface (Palmer, 1999). Likewise in audition, scene analysis is
commonly viewed as the problem of organizing the features in
the input into different auditory streams (Bregman, 1990).

While these lines of research have led to the discovery of a wealth
of intriguing phenomena, grouping by itself does not yield a repre-
sentation of objects or 3D scene structure that is adequate to guide
purposeful actions. Although it seems reasonable that it may make
the problem easier, this assumption is rarely tested in practice. The
main problem we face in scene analysis is the interpretation of sen-
sory information. We see the figure in the well-known Dalmatian
dog image not by determining which blob goes with which other,
or by separating foreground from background, but by arriving at
an interpretation of the relation among 2D blobs that is consistent
with a 3D scene — i.e., it not just the dog, but other aspects of
the scene such as the outlines of sidewalk, the shadow cast by an
adjacent tree, that are all perceived at once (Yuille and Kersten,
2006). Similar arguments apply to visual feature or region seg-
mentation strategies (e.g., Shi and Malik, 2000). These only give
the illusion of solving the problem, because we as observers can
look at the result and interpret it. But who is looking at such repre-
sentations inside the brain? How does the ability to group texture
regions or outline the bounding contour of an object within a 2D
image translate into directing action toward a point in space? How
does it help you navigate a complex 3D scene? It is questionable
whether currently studied subproblems of perceptual organization
and grouping bring us any closer to understanding the structure
of the scene or the mechanisms of its analysis.

Another limitation in many approaches to grouping and atten-
tion, and experimental stimuli in general, is that they presume
a set of artificial features that do not capture the complexity
of natural scenes, e.g., fields of oriented bars or, in audition,

sequences of tone pips (Bergen and Julesz, 1983; Bregman, 1990).
What most models fail to address is that attending to a feature
or grouping a region of the scene is rarely sufficient to solve a
perceptual problem, because the desired information (such as
object or surface structure) is entangled in complex ways with
other structures in the scene, e.g., occluding surfaces, shadows,
and the visual (or auditory) background. How does the ability
to group tone sequences translate into our ability to perceive
speech and other sounds in natural soundscapes? In natural
scenes, it is not obvious what the important features are or
how to extract them, although more recent work has begun to
explore the perceptual organization of contours in natural scenes
(Geisler et al., 2001; Elder and Goldberg, 2002; McDermott, 2004),
and the role of the context of the natural visual scene itself
(Oliva and Torralba, 2007).

Biological systems have evolved in the natural environment
where the structure of sensory signals is highly complex. The use
of simplified artificial stimuli and tasks are thus testing the system
far outside the domain in which it has evolved to operate. The
problem with this approach is that the system we seek to charac-
terize is highly non-linear, but unlike linear systems there is no
universal way to characterize such systems in terms of a reduced
set of functions. The question we need to be asking is, how can we
preserve the ecological complexity and relevance of the input and
task while still introducing informative experimental manipula-
tions? And for the experimental simplifications and idealizations
we choose, can we show that the results generalize to more natural
settings?

Spatial perception

Animals must act in a 3D world, so the recovery of 3D spatial
information sufficient to guide behavior is a fundamental prob-
lem in scene analysis. The numerous cues that contribute to 3D
spatial perception, such as depth, shape, and spatial layout have
been well-studied (Harris and Jenkin, 2011), however most are
studied in isolation or in “idealized” settings that bypass more
complex processes of scene analysis (see, e.g., Cutting and Vish-
ton, 1995). In natural images, local cues such as disparity or
motion are usually highly ambiguous and difficult to estimate
reliably. Moreover, many widely studied models are carried out
almost exclusively in terms of artificial features embedded in a
flat, 2D scene, and it is not clear how these results inform us
about scene analysis in the realm of complex 3D scenes typical
of sensory experience. Spatial audition is an equally impor-
tant aspect of scene analysis for both humans and animals, but
we have only a limited understanding of how spatial auditory
cues such as timing and intensity differences could be extracted
from complex acoustic environments (see, e.g., Blauert, 1997;
Neuhoff, 2004).

The extraction of low-level features such as disparity or inter-
aural timing differences is only the beginning of a complex
inference process in scene analysis. A more fundamental issue is
the question of what types of spatial information animals need to
derive from the scene and how these are represented and integrated
with other information sources. Visual cues of spatial layout,
such as disparity or motion parallax, are retinocentric and can-
not directly drive action without accounting for the movements
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and positions of the eyes, head, and body (Melcher, 2011). It is
often assumed — either implicitly or explicitly — that simply having
a representation of the depth of each point in a scene provides
a sufficient representation of 3D space. But as Nakayama etal.
(1995) have noted, this is not necessarily the case:

Because we have a two-dimensional retina and because we live in a
three-dimensional world, many have seen the problem of space per-
ception as the recovery of the third dimension. . .. Yet there are reasons
to think that [Euclidean geometry] is not the manner in which spatial
distance is encoded in the visual system. Perceptual psychologist Gib-
son (1966) argues that space is not perceived in this way but in terms
of the surfaces that fill space. The most important and ecologically rel-
evant surface is the ground plane. In Gibson’s view, Euclidian distances
between arbitrary points in three-dimensional space are not biologi-
cally relevant (see also Nakayama, 1994). We see our world in terms of
surfaces and plan our actions accordingly.

Currently, we have a very limited understanding of how sur-
faces might be computed and represented or to what extent this
constitutes an adequate representation of the natural scene.

Active perception

Scene analysis can also be viewed as an active process that gathers
information about the scene (Ballard, 1991), often in a task-
driven manner. This is in contrast to the more standard, passive
view that overlooks the contribution of goal-directed action.
Hypotheses about the systems goals are essential for gaining
insight into underlying computational principles. Active per-
ception models lend themselves to more clearly defined goals,
because information is gathered for the task at hand, such as
in gaze control, visual search, guidance of limb movement, or
locomotion over the immediate terrain (Gibson, 1958; Hender-
son and Hollingworth, 1999; Lappe etal., 1999; Land and Tatler,
2009; Lederman and Klatzky, 2009; Wolbers and Hegarty, 2010).
These studies move closer to ecological relevance, but identifying
what drives the acquisition of specific information under natu-
ral conditions, and how information is integrated across saccades
or probing actions to appropriately guide action, remain open
problems.

COMPUTATIONAL APPROACHES TO SCENE ANALYSIS

Computational approaches to problems of scene analysis began
decades ago — Gibson first published his ideas on the process of
visual scene analysis in the 1950s (Gibson, 1950, 1958); the cocktail
party problem was also first described and studied around the
same time by Cherry (1953), when the first speech recognition
systems were being built at Bell Labs (Davis etal., 1952). Yet, even
today many aspects of scene analysis are still open problems in
machine vision and speech processing. Why has it been so hard?
Problems can be hard because the right way to approach them is
not understood or hard in the sense of computational complexity.
Scene analysis is hard for both reasons. Nearly 30 years after these
early investigations, Marr (1982) noted that

...in the 1960s almost no one realized that machine vision was
difficult. . .the idea that extracting edges and lines from images might
be at all difficult simply did not occur to those who had not tried to
do it. It turned out to be an elusive problem. Edges that are of critical
importance from a three-dimensional point of view often cannot be
found at all by looking at the intensity changes in an image. Any kind

of textured image gives a multitude of noisy edge segments; variations
in reflectance and illumination cause no end of trouble; and even if an
edge has a clear existence at one point, it is as likely as not to fade out
quite soon, appearing only in patches along its length in the image.

Evidently, there is a vast gulf between our introspective notions
of how we perceive scenes and our realization of what is actually
needed to accomplish this. Computational models thus force us to
be grounded in our reasoning by testing our assumptions about
the types of representations needed for solving a task, and exposing
what works and what does not.

lll-posed problems

A formal mathematical reason scene perception is a difficult com-
putational problem is that it is ill-posed (Poggio and Koch, 1985;
Pizlo, 2001; McDermott, 2009), meaning that there is not enough
sensory data available to arrive at a unique solution, and often
there are a very large number of possible solutions. Ambiguity in
the raw sensory input can only be resolved using a priori knowl-
edge about scene structure (Pizlo, 2001; Kersten and Yuille, 2003;
Yuille and Kersten, 2006).

An early paradigm for demonstrating the importance of struc-
tural knowledge in visual scene analysis was the “blocks world”
where the objective is to parse or segment the scene by group-
ing local 2D edges and junctions into separate (3D) structures
(Roberts, 1965; Waltz, 1975; for a more recent perspective, see
Frisby and Stone, 2010). Because the role of a local feature is
ambiguous and there are a combinatorial number of possible
groupings, the problem is not trivial. Although this is a highly
reduced problem (and therefore artificial), one of the key insights
from this research was that the ambiguity in “bottom-up” informa-
tion can be resolved by using “top-down” knowledge of structural
relationships and optimization algorithms to find the best solu-
tions. More sophisticated approaches can, for example, recover
object shapes or rectangular room layouts from photographs
(Hoiem and Savarese, 2011).

Some of the most successful approaches to recovering 3D struc-
ture use prior knowledge regarding the geometry of corresponding
points in the left and right images (or more generally multiple
images; Hartley and Zisserman, 2004). These methods mainly
recover the Euclidean coordinates of points in the scene, which
is of limited relevance to biology, but the underlying mathe-
matics provides a fundamental statement of what information is
required, such as inference of the observer’s position and motion in
addition to the scene structure. Recovering more complex shapes
and surfaces remains an area of active research, but some recent
model-based approaches can accurately infer complex 3D shapes
such as faces or animals from real images (Blanz and Vetter, 2003;
Cashman and Fitzgibbon, 2013).

In the auditory domain, successful scene analysis approaches
also make extensive use of statistical inference methods to solve ill-
posed problems (Rabiner and Juang, 1993; Gold etal., 2011). The
early history of speech recognition was focused largely on feature
detection, which is ill-posed due to both the complexity of speech
and the presence of other interfering sounds and background
noise. The use of hidden Markov models, which integrate temporal
context, and statistical learning and inference methods allowed for
much more accurate recognition even though the low-level feature
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representations remained crude and ambiguous. The best systems
have proved to be those with the best prior models (Darwin, 2008).
Recent speech systems became the first to surpass human perfor-
mance in a specialized recognition task involving simultaneous
masking speech (Cooke etal., 2010). Inference in these mod-
els is hierarchical: each level of features, phonemes, words, and
sentences tries to deduce the most probable sequence of uncer-
tain elements using both a priori knowledge (such as the voice,
vocabulary, and grammar) and ongoing contextual information.

Ill-posed inference problems can also be approached sequen-
tially where information is actively gathered, as in active percep-
tion. In robotics, a well-studied problem domain is simultaneous
localization and mapping (SLAM; Thrun etal., 2005). Here, a
robot must use its sensors (typically distance sensors like sonar
or laser scanners) to both determine its location in the environ-
ment and map out the environment itself. The problem is ill-posed
because both the initial position of the robot and the structure of
the scene are unknown, and (due to noise) neither the sensors
nor the actuators provide precise information about distance or
movements. In spite of these challenges, probabilistic approaches
have been successful in real-world domains by using statistical
inference techniques to build up an accurate representation of the
scene from multiple samples and intelligently probe the scene to
resolve ambiguity.

Computational approaches to scene analysis inference prob-
lems have been successful when they have good prior models
of how scenes are generated, which allows accurate interpreta-
tion of what would otherwise be highly ambiguous local features.
Could they provide insight into biological systems? So far, we
would argue they have not. One problem is that these algorithms
have focused only on the computational problem and have not
been formulated in a way that makes it possible to draw corre-
spondences with neural systems. Another problem is ecological
relevance: the choice of problems was not motivated by trying
to understand animal behavior, but rather by specific technolog-
ical goals. Often these problems are defined in narrow settings
and are highly simplified to make them tractable (e.g., the blocks
world), whereas biology must employ solutions that work in
the full complexity of the natural environment. This type of
robustness has remained elusive for the majority of computational
approaches.

Segmentation and grouping

Computationally, grouping can be viewed either as a problem of
grouping the correct features or of finding the correct segmenta-
tion. For sounds, the problem is to separate mixed sound sources
or group features of a single source, as in auditory streaming.
This is a difficult problem because in general there are a com-
binatorial number of groupings. Nevertheless there have been
significant advances in developing computational algorithms to
find an optimal partitioning of a complex scene from low-level
features (Shi and Malik, 2000; Tu and Zhu, 2002; Martin etal.,
2004). Most approaches, however, yield a segmentation in terms
of the 2D image, which does not reliably provide information
about the scene per se. For speech and audio, computational
auditory scene analysis models based on auditory grouping cues
have improved recognition (Cooke etal., 2010), although doing

so for natural sounds in real acoustic environments remains a
challenge. Techniques such as blind source separation (Bell and
Sejnowski, 1995; Hyvarinen etal., 2004) can de-mix arbitrary
sounds but only under very restrictive assumptions. None of
these approaches, however, match the robustness of biological
systems.

Segmentation is often considered to be a pre-requisite for recog-
nition (discussed in more detail below), but that need not be the
case. An alternative approach, popular in the machine vision com-
munity, bypasses explicit segmentation by identifying a sparse set
of “keypoints” — features that are both informative and invari-
ant under different scenes or views of the object (Lowe, 1999,
2004). With a good set of keypoint features, it is possible to
match them against a database to do recognition that is robust
to changes in scale, rotation, and background. An analogous
approach in speech and audio recognition is “glimpsing” (Miller
and Licklider, 1950; Cooke, 2006). Here instead of attempting
to separate the source from the background by auditory stream
segmentation, one attempts to identify spectro-temporal regions
where the source target is not affected by the background sounds.
This can be effective when both signals are sparse, such as in
mixed speech, when only a subset of features is necessary for
recognition.

Object recognition

Any given scene contains a multitude of objects, so the process
of scene analysis is often interrelated with object recognition. In
computer vision, object recognition is usually treated as a label-
ing problem in which each object within a scene is assigned a
semantic label and a bounding box that specifies its 2D location in
the image. Object recognition is sometimes generalized to “scene
understanding” in the field of computer vision, where the task
is to segment and label all the different parts of the scene, i.e.,
all the objects and background, often in a hierarchical manner.
The standard approach to solving recognition problems is based
on extracting 2D image features and feeding them to a classifier,
which outputs the object category. Despite some degree of suc-
cess over the past decade, these methods have not provided much
insight into object recognition and scene analysis as it occurs in
animals. One problem is that the task of recognition has been
defined too narrowly — primarily as one of mapping pixels to
object labels. A label, however, is not sufficient to drive behav-
ior. Many behaviors require knowing an object’s 3D location,
pose, how it is situated within the scene, its geometric struc-
ture (shape), and other properties needed for interacting with the
object.

Another problem with casting recognition as a labeling or
categorization problem is that the issue of representation is
rarely addressed. Animals, including humans, likely recognize
objects using representations that encode the 3D structure of
objects in some type of viewpoint invariant form (Biederman,
1987; Edelman, 1999; Kersten etal., 2004). Recent research in
the computer vision community has begun to form 3D rep-
resentations directly using laser scanners (Gould etal., 2008).
This improves recognition rates and makes segmentation eas-
ier but falls far short of biological relevance, because the
representation of 3D structure is still based on point clouds
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in Euclidean space. Biological representations are likely to
be adapted to the structure of natural shapes but currently
we do not have models of such representations. Such mod-
els could provide testable hypotheses and valuable insights
into the nature of the structural representations in biological
systems.

SUMMARY

What emerges from the discussion above is that scene analysis
in natural settings encompasses several types of computational
problems. While one cannot give a precise definition, it is pos-
sible to identify some common principles, which we will explore
and develop further below. The first is the importance of solving
ill-posed problems, which is very different from the paradigm of
(simple) feature extraction underlying many current approaches.
Extracting specific information from a complex scene is inherently
ambiguous and is only soluble with strong prior information.
Another is the importance of grounding representations in 3D
space — as opposed to the intrinsic coordinate system of the sen-
sory array — in a manner that drives behavior. Scene analysis must
also actively integrate information over time, e.g., by directing the
eyes in order to gather specific information for the task at hand, as
studied by Land and Tatler (2009). Below we explore these issues
further in the context of the scene analysis behaviors of a diverse
range of animals.

SCENE ANALYSIS IN ANIMALS

Against this backdrop of current perceptual and computational
approaches to scenes analysis, let us now examine the actual
problems faced by animals in the natural environment. We exam-
ine four animals in particular which highlight the scene analysis
problems solved in different modalities: vision, audition, echolo-
cation, and electrolocation. Because each of these animals must
survive in complex environments, they must have developed
robust solutions to problems in scene analysis (Bee and Micheyl,
2008). Thus, studying these and other animals provides a means
to learn what is required for scene analysis in the natural envi-
ronment. What problems do animals need to solve to carry out
their natural behaviors? What are their limits and capabilities,
the strategies they use, and the underlying neural circuits and
representations?

While the field of neuroethology has long studied a wide range
of animal systems, issues relevant to scene analysis have received
much less attention. A basic premise of neuroethology is to study
a system that is specialized in a behavior of interest, e.g., sound
localization in barn owls, animals that forage by listening to the
sounds generated by prey. A rich history of research has revealed
much about basic perceptual cues and their underlying neural
correlates (e.g., timing and intensity differences in sound local-
ization), but, as with many systems, issues in scene analysis
have only begun to be addressed. Most studies are designed to
manipulate perceptual cues in isolation, which do not require
scene analysis, and it has yet to be determined whether such
results generalize to more complex natural settings. The history
of computational approaches discussed above would suggest that
they do not, because the introduction of scene analysis opens
a whole new class of problems. Some behaviors can be guided

by a few simple cues, e.g., instinctive “key” stimuli eliciting spe-
cific responses; others are more complex and require sophisticated
analysis. The animals we have chosen provide concrete examples
of systems that have to solve difficult problems in scene analy-
sis. We do not yet know the extent to which animals are able to
perform scene analysis, because key investigations have yet to be
conducted.

For each animal model described below, we consider the range
of problems they need to solve, and the extent to which cur-
rent findings inform us about these animals’ perception of natural
scenes and general issues in scene analysis. The point we pursue
is a neuroethological one, namely that commonalities in diverse
systems can often provide insight into fundamental problems that
are of broad relevance.

VISUAL SCENE ANALYSIS IN THE JUMPING SPIDER
The jumping spider (Figure 1A) exhibits a wide variety of visually
mediated behaviors that exemplify many of the key problems of
scene analysis. In contrast to other spiders, which use a web to
extend their sensory space, the jumping spider relies mainly upon
its highly elaborate visual system to scan the environment and
localize prey, to recognize mates, and to navigate complex 3D
terrain. In fact it exhibits many of the same attentional behaviors
of predatory mammals (Land, 1972; Jackson and Pollard, 1996).
The visual system consists of four pairs of eyes (Figure 1B): one
pair of frontal facing principal eyes (antero-median eyes) provide
a high-resolution image over a narrow field of view, while the
other three pairs provide lower resolution images over a wider
field of view and are mounted on different parts of the head
so as to provide 360° coverage of the entire visual field (Land,
1985). Interestingly, the retinae of the antero-median eyes are
highly elongated in the vertical direction so as to form a 1D
image array. These retinae move from side to side within the

3

FIGURE 1 | (A) Jumping spider (Habronattus), (B) jumping spider visual
system, showing antero-median, antero-lateral, and posteriorlateral eyes
(A,B from Tree of Life, Copyright 1994 Wayne Maddison, used with
permission). (C,D) Orienting behavior of a 1-day-old jumping spider stalking
a fruit fly. Adapted from video taken by Bruno Olshausen and Wyeth Bair.
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head in a smooth (approximately 1 Hz) scanning motion that
sweeps its 1D retinae across the object of interest (Land, 1969).
The jumping spider uses its wide-field, low resolution system to
detect moving targets or objects of interest, and then orients its
body to focus the high resolution antero-median eyes for more
detailed spatial analysis via scanning. In mammals these dual
aspects of visual function are built into a single pair of eyes
in which resolution falls off with eccentricity, whereas in the
jumping spider they are subdivided among different eyes. Note
that such multiple eye arrangements are not unique to jumping
spiders, but can be found in other animals such as the box jel-
lyfish, which has a total of 24 eyes surveying different parts of
the scene (Nilsson etal., 2005; O’Connor etal., 2009). The fact
that invertebrates with limited brain capacity “transfer” the scene
coverage to eyes with different optical properties is strong evi-
dence of the importance of sensor fusion. Scene analysis is not
simply a matter of looking at the image that falls upon the retina;
rather, the brain must assemble disparate bits and pieces of sensory
information (in this case, from different eyes) into a coherent rep-
resentation of the external environment that is sufficient to drive
actions.

Active perception, segmentation, and tracking during prey capture
Jumping spiders feed mainly upon flies and other insects or
spiders. Hunting behavior consists of three steps: (1) a mov-
ing object is detected and elicits an orienting response (see
Figures 1C,D). (2) The target object is then analyzed by the
high-resolution, antero-median eyes by scanning. If the object
moves during this period the antero-median eyes will also move
to track it in a smooth pursuit motion. (3) If the target
object is determined to be potential prey, the jumping spi-
der will then engage in a stalking behavior in which it slowly
advances forward, crouched to the ground, presumably to avoid
detection, prior to raising its front legs and pouncing on the
object. Thus, the jumping spider has different behavioral states
that dramatically alter its perceptual processing and consequent
actions.

These behaviors illustrate an active process of scene analysis,
whereby the high resolution eyes — which have narrow field of
view — are steered toward a salient item detected by the other
eyes. As the object moves, the head and eyes move as appropri-
ate to track the item and keep it in the field of view for high
resolution analysis. The scanning motion of the antero-median
retinae is used to determine what the object is (see below) and
elicit the appropriate action. For a prey item, the spider must esti-
mate the distance for pouncing (possibly using the antero-lateral
eyes which have binocular overlap). For all of these tasks, the prey
item must be appropriately separated from the background which
is likely to be highly cluttered and contain other moving objects.
The use of multiple eyes to mediate one coherent set of actions
also illustrates an integrative process of scene analysis, whereby
information from different sources (in this case, different eyes) is
combined toward a common goal. How this is accomplished is not
known, but the neuroanatomy shows that while each eye has its
own ganglion for initial processing, the signals from these differ-
ent ganglia eventually converge within the jumping spider’s central
brain.

Object recognition in mate selection

Jumping spiders exhibit a stereotypical courtship behavior in
which the male performs a “dance” — consisting of waving the
legs or moving from side to side in a specific manner — to attract
the attention of a female and gain acceptance prior to copula-
tion. It has been shown that purely visual cues are sufficient
to induce these dances. Drees (1952) used a collection of line
drawings to find the nominal visual cues necessary to induce
courtship behavior and found that the most effective stimulus
was in fact a drawing that depicts the most salient features of a spi-
der — a body with legs. It has also been shown that the video
image of a conspecific female is sufficient to trigger courtship
behavior, and the video image of a conspecific male perform-
ing a dance is sufficient to elicit receptivity behavior in the female
(Clark and Uetz, 1990).

These studies demonstrate that the male jumping spider per-
forms complex visual pattern recognition in order to detect the
presence and assess the suitability of the female. Females must
be capable of at least as much sophistication as they must also
perceive and recognize the dance movements of the male. Each
party must also maintain its attention during this interaction
by holding its gaze (antero-median eyes) on the other. Impor-
tantly, since the image of each spider subtends a 2D area, the
scanning motion of the 1D retinae is crucial to recognition. It
has also been observed that the range of scanning is matched
to the visual extent of the target (Land, 1969). This scanning
strategy again exemplifies an active process of scene analysis,
whereby the representations necessary for recognition are built
up by moving the sensor array across the scene. It also exemplifies
an integrative process, whereby the time-varying photoreceptor
activities that result from scanning are accumulated into a stable
representation of the object of interest. The image of potential
mates must also be separated or disentangled from the back-
ground to be seen. Many jumping spiders have colorful markings,
presumably for this purpose, but under what conditions of back-
ground clutter or occlusion, or under what variations of distance
and pose, spiders can be successfully recognized has not been
investigated.

3D scene analysis during spatial navigation

Jumping spiders hunt in complex 3D environments in which
there may not be a straightforward path for reaching a targeted
prey item. When hunting within foliage, for example, the spi-
der may find and localize prey on another branch or object that
is not within direct jumping reach, but which requires taking
a detour. This detouring behavior has been studied extensively
in the species Portia fimbriata. It appears that these spiders are
capable of analyzing complex 3D layouts in their environment
that allow them to plan and execute the proper route to reach
prey, even when it requires initially moving away from the target.
Tarsitano and Jackson (1994) studied this behavior by placing a
prey item in one of two trays that are reachable only by travers-
ing a bent metal rod rising from the ground plane (e.g., as if
perched on the leaf of a plant which can only be reached by climb-
ing up the stalk of the plant). The spider is then placed on a
pedestal in the center of the arena and begins scanning its envi-
ronment from this position by repeatedly fixating its principal
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eyes on objects in its environment. It then commences movement
down from its pedestal to the ground plane, and then toward
the rod that leads to the prey item irrespective of whether it is
in the opposite direction or on the opposite side of the arena.
The spider continues its pursuit even though the prey item is no
longer visible once the spider moves to the ground. It has also
been shown that while en route to a prey item, a jumping spider
will occasionally re-orient toward the item by turning its head,
and that the angle of these re-orienting turns matches the cor-
rect, updated position of the prey item given the distance traveled
(Hill, 1979).

These behaviors illustrate another important process of scene
analysis, which is the ability to form persistent representations
of the 3D layout of a scene appropriate for path planning and
navigation. The jumping spider must identify not only the target
and its direction, but also the ground plane and traversable objects
that lead to the target. Planning and executing a movement to the
target requires spatial memory and dynamic updating in order to
stay on an appropriate path, even when the goal is not in sight and
no longer in the original direction seen.

It is impressive — perhaps even surprising — that such cognitive
abilities can be found in a “simple” animal. However when one
considers the complexity of the dynamic, natural environment and
what is required for robust behavior, these scene analysis capabil-
ities would be essential. Importantly, these abilities lie far beyond
what may be achieved by modern computer vision or robotic
systems, especially in terms of robustness, which is a testament
to the complexity of the computational problems that must be
solved.

AUDITORY SCENE ANALYSIS IN SONGBIRDS

Birdsong serves multiple functions, including mate attraction,
mate and species recognition, and territorial defense (Ball and
Hulse, 1998; Wiley, 2000; Marler and Slabbekoorn, 2004; Catch-
pole and Slater, 2008), all of which require the analysis of
complex acoustic scenes. Songbirds communicate over long dis-
tances (50—200 m) in noisy environments, and although acoustic
structure of birdsong is adapted to better stand out from the back-
ground (Sorjonen, 1986; Nelson, 1988, 1989; Pohl etal., 2009),
the acoustic scene is often cluttered with many types of ani-
mal vocalizations (Wiley, 2009) — in some rain forests, there
can be as many as 400 species of birds in a square kilome-
ter (Catchpole and Slater, 2008). Similar auditory scene analysis
problems are solved by other animals: king penguin chicks,
Aptenodytes patagonicus, use vocal cues to recognize and locate
their parents in dense colonies (Aubin and Jouventin, 1998);
female frogs face similar acoustic challenges during mate selec-
tion (Feng and Schul, 2006; Gerhardt and Bee, 2006). These and
other examples in animal communication have many parallels
to the classic cocktail party problem, i.e., recognizing speech in
complex acoustic environments (Cherry, 1953; Brémond, 1978;
Hulse etal.,, 1997; Bee and Klump, 2004; Bee and Micheyl,
2008).

Scene analysis in territorial defense
Auditory scene analysis is crucial for songbirds in one of their
primary behaviors: territorial defense. Songs are used as acoustic

markers that serve as warning signals to neighboring rivals. From
acoustic cues alone, songbirds must keep track of both the identi-
ties and positions of their territorial neighbors to recognize when
a rival has trespassed (Figure 2). Localization accuracy in both
direction and distance is important because if they do not fight off
an invader they risk losing ground, but an excess of false alarms or
poor estimates would waste time and energy.

The accuracy and robustness of species-specific song recogni-
tion and localization can benefit from higher-level knowledge of
song structure. Songbirds can localize acoustic sources in natu-
ral habitats accurately even in noisy environments (Klump, 2000).
The precise acoustic cues songbirds use remain unclear. Their
small head size provides minimal timing and intensity differences
normally used for lateralization judgments, and the reliability of
these cues does not predict their level of accuracy in natural set-
tings (Nelson and Stoddard, 1998). One explanation is that the
birds can make use of higher-level knowledge to help disambiguate
the acoustic cues (Nelson and Stoddard, 1998; Nelson, 2002; Nel-
son and Suthers, 2004). It is also likely that songbirds make use of
an interaural canal to localize sound sources (Klump and Larsen,
1992; Larsen, 2004). Songbirds (and other birds) also exhibit
the precedence effect which may serve to minimize interferences
from echoes and reverberation (Dent and Dooling, 2004; Spitzer

FIGURE 2 | Territorial prospecting. Songbirds use song as acoustic
territorial markers to serve as a warning to potential invaders and rely on
sound for locating other birds in complex acoustic scenes and natural
environments. The black dots indicate the positions of established singing
territorial males, most of which would be audible from any one position, in
addition to numerous other sounds. The black line shows the prospecting
path of a translocated and radio-tagged male nightingale. Hatched areas
indicate reed, bushes, or woods separated by fields and meadows. Figure
from Naguib etal. (2011) which is based on data from Amrhein etal. (2004).
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etal., 2004; Spitzer and Takahashi, 2006). Sound localization in
songbirds may employ all of these mechanisms and requires some
degree of scene analysis, because the acoustic cues for localiza-
tion must be separated from the clutter of other sounds and the
background noise.

Estimating the distance of singing birds is difficult because
it is not clear if this information can be derived from generic
acoustic cues (Morton, 1986; Naguib and Wiley, 2001; Brumm
and Naguib, 2009). To judge distance of a conspecific, a bird
must assess the level of degradation in a song (in terms of
frequency-dependent attenuation and reverberation) after it has
propagated through the environment. This suggests that song-
birds make use of higher-level knowledge, and there is evidence
that songbirds are more accurate in ranging familiar songs
(Morton, 1986, 1998a,b; Shy and Morton, 1986; Wiley, 1998;
Morton et al., 2006).

A representation of the territorial space is necessary for locat-
ing and tracking the positions of other songbirds, and it must also
properly account for the bird’s own orientation and movement
within the territory. Songbirds can remember the spatial location
of an intruder and can accurately estimate its range even after
playback has ended (Morton etal., 2006). This representation is
also likely to be integrative because conditions are noisy, and it
is not always possible to localize accurately from a single instance
of song. Any form of triangulation from multiple instances of a
rival song from different locations would also require an integra-
tive representation. There is evidence that songbirds experience
spatial unmasking when overlapping sounds arrive from different
directions (Dent etal., 2009), suggesting that they can perform
scene analysis using both acoustic features and spatial location of
sound sources.

Song recognition and auditory source separation

Songbirds recognize the songs of their territorial neighbors,
responding more aggressively to unfamiliar strangers (Bee, 2006),
and they retain this ability in the presence of acoustic clutter such
as the songs of other birds (Hulse etal., 1997; Wisniewski and
Hulse, 1997; Appeltants etal., 2005). This also requires a repre-
sentation of song structure which is likely to be learned because
European starlings show persistent memory for both tonal signals
and amplitude modulations (Zokoll etal., 2007, 2008). Starlings
also show long-term memory for individuals (Braaten, 2000) sug-
gesting their representation of acoustic targets (i.e., other songs)
is highly adaptive.

A number of studies have investigated the extent to which
songbirds can process song in the presence of background noise
and interfering acoustic clutter. Brémond (1978) used speakers
to broadcast conspecific songs of wrens within their territorial
boundaries. The normal territorial response was largely unaf-
fected when the songs were masked with a variety of equally loud
stimuli, including heterospecific songs, a stimulus composed of
randomized 50 ms fragments of conspecific song, or a mixture
of eight natural wren songs. None of the maskers presented in
isolation elicited a response, suggesting that the wrens were adept
at identifying an intruding song even in the presence of a signif-
icant amount of acoustic clutter. These abilities do have limits,
however. An earlier study of species recognition by Brémond

(1976) found that Bonelli’s warblers could not identify their own
song when it was masked with inverted elements from the same
song.

A series of experiments by Hulse and colleagues (Hulse etal.,
1997; Hulse, 2002) showed that European starlings could accu-
rately recognize conspecific song (demonstrated by key pecking)
in the presence of a variety of other songs and a noisy dawn
chorus. Importantly, the birds were trained so they never heard
the target song type in isolation, i.e., the starling songs were
always mixed with a song of another species. The birds then
had to compare this pair to another mixed song pair of two dif-
ferent species. Not only could the birds accurately classify the
song pairs that contained starling song, but they also general-
ized with no additional training to song pairs with novel songs
and to songs presented in isolation. Further studies (Wisniewski
and Hulse, 1997) showed that the starlings were also capable of
accurately discriminating song segments from two individual star-
lings, even when each was masked with song segments from up
to four other starlings (Figure 3). These studies suggest that the
birds were not perceiving the song pairs as fused auditory objects
and learning the feature mixtures, but recognized the target song
by segregating it from other acoustic stimuli with very similar
structure. Similar results have been observed in zebra finches
(Benney and Braaten, 2000).

Active perceptual behaviors

Songbirds also take a variety of actions to facilitate scene analysis
(Brumm and Naguib, 2009). They perch inlocations and positions
that maximize the range of the acoustic signal (while still avoiding
predation); they sing more repetitions when there is higher back-
ground noise; they also avoid overlapping their songs (Brumm,
2006). These compensatory behaviors are not unique to song-
birds, but are also shared by other animals that rely on acoustic
communication such as penguins and frogs (Aubin and Jouventin,
1998; Murphy, 2008).

The broad range of songbird behavior carried out in complex
acoustic environments strongly suggests that songbirds success-
fully perform several aspects of scene analysis. There also remains
the possibility that songbirds achieve these feats via simpler means.
For example, songbirds might recognize song by key features or
“glimpsing” (Miller and Licklider, 1950; Cooke, 2006), where it is
only necessary to get an occasional unmasked “glimpse” of some
part of the song in order to recognize it. This could be tested by
controlling the masking songs in a systematic way, but doing so
requires a detailed model of the song recognition process which
has remained elusive. It seems more likely that for recognition
(and mate selection by females), the acoustic elements of song
need to be not only separated from the clutter of other sounds and
the noise of the background but also grouped correctly over time.
Supporting this is the observation that songbirds exhibit temporal
induction of missing song segments (Braaten and Leary, 1999).
The intricate structure of birdsong and the growing evidence
that songbirds use higher-level structural knowledge suggest that
songbirds perform auditory scene analysis and spatial auditory
perception in a manner that is analogous to contextual inference
and auditory grouping in speech recognition. Furthermore, spatial
memory, path planning, and active perception are essential aspects
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FIGURE 3 | Auditory source separation by starlings. The top panel shows a  the target song was mixed with a novel distractor song from Starling C
spectrogram from a 10-s segment of typical starling song (Sturnus vulgaris). (middle) and in the presence of four novel conspecific songs (bottom), a feat
In an experiment by Wisniewski and Hulse (1997), starlings were trained to which human listeners could not do, even after training. Figure after
discriminate one of 10 song segments produced by Starling A from 10 song Wisniewski and Hulse (1997) using songs from the Macaulay Library of the
segments produced by Starling B. The birds maintained discrimination when Cornell Lab of Ornithology.

of territorial defense and mate selection. Together these span many
general aspects of scene analysis discussed above and highlight new
ways songbirds could be studied to gain general insights into scene
analysis.

ACTIVE AUDITORY SCENE ANALYSIS IN BATS

Studies of echolocating bats can shed light on general problems of
scene analysis that lie far outside the realm of human experience.
These animals employ a high resolution, active sensing system
to extract information from the natural environment based on
the echoes from calls emitted by the bat. The features of a bat’s
echolocation calls impact the acoustic information it receives to
build its auditory scene, and therefore, detailed study of sonar call
parameters provides direct access to the signals used by an animal
to perceive its 3D environment. Importantly, the bat’s active motor
adjustments reveal how the animal deals with ill-posed perceptual
problems, where echo snapshots carry incomplete and ambiguous
information about the natural scene.

The high spatial resolution and active components of bat
echolocation offer a special opportunity to (1) identify general
principles of scene analysis that bridge hearing and vision, and (2)
analyze the very acoustic signals used by bats to represent the nat-
ural scene, which can, in turn, inform principles of scene analysis
in auditory generalists, including humans. We elaborate below
on these key features of echolocation as we summarize empirical
findings from the literature.

The bat’s sonar scene consists of echoes reflecting from targets
(flying insects, stationary fruit, or other food items) and clutter

(vegetation and other objects) and background (the ground).
Oftentimes the echoes the bat encounters from a complex scene
contain incomplete or ambiguous information about object fea-
tures and location: (1) cascades of overlapping echoes from
targets and clutter may be difficult to assign to correspond-
ing sonar objects, (2) very short duration echolocation calls
return information about a dynamic environment within only
a restricted slice in time, (3) directional sonar calls return infor-
mation from a restricted region in space, (4) rapid attenuation
of ultrasound limits the operating range of echolocation, and (5)
signals produced by nearby bats and other animals can interfere
with the processing of echoes, but perhaps also be exploited for
extra information. Nonetheless, echolocating bats overcome these
challenges to successfully navigate and forage using biological
sonar.

Spatial scene perception

To successfully track a selected prey item and avoid collision
with other objects, the bat must localize and organize complex
3D acoustic information and coordinate this representation with
motor planning on very rapid time scales. For example, when a
bat is seeking insect prey in the vicinity of vegetation, each sonar
call returns echoes from the target of interest, along with echoes
from branches, leaves, and other objects in the vicinity (Figure 4).
The resulting echo streams carry information about the changing
distance and direction of objects in space. By integrating informa-
tion over time, the bat can sort and track target echoes in the midst
of clutter. This scene analysis task is aided by their active control
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FIGURE 4 | Bat scene analysis. Schematic illustrating how echoes from
different objects in the path of the bat's sonar beam form acoustic streams
with changing delays over time. Upper panel: The cartoon shows a bat
pursuing an insect in the vicinity of three trees at different distances. The
numbers indicate the positions of the bat and insect at corresponding
points in time. Colorcoded arcs illustrate an echo from the red tree at
position 1 (A) and echoes from the blue and red trees at position 3 (B and
C). Lower panel: Echoes from the insect (thick gray lines) and each of the
trees (red, blue, and green) arrive at changing delays (x-axis) over time (right
y-axis) as the bat flies in pursuit of its prey. Each sonar vocalization (not
shown) results in a cascade of echoes from objects in the path of the
sound beam, which arrive at different delays relative to vocalization onset.
Time to capture proceeds from top to bottom. At time 0, the bat captures
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the insect. The numbers 1-4 to the left of the y-axis indicate the times of
the corresponding bat and insect positions in the cartoon. The thin
horizontal gray lines display the echo returns from successive vocalizations
which change in duration as the bat moves from search to approach to
terminal buzz phases (left y-axis). Echoes are displayed as colorcoded open
rectangles to illustrate the relative arrival times from the insect and each of
the trees. The letters A, B, and C link selected echoes to the arcs in the
cartoon above. The duration of echoes, indicated by the width of rectangles,
changes proportionately with the duration of sonar calls and appear as
narrow ridges when call duration is very short during the approach and buzz
phases. Note that the delay of echoes from the red tree and blue tree
initially decrease over time, and later increase after the bat flies past them.
Adapted from Moss and Surlykke (2010).

over sonar call design, along with head and pinna position. Some
bats, for example, Myotis septentrionalis (Miller and Treat, 1993)
or Myotis nattereri (Siemers and Schnitzler, 2004) use very short
and often extremely broad band frequency modulated (FM) calls
to sharpen up the representation of closely spaced objects, which
enables them to distinguish prey from clutter. The nasal-emitting
bat Micronycteris microtis (Phyllostomidae) can detect and seize
completely motionless prey sitting on leaves; this is among the
most difficult auditory segregation tasks in echolocation, which
may rely on learning and top-down processing (Geipel et al., 2013).
In addition, recent psychophysical studies suggest that bats using
FM calls may experience acoustic blur from off-axis echoes, due
to frequency-dependent directionality of sonar signals and the
dependence of auditory response latencies on echo amplitude.
This off-axis “blur” could serve to minimize clutter interference in
the natural environment (Bates etal., 2011).

Bats that produce long constant frequency signals combined
with short FM sweeps (CF-FM), such as the greater horseshoe
bat, Rhinolophus ferrumequinum, solve the problem of find-
ing prey in dense vegetation by listening for Doppler frequency
and amplitude modulations in echo returns that are introduced
by the fluttering wings of insect (Schnitzler and Flieger, 1983;
von der Emde and Schnitzler, 1986; von der Emde and Menne,
1989). They can also use this acoustic information to recog-
nize insect prey (von der Emde and Schnitzler, 1990), suggesting
that auditory scene analysis by echolocation builds on prior
knowledge.

Active perception in sonar scene analysis

The fast, maneuverable flight of bats requires not only a detailed
representation of the natural scene to discriminate between
foreground (prey, conspecifics, and clutter) and background
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(landscape, ground, large structures like trees, houses, rocks),
but also very rapid updates to take into account their own move-
ments, as well as those of the prey and conspecifics. How does
the bat accomplish this daunting auditory scene analysis task with
ambiguous echo information and on a millisecond time scale?
Part of the answer to this question lies in this animal’s adaptive
vocal-motor control of sonar gaze and frequency.

Scene analysis through gaze control

Detailed analyses of the big brown bat’s echolocation behavior has
revealed that this animal sequentially scans auditory objects in dif-
ferent directions, by moving the axis of its sonar beam and inspects
objects at different distances, by making range-dependent adjust-
ments in the duration of its calls (Ghose and Moss, 2003; Surlykke
etal.,2009; Falketal.,2011). Bats also adjust the width of the sonar
beam to the situation, to use a broader “acoustic field of view” close
to clutter than out in the open where a narrow “long range” beam
is advantageous (Jakobsen etal., 2013). The bat’s active adjust-
ments in the direction and distance of its sonar “gaze” help the
bat resolve perceptual ambiguities in the sonar scene by sampling
different regions in space. Sonar beam aim also indicates where in
space the bat is attending, and suggests parallels with eye move-
ments and visual gaze (Land and Hayhoe, 2001). This observation
also suggests that the bat uses working and short-term memory to
assemble a spatial representation of the environment from a series
of echo snapshots from different locations (Moss and Surlykke,
2001; Surlykke etal.,, 2009). It has also been demonstrated that
pinna movements of echolocating bats that use CF sonar signals
serve to enhance echo information for spatial localization (Mog-
dansetal., 1988; Gao etal., 2011). Together, the bat’s active control
over sonar call features, head direction, and pinna position con-
tribute to solving the computational problem of sorting sounds
arriving from different directions and distances.

Scene analysis through sound frequency control
When bats forage together in groups, they face a “cocktail party
challenge of sorting echoes generated by their own sonar calls
from the signals and echoes of neighboring bats. A recent lab-
oratory study investigated this problem by studying the acoustic
behavior of pairs of echolocating big brown bats (Eptesicus fus-
cus) competing for a single prey item (Chiu etal., 2009). The
results of this study show that the bat makes adjustments in
the spectral characteristics of its FM calls when flying with
conspecifics. Importantly, the magnitude of these adjustments
depends on the baseline similarity of calls produced by the indi-
vidual bats when flying alone: bats that produce sonar calls
with similar spectrum (or frequency structure) make larger
adjustments in their sonar calls than those bats whose baseline
call designs were already dissimilar. This suggests that simple
frequency cues may be sufficient to reduce perceptual ambigu-
ities, and the separation of frequency features of sonar calls
produced by different bats aids each individual to segregate
echoes of its own sonar vocalizations from the acoustic sig-
nals of neighboring bats (see Ulanovsky etal., 2004; Bates etal.,
2008).

Hiryu etal. (2010) report that big brown bats flying through
an array of echo reflecting obstacles make frequency adjustments

»

between alternating sonar calls to tag time dispersed echoes
from a given sonar call with spectral information. Many other
bats normally alternate between frequencies from call to call
(Jung etal., 2007). These findings suggest that bats may treat
a cascade of echoes following each sonar vocalization as one
complete view of the auditory scene. If the integrity of one
view of the acoustic scene is compromised by overlap of one
echo cascade with the next, the bat changes its call frequen-
cies to create the conditions for segregating echoes associated
with a given sonar vocalization, thus providing additional evi-
dence for the bat’s active adjustments in signal frequency to
resolve ambiguity in assigning echoes from objects at different
distances.

Broader perspectives on scene analysis offered by echolocation
Echo reflecting objects are in effect sound sources, whose acoustic
characteristics are shaped by the bat’s active control over its sonar
signals. The bat’s active sensing allows us to directly measure the
signals used by an animal to resolve perceptual ambiguities that
arise in scene analysis problems. Furthermore, the bat’s adaptive
adjustments in sonar call direction, intensity, duration, timing,
and frequency emphasize the importance of these acoustic param-
eters to specific scene analysis tasks, and suggest parallel processes
for the cues used in natural scene perception by other animals,
including humans.

SCENE ANALYSIS IN THE ELECTRIC FISH

As with the echo-locating bat, the manner in which electric fish
perceive the surrounding environment provides a clear example
of scene analysis principles at work that is divorced from human
introspection. The sensory world of the electric fish consists largely
of distortions of its self-generated electric field, in addition to the
electric fields generated by other fish (Nelson, 2011). Although still
equipped with a visual system, electroreception has been shown
to be the dominant sense used for foraging, orientation and com-
munication tasks for these animals. The electrical environment
contains targets such as prey items or other fish which must
be detected against complex backgrounds, and it must navigate
through complex terrain (see Figure 5).

In mormyrids, the electric field is generated by the electric
organ residing in the caudal peduncle (tail region), which gen-
erates a relatively uniform electric field over the anterior body
surface where most electroreceptors are located (von der Emde,
2006). An “electric image” of the external environment is formed
on the electroreceptor array according to how physical objects dis-
tort the electric field, as shown in Figure 5. An object that is a
good conductor relative to water will cause electric field lines to
bunch up, creating a positive difference in the electric field on the
corresponding portion of the electroreceptor array. Conversely, a
poor conductor relative to water will cause electric fields lines to
disperse, creating a negative difference in the electric field pattern
on the electroreceptor array.

In addition to conductance, the capacitive properties of an
object may also be ascertained by how it changes the waveform
of the electric organ discharge (EOD). The EOD itself is com-
posed of a series of pulses, each of which has a characteristic
waveform, typically less than 1 ms duration. In mormyrids, a
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FIGURE 5 | Scene analysis in electroreception. The “electric image” of
the external environment is determined by the conductive properties of
surrounding objects. The electric field emanates from the electric organ in
the tail region (gray rectangle) and is sensed by the electroreceptive skin
areas, using two electric “foveas” to actively search and inspect objects.
Shown are the field distortions created by two different types of objects: a
plant that conducts better than water, above (green) and a non-conducting
stone, below (gray). (Redrawn from Heiligenberg, 1977).

copy of the EOD signal is sent to electrosensory areas of the
brain. Thus, it is possible for the animal to directly compare the
sensed signal with that which was actually generated. An object
with low or no capacitance, such as a non-living object, will
leave the waveform shape unaffected. Most living objects how-
ever, such as insect larvae, other fish, and plants possess complex
impedances, and so they will significantly alter the waveform
shape, which behavioral studies show is detectable by the animal
(von der Emde, 2006).

Due to the high conductivity of water, the range over which
the electric fish can sense objects is only a few centimeters.
Nevertheless, electroreception mediates a wide range of scene
analysis behaviors important to the animal’s survival, which we
describe here.

Object recognition in electric scenes

The mormyrid’s object recognition and discrimination abilities
have been explored through behavioral studies (von der Emde
and Schwarz, 2002; von der Emde, 2004; von der Emde etal.,
2010). By assessing performance on simple association tasks, it
has been shown that electric fish are capable of discriminating
the shape of objects (e.g., cube vs. pyramid), even against com-
plex and variable backgrounds. Doing so is non-trivial because
the electric fields from multiple objects will superimpose and
create a seemingly complex electric image on the electrorecep-
tor array. Thus, the animal must solve a figure-ground problem
similar to that in vision or audition, in which the sensory contri-
butions of background or clutter must be discounted in order to
properly discern an object. Perhaps even more impressive is the
fact that the animal can generalize to recognize different shapes
independent of their material properties (metal or plastic) or dis-
tance. It can discriminate small from large objects, irrespective of
distance. Thus, the animal is capable of extracting invariances in
the environment from the complex electroreceptor activities —i.e.,
despite variations due to material properties or distance, it can
nevertheless make correct judgments about the shape and size of
objects.

Active perception during foraging

When foraging for food, mormyrids utilize their two electric
“foveas” in an active manner to search and inspect objects. The
two foveas are composed of a high density region of electrore-
ceptors, one on the nasal region, and the other on the so-called
Schnauzenorgan (Bacelo etal., 2008). Unknown objects are first
approached and inspected by the ventral nasal organ, and then
more finely inspected by the Schnauzenorgan (von der Emde,
2006). When foraging, the animal engages in a stereotypical
behavior in which it bends its head down at 28° such that
the nasal fovea is pointing forward or slightly upward, and it
scans the Schnauzenorgan from side to side across the surface
to search for prey. When a prey item is detected (presumably from
its capacitive properties) it is inspected by the Schnauzenorgan
before the fish sucks in its prey. Thus, the animal must cor-
rectly interpret the highly dynamic patterns of activity on the
sensory surface in accordance with this scanning movement in
order to properly detect and localize prey. This is an example of
an active process demanding the coordination of perception and
action.

Spatial navigation

Mormyrids are frequently seen swimming backward, and they
avoid obstacles with ease, finding their way through crevices in
rocks (Lissmann, 1958). Presumably these abilities are mediated
by the electric sense, since the eyes, which are poorly developed,
are at the front of the animal. They are also known to navi-
gate at night in complete darkness (von der Emde, 2004). Thus,
it would appear that electric fish can obtain a sufficient repre-
sentation of 3D scene layout from the electric field in order to
plan and execute maneuvers around objects. How accurate and
what form this representation takes is not known, but it has been
shown through behavioral studies that they can judge the distance
to an object from the spatial pattern across the electroreceptor
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array (von der Emde, 2004). A hypothesized mechanism for doing
this is by calculating the slope to amplitude ratio, i.e., the rate
of change in the electric field across the surface divided by the
maximum.

Communication in electric scenes

In addition to sensing distortions in the electric field caused by
other objects, electric fish also detect the electric fields generated
by other fish. In mormyrids, the waveform of the EOD is used for
communicating species, sex, and social status, while the sequences
of pulse intervals (SPIs) is used for communicating rapidly chang-
ing behavioral states and motivation (Carlson, 2002; Carlson and
Hopkins, 2004; Wong and Hopkins, 2007). During the breeding
season, males of many species have alonger EOD than females and
often have a sex-specific waveform. During courtship, they may
produce high-frequency bursts termed “rasps,” while during overt
aggression they may produce “pulse pairs.” Conditioning experi-
ments demonstrate that they are also able to distinguish individual
differences in the EOD, supporting a potential role in individual
recognition. Thus, a rich array of structural information regard-
ing the identity and intentions of other animals is available in the
EOD, and this structure must be properly extracted and analyzed
in order to make appropriate behavioral decisions. Importantly,
these signals must be properly separated from the background
variations in the electric “scene” used for detecting prey and nav-
igation, in addition to the contributions of multiple surrounding
fish.

COMMON PRINCIPLES IN NATURAL SCENE ANALYSIS

The animals discussed above exhibit a wide variety of scene
analysis capabilities that enable robust behavior in complex envi-
ronments. What lessons can we draw from these examples to
guide our study of scene analysis? One, which we shall expand
upon below, is that the ability to extract information from
complex, natural scenes is paramount, yet far beyond what is
commonly addressed in laboratory studies that simplify the stim-
ulus or task. Another is that all of these abilities still lie far
beyond current computational algorithms, which means that we
lack essential conceptual frameworks for studying them. Just as
the principles of optics guides our study of eyes, principles of
information processing — most of which have yet to be discov-
ered — will be needed to study how scene analysis is carried out in
animals.

To distill what we have learned both from the review of current
approaches and the discussion of animal capabilities above, we
develop a framework around a set of common properties that
enable scene analysis in the natural environment:

1. The ability to solve ill-posed problems inherent in extracting
scene properties from raw sensory inputs

2. The ability to optimally integrate and store information across
time and modality

3. Efficient recovery and representation of 3D scene structure

4. Optimal motor actions that guide the acquisition of information
to progress toward behavioral goals

Our understanding of how each of these is accomplished
remains incomplete, but we conjecture that each is an essential

aspect of the larger problem of scene analysis. These points are
further elaborated below.

COMPONENTS OF A NATURAL SCENE

Before delving into the properties of scene analysis, it is useful to
first spend some time considering the different components of the
scene itself (Figure 6). We will define these generically so that they
apply across modality and to a wide range of animals and tasks.
The target (black blob) represents an object (or information) in
the scene to which the animal’s attention or behavior is directed.
This could be a fly for the jumping spider or the song of a rival
songbird. It is important to distinguish between the target in the
natural scene and what is often dubbed the “sensory stimulus” in
the laboratory setting. In a natural setting, the stimulus is pre-
sented in the context of the entire sensory scene. The target can
also be defined more generally to represent information the ani-
mal needs to acquire, e.g., location of the neighboring bird or its
fitness. Thus, the target is rarely extracted directly from the sen-
sory input — the necessary information must be inferred. Clutter
(gray blobs) generically represent false targets or other compo-
nents of the scene that could be confused with the target, such
as other flying insects while the bat is pursuing a moth or songs
of other birds. This interference vastly increases the complexity
of processing, because many problems become ill-posed. This is
why camouflage is an effective adaptation. In the extreme case
of high clutter and sparse stationary targets, animals face a com-
plex search task, — a natural scene version of a “Where’s Waldo?”
game.

For most animals, the ability to approach or pursue a target is
as important as locating it. For example, the jumping spider must
determine how to traverse the local terrain and navigate around
obstacles to get within jumping distance of prey. We refer to these
scene components generically as terrain (large blobs). The pro-
cessing and inference of terrain information is very different from
that of the target, which is often confined to a small region of
the scene. Terrain, in contrast, tends to be more extended. Suc-
cessful locomotion depends on extracting sufficient information
about the terrain shape for accurate foot placement, or sufficient
information about the size and location of obstacles for accurate
path and movement planning. In vision, terrain is typically the
ground, which is usually stationary, but obstacles could be either
fixed or moving, such as swaying branches and foliage during
echolocation.

The background of a scene refers to the remaining structure
that is not processed for terrain or for locating the target. While
this aspect of the scene might provide useful sensory information
for other behavioral functions, from the viewpoint of processing
in scene analysis we generally consider the background to be a
source of noise that generically degrades the information about the
target or terrain, although it can also provide important contextual
information that influences perception (Oliva and Torralba, 2007).

COMPONENTS OF NATURAL SCENE ANALYSIS

We decompose the scene analysis process into a set of general
components shown to the right of the sensory arc in Figure 6. The
diagram takes form of the standard perception—action cycle (von
Uexkiill, 1926; Gibson, 1979) with some elaborations for scene
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FIGURE 6 | A schematic framework for scene analysis. The arc labeled
sensory input represents all the sensory information available to the system,
possibly from different modalities. To the left of this arc is an abstract
representation of the different components of the external scene: target,
clutter, terrain, and background, each of which are processed in different ways
depending on the particular scene analysis task. These are depicted as being
spatially distinct, but they need not be. To the right of the sensory input arc is
the general set of processing components (or stages) underlying biological
scene analysis. Each node represents a different level of abstraction and is

action/response
locomotion

hypothesized to play a distinct role in the overall system but need not
correspond to distinct brain areas. Not all animals use every component
because animals have a range of perceptual capabilities and specializations.
Arrows represent the flow of information between components, with a
double arrow indicating that information can flow in both directions. The arrow
going to the sensory input arc represents the “action” of the system and the
output of the largest dynamic loop. The animal’s motor actions make it
progress toward the behavioral goals, but also change the sensory input in
order to gain more information about the scene.

analysis. Nodes represents different components of analysis, but
these do not correspond to distinct neural substrates.

The first level of processing converts the physical energy aris-
ing from the scene signals to a neural code. At this level, it is not
clear to what extent the computations are specific to scene anal-
ysis, but there are animals with sensory organs that are adapted
to facilitate scene analysis at the periphery, e.g., the estimation
of depth from defocus in the jumping spider using a multi-layer
retina (Nagata etal., 2012) or the specialization of cell types in the
retina (Field and Chichilnisky, 2007; Gollisch and Meister, 2010;
Masland, 2012). We use a single arrow out of the signal coding
level to indicate that the information flow is largely in one direc-
tion, although it is conceivable that in some cases, feedback to the
periphery could play a role in scene analysis by efferent control of
early sensory processing or transduction (e.g., olivocochlear feed-
back in the auditory system). Importantly, coding is just an initial
step in acquiring data about the environment — it does not make
explicit the properties of interest in the scene. For that, further
processing is needed.

Inference and prior knowledge
The recovery of information about the scene is an ill-posed infer-
ence problem that requires some degree of prior knowledge of
scene structure. The level of intermediate features is the first stage
where scene components and parameters are disentangled. Prop-
erties such as the contour of targets that blend in with their
backgrounds, the slant and shape of terrain, or the parts of objects
missing due to occlusion are not made explicit at the level signal
coding, they must be inferred.

Although low-level features such as oriented edge detectors
can signal boundaries of surfaces having different luminance val-
ues, they do not reliably signal boundaries of complex surface

textures, such as the boundary between a tree trunk and back-
ground elements in a scene (Karklin and Lewicki, 2009). Similarly,
retinal disparity is an unreliable cue for depth because comput-
ing the binocular correspondence for complex surfaces is often
confounded by false matches or missing correspondences, and
this is further compounded by multiple objects, complex surface
shapes, and scenes with multiple occlusions. Analogous challenges
are faced for determining spatial location of sound sources. Inter-
aural time and intensity differences or the time of arrival of echoes
can provide information about the direction or distance of an
isolated sound source, but these cues are also compromised in
more complex acoustic environments, which may have multi-
ple sources, reverberation, and significant levels of background
noise.

As discussed above, solving these types of ill-posed infer-
ence problems ultimately depends on higher-level knowledge, but
intermediate-level features provide a staging ground at which per-
ceptual units can be organized, e.g., features originating from
different sound sources or the formation of distinct represen-
tations of visual surfaces (Barrow and Tenenbaum, 1978). In
vision, this stage partly corresponds to what is loosely referred
to as perceptual organization, segmentation, or grouping. These
terms, however, are more often used to describe the percep-
tual processing of simple 2D or “idealized” stimuli and rarely
get at the problem of how elements of the 3D scene, such as
objects and surfaces, are extracted from sensory inputs. The
complexity of processing at this stage is closer to the kinds
of problems that have been investigated in computer vision,
such as shape-from-shading or structure-from-motion, which
estimate the 3D structure of a scene or objects. To date, how-
ever, these problems have no general solutions for natural
scenes.
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For simpler aspects of scene analysis, it might be possible
to go directly from an intermediate level representation to an
action or response (as depicted by the arrow). For more complex
tasks, however, feedback in the form of higher-level knowledge
is required because the separation of components and inference
of scene parameters that occurs at this stage is a highly ill-posed
problem in which a multitude of interpretations could be consis-
tent with the sensory features. For example, in the computation
of binocular disparity, high-level knowledge of typical 3D struc-
tures in the scene makes it possible to arrive at an unambiguous
interpretation of local depth cues (Figure 6, double arrows).

Higher-level representations can come in many forms, but
for our purposes here we single out two general types: object
memory and spatial memory. Note that we use the term “mem-
ory” here in a broader sense to mean implicit knowledge or
a representation of object structure, which could be innate or
acquired through experience. It also encompasses the computa-
tional inference and feedback discussed in the previous section.
Object memory includes information such as object shape, e.g.,
the shape of a conspecific jumping spider or acoustic charac-
teristics like song structure or the echo signature of a moth.
Spatial memory combines input from multiple modalities (or dif-
ferent sources within a modality) to form a more accurate and
robust representation of the scene layout, potential target loca-
tions, terrain, and obstacles, for example, the daily path taken
by a bat to forage (Tsoar etal., 2011) or spatial structure at
more proximal scales (Tommasi etal., 2012). The arrow between
object and spatial memories indicates that these processes are
not necessarily independent and may be mutually informative,
e.g., certain targets occur only in certain locations. Note that the
level of detail in these representations in these areas need only
be sufficient to meet the behavioral requirements of the system.
Furthermore, they need not have an isomorphic relationship to
object category or 3D spatial structure but could encode informa-
tion extracted from the scene and represented in a very reduced
dimensionality.

Integrative representations of scene structure

An essential aspect of the higher-level target and spatial repre-
sentations is that they are persistent and integrate information
over time and across multiple actions. Note that this is not
a literal “visual integrative buffer” or low-level visual memory
(see Wade and Tatler, 2005 for a review and critique of this
idea). The integration of information is in the Bayesian sense
of combining multiple sources of information to infer underly-
ing structure. It is performed at a higher-level and pertains to
the basic problem of the inference of scene properties. With-
out integration and consolidation, the system could only react
to whatever sensory information is available at a given instant
in time, which is often too ambiguous to drive action. By inte-
grating sensory information over time, the system can build up
a representation of the external environment that allows it to
more reliably identify objects, more quickly locate targets, or more
accurately estimate other aspects of the scene. The integration
acts at multiple time scales that vary from relatively shorter —
e.g., building up continuously from the movements of the sen-
sors and dynamics of motor actions — to relatively longer, e.g., by

building up a synthesized scene representation from sensory infor-
mation acquired at different locations (Land and Furneaux, 1997;
Land, 1999; Tatler etal., 2005; Byrne etal., 2007; Epstein, 2008;
Wolbers et al., 2008, 2011).

An example of such integration occurs when locating objects
in cluttered environments, which is a basic problem in scene anal-
ysis that animals face when pursuing prey or finding mates. The
scene usually contains many potential targets, each of which may
be weak or ambiguous, so there is strong selective pressure to
perform this task efficiently. Doing so requires at least two lev-
els of non-trivial perceptual inference. The first is to accurately
estimate the likelihood of the target location so that little time
is spent on false targets. The second is to accurately integrate
information over time and across actions, so that the new infor-
mation obtained during prolonged vigilance and after a head or
eye movement is updated with the old. This integration of infor-
mation, past, present, and possibly across modality, contributes to
an internal representation of target location in the larger scene. A
computational model of such an integrative, inferential memory
was developed by Najemnik and Geisler (2005, 2009) for optimal
visual search, in which a foveated visual system is used to search
for a target in noise. Uncertainty of target location increases with
eccentricity due to decrease in ganglion cell density, but each suc-
cessive saccade provides additional information which the model
integrates to compute a likelihood map of target location. In a
real biological system, this type of map would not be 2D, but
represent the 3D scene and factor feedback from eye, head, and
body-movements, and potentially information obtained through
other modalities such as the auditory soundscape and movement
of the target.

Inference of 3D scene structure

Animals act in a 3D world, and the representations needed to
guide actions such as navigation or visual search must encode
many aspects of 3D scene and target structure. As discussed above,
psychophysical research has shown that early in perceptual pro-
cessing the representations used by humans take into account the
3D scene relationships preferentially over 2D patterns (Nakayama
etal., 1995; Lee and Spelke, 2010). This has important implications
for internal representations, because it implies that information
about the scene is represented and processed in a format that
encodes the 3D structure of the environment. This representa-
tion need not be exhaustive or detailed, and it need not form
a “map” of the 3D scene. We would expect such representations
to have complex properties, because they must appropriately fac-
tor in movements of the eyes, head, ears, and body, as well as
motions of other objects in the environment (Colby and Goldberg,
1999; Melcher,2011; Tatler and Land, 2011). These representations
must also integrate information across multiple sensory modali-
ties to form a common representation of the 3D environment that
serves multiple behavioral goals such as foraging, pursuit of prey,
communication, locomotion, and navigation.

A particularly challenging aspect of spatial representation is
that it must remain coherent despite changes in the raw sen-
sory information that occur due to self-motion or the motion
of other components of the scene (Byrne etal., 2007; Melcher and
Colby, 2008; Melcher, 2011). The problem the animal faces is that

www.frontiersin.org

April 2014 | Volume 5 | Article 199 | 15


http://www.frontiersin.org/
http://www.frontiersin.org/Perception_Science/archive

Lewicki etal.

Scene analysis in the natural environment

although many components of the scene are stable, such as the
shape of the terrain or the positions of obstacles, the sensory input
rarely is because the animal and its sensory organs move. Thus, the
animal’s actions and behavior must be based on the properties of
the scene and not the fluctuating sensory information. The prob-
lem is further complicated for dynamic aspects of the scene, such
as moving targets, because the representation must also predict
trajectories, although this can also provide information that make
the target standout from the background.

The nature of the representation of spatial structure (e.g.,
whether it is referenced to the scene, the body, or past motor
actions) remains an active area of research (Burgess, 2008; Tatler
and Land, 2011), and it is not clear how many distinct forms of
spatial structure are necessary to subserve scene analysis tasks such
as target search, pursuit, locomotion, or path planning. How-
ever, the general function of higher-level representations is to
transform and integrate the lower-level information and feedback
from sensorimotor action representations to form a consistent and
cumulative representation of the external scene which can then
drive behavior. Even in tasks such as auditory scene analysis, the
spatial locations of the sound sources can play a role in helping to
identify and extract them (Shinn-Cunningham etal., 2007; Chiu
etal., 2009). In this sense, the object and spatial memories can
be mutually informative — as representations of one type become
more fully formed, they help inform the other (as indicated by the
double arrow).

Actively driven perception

Animals actively probe their environment and take actions based
on both their current sensory input as well as on the accumu-
lated information acquired from past actions. This means that
the sensory input can change dramatically from instant to instant
with the animal’s actions. Perceptual continuity or coherence relies
on integration of the new sensory information with the internal
representation maintained by the system. Actions could be as sim-
ple as a head turn to disambiguate the location of a sound or as
complex as a sequence of eye movements during visual search.
The choice of action must be carefully selected to rapidly and reli-
ably acquire scene information and progress toward the behavioral
goal.

The behavioral state node occupies the deepest level in the scene
analysis framework (Figure 6), and sits intermediate between the
sensory and motor areas. On the sensory side, this area coordinates
the perceptual processing necessary to achieve specific behavioral
goals. There are more direct sensory-motor interactions at lower
levels, but a higher-level representation of the behavioral state is
needed because the current behavioral goal affects both how the
sensory input is processed and the appropriate action to take in
response, as well as the sensory inputs to follow. For example, the
information that must be extracted from the scene during forag-
ing is very different from that used in mate selection. We use the
term state in a broad sense to represent an animal’s current mode
of behavior. This could be directed toward a specific goal (e.g.,
foraging for food, pursuit of a target, mate selection, etc.), and it
could also represent intermediate states of the system while it pro-
gresses toward a goal, such as speed of locomotion, planning target
interception, and so on. The behavioral state must also represent

information related to progression toward the goal. For example,
in target pursuit, the goal represents the relative spatial position or
predicted path of the target; or during foraging, information about
the values associated with potential food targets; in mate selection,
awide range of fitness signals must be integrated to drive courtship
behavior.

The top-down feedback influences or control the types of
signals extracted from the scene in both the target and spatial
memories. During visual search, information about the target’s
likely form and spatial location is transmitted to lower areas and
help locate it more efficiently in a scene. In auditory scene analysis,
whether a subject attends to a voice, the music in the background,
or the sound of something moving across the floor, all depend on
the current task, which determines what kinds of acoustic informa-
tion are extracted from auditory input. Mate selection is another
example, where highly specific information, often across multiple
modalities, need to be derived from the scene. These examples
imply that either there are multiple parallel circuits in the system
specialized for specific tasks, or that the neural circuits are more
generic, but highly reconfigurable so that they adapt to a wide
range of tasks.

In addition to coordinating the sensory side, the behavioral
state also drives action. The action of the system is an integral part
of scene analysis behavior, and understanding the resultant motor
actions has proven crucial, for example, in echolocating bats, for
understanding the sensory representations and computations. In
the framework, this is depicted by the path and motor planning
node and an additional lower-level node for specific motor actions,
responses, and locomotion. Like for sensory processing, the
behavioral state also influences the nature of the sensory-motor
interaction at lower levels, and these have distinct neural sub-
strates in the form of parallel circuits or a more general circuit
with top-down input.

There is a broad range of motor actions that can aid scene
analysis. On the shortest time scale, compensatory actions facilitate
scene analysis by stabilizing the projection of the scene onto the
sensor, such as smooth pursuit eye movements or the head bobbing
reflex in pigeons. Tracking actions represent movements involved
in pursuit or locomotion and are also coordinated dynamically
with the ongoing sensory input. These actions are driven directly
by representations at lower levels, and can be further guided or
modulated using information from the behavioral state, feedback
or efference copy. Probing actions are the most interesting from
the viewpoint of scene analysis because they play a crucial role in
solving otherwise insoluble problems. Accurately directed head or
eye movements during visual search are one type of action already
discussed, which actively probe the scene to efficiently locate the
target. Other examples include head and pinnae movements used
to disambiguate sound source location or haptic probing with
hands or whiskers. Animals that rely on active sensing, e.g., echolo-
cating bats and cetaceans, as well as electrolocating fish, adjust
the signals they produce as they probe the environment. Probing
actions are also used to aid object discrimination and identifica-
tion. An actively studied question is to what extent probing actions
are ideal in the sense of providing the most information about an
object and whether information gathered across multiple move-
ments is integrated to form more accurate spatial representations
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or increased resolution. More generically, actions are initiated in
response to an inference or decision, such as whether an animal is
close enough to strike at a target, and advance the animal toward
its behavioral goals.

CONCLUSION

We have presented a framework that attempts to encompass the
set of scene analysis problems that are relevant to a wide range of
animals, including humans. While most of our classical notions
of scene analysis come from studying aspects of human behavior,
such as auditory scene segmentation and streaming (Bregman,
1990) or perceptual organization in vision (Palmer, 1999), it is
clear from the perspectives presented above that scene analysis
covers a much broader range of problems. Furthermore, it forces
us to go beyond the laboratory setting and grapple with the issue
of how animals and humans process the wide variety of complex,
natural stimuli in their natural habitats. The diversity of animal
systems and their natural environments provides a wealth of exam-
ples from which the most appropriate models can be selected to
address specific issues in natural scene analysis.

We selected four animal examples that highlight these differ-
ent aspects of scene analysis, but there are many other animals
and behaviors that also illustrate these principles. For each of the
proposed properties discussed above, one can ask to what extent
does a given animal require this property for scene analysis? For
example, do electric fish use higher level structural knowledge to
recognize objects? To what extent do songbirds integrate sounds
across time into auditory streams? Answering questions like these
will require the development of more sophisticated computational
models, a better characterization of the sensory signals in natural
scenes, and more detailed studies of animal perception and action
in their ecological niche.

A given animal’s perceptual strategy will lie at some point
along a continuum between simple signal detection and general
purpose scene analysis, and understanding where this point is
requires characterizing the limits of an animal’s abilities under a
range of task difficulties. For example, a jumping spider detect-
ing a fly against a uniform or blurred background is simpler than
detecting it against a complex surface. For a particular task, we
might expect that an animal has evolved solutions that approach
that of an ideal observer, given the physical constraints and task
demands of the system. At some point, however, the difficulty
of the task will exceed limits of the system, e.g., how accurately
does the songbird recognize song with an increasing number of
competing songs? Knowing these limits will inform us about the
extent to which an animal performs scene analysis and could
provide important insights into how it is carried out. Funda-
mentally, perceptual performance is constrained by the underlying
computations. One of the goals of this paper is to promote compu-
tationally guided experimental investigations that will help reveal
the underlying scene analysis processes used in different animal
systems.

For most animals, and especially human observers, we do not
have good computational models for solving scene analysis tasks.
We do not know, for example, how to identify objects against a
complex background or under occlusion. We have an incomplete
understanding of the computations required for auditory scene

segregation and recognition in complex acoustic environments.
Echolocation and electroreception are even more mysterious.
These are not just mysteries about specializations in biology, but
highlight questions about the computational principles that enable
scene analysis in any system, biological or machine. Although there
continues to be progress and even success in restricted domains,
these are still many unsolved problems. The difficulties increase
when we consider scene analysis problems beyond pattern recog-
nition. For example, what information about the 3D environment
is needed to guide locomotion? How is this extracted from the raw
sensory signals, and what are efficient ways of doing this? What are
the principles that govern the perception—action loop? Research
on these questions is still in its early stages, and the models that
come out of these efforts will be important for advancing our
understanding of the computational problems in scene analysis.

This underscores perhaps the most important point of this
article: studies of animal systems, their behavior, environment,
and limitations sheds light on what scene analysis problems need
to be solved. Animals have evolved sensors and information pro-
cessing systems that are optimized to carry out a repertoire of
scene analysis tasks. We cannot directly observe how informa-
tion is processed by the system because subserving any observable
behavior is a myriad of sub-tasks working in concert. Models
of those tasks constitute hypotheses about how information is
processed in the system, and so the merit of a model is deter-
mined by the extent to which it explains and predicts aspects of
animal behavior. Thus, uncovering the essential computations in
scene analysis is a scientific process. This stands in contrast to
engineering approaches where algorithm development is guided
by performance on tasks that are well-defined, but often fail to
capture the robustness and adaptability of animal systems. Fur-
thermore, even robust and well-defined computational algorithms
do not necessarily have ecological relevance. For example, audi-
tory stream segregation is often defined with the goal of recovering
the individual waveforms of the different sound sources, but this
is not necessarily the problem animals need to solve. Compar-
isons between the computational models and biological systems
are necessary to guide further development and provide a means
to identify models that are the most relevant.

Our goal in this article is to expand the concept of scene analysis
to consider how both humans and animals perceive and inter-
act with their natural environment. In contrast to psychophysical
approaches that focus on humans and carefully controlled stimuli,
we emphasize the need to study how a wide range of animals deal
with the complex sensory signals that arise from natural behavior
in the real world. In contrast to engineering approaches to spe-
cific scene analysis problems such as object recognition or speech
recognition, here we have emphasized the need for models that
have potential ecological relevance and can guide experiments
and inform the interpretation of data. Behavioral and physio-
logical studies can only go so far without detailed computational
models of the information processing. Recording an animal’s sen-
sory environment and its actions is not sufficient to gain insight
to the computations underlying its behavior because the range of
environmental variables and behavioral repertoires is too large to
be measured exhaustively. Models of the information processing
guide us in how to pare down or prioritize the essential dimensions
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of this space. Our goal here has been to better define what infor-
mation processing is needed to solve the scene analysis problems
faced by both humans and animals. Viewing scene analysis from
this broader perspective we believe holds the greatest promise for
elucidating how it is solved throughout the animal kingdom.
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