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INTRODUCTION

In humans, theta phase (4-8Hz) synchronization observed on electroencephalography
(EEG) plays an important role in the manipulation of mental representations during working
memory (WM) tasks; fronto-temporal synchronization is involved in auditory-verbal WM
tasks and fronto-parietal synchronization is involved in visual WM tasks. However,
whether or not theta phase synchronization is able to select the to-be-manipulated
modalities is uncertain. To address the issue, we recorded EEG data from subjects
who were performing auditory-verbal and visual WM tasks; we compared the theta
synchronizations when subjects performed either auditory-verbal or visual manipulations
in separate WM tasks, or performed both two manipulations in the same WM
task. The auditory-verbal WM task required subjects to calculate numbers presented
by an auditory-verbal stimulus, whereas the visual WM task required subjects to
move a spatial location in a mental representation in response to a visual stimulus.
The dual WM task required subjects to manipulate auditory-verbal, visual, or both
auditory-verbal and visual representations while maintaining auditory-verbal and visual
representations. Our time-frequency EEG analyses revealed significant fronto-temporal
theta phase synchronization during auditory-verbal manipulation in both auditory-verbal
and auditory-verbal/visual WM tasks, but not during visual manipulation tasks. Similarly,
we observed significant fronto-parietal theta phase synchronization during visual
manipulation tasks, but not during auditory-verbal manipulation tasks. Moreover, we
observed significant synchronization in both the fronto-temporal and fronto-parietal
theta signals during simultaneous auditory-verbal/visual manipulations. These findings
suggest that theta synchronization seems to flexibly connect the brain areas that
manipulate WM.
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link the storage systems during the manipulation of mental rep-

Working memory (WM) consists of not only a short-term main-
tenance system, but also a central executive system that manip-
ulates the maintained representation (Baddeley, 2007). Previous
studies have proposed that the executive system is associated with
the prefrontal area, whereas the maintenance system is distributed
in more posterior sensory areas, such as occipito/parietal areas for
visual WM and temporal areas for auditory-verbal WM (Smith
and Jonides, 1999; Rowe et al., 2000; Wager and Smith, 2003;
Sakai and Passingham, 2004). Recent human electroencephalog-
raphy (EEG) studies have demonstrated an important role for
large-scale phase synchronization in WM (Fries, 2005; Klimesch
et al.,, 2008), as such synchronous neural oscillations are thought
to link multiple brain regions dynamically (Engel and Singer,
2001; Varela et al., 2001; Ward, 2003). In fact, the theta-range
(4-8 Hz) phase synchronizations between the prefrontal cortex
and the relevant cortical areas form the executive functions that

resentations (Kawasaki et al., 2010). However, there remain open
questions regarding how relevant information is flexibly selected
for manipulation in the mind and how irrelevant information
is stored during the mental manipulations that are required to
perform multiple tasks simultaneously.

To investigate brain-network dynamics, we measured EEG
signals during a single or dual task for two sensory modali-
ties and analyzed phase synchronization between distant cortical
areas. Here, we used two types of WM manipulation tasks: an
auditory-verbal WM task, which required the mental calculation
of numbers presented through an auditory-verbal stimulus; and a
visual WM task, which required the participants to move a spatial
location in a mental representation in accordance with a visual
stimulus. In addition to the two single WM tasks, each subject
performed the two tasks sequentially or simultaneously, as dual
tasks.
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We conducted region-of-interest analyses, because we had
previously identified the representative electrodes of prefrontal,
auditory-verbal, and visual areas by analyzing EEG data from
the same two single WM tasks (Kawasaki et al., 2010). The
theta amplitudes on the frontal and visual electrodes and on
the frontal and auditory-verbal electrodes were enhanced during
the manipulation of visual and auditory-verbal representations,
respectively. Moreover, theta phase synchronization between the
electrodes was observed for the relevant WM tasks.

MATERIALS AND METHODS

SUBJECTS

Fourteen healthy volunteers (10 males and 4 females; mean age
= 27.92 £ 6.76 years, range, 2141 years; 13 right-handed indi-
viduals) participated in this experiment. The subjects reported
via subjective questionnaires regarding having normal visual acu-
ity (with or without correction), hearing, and motor abilities.
All subjects gave written informed consent prior to participa-
tion in this study. The study was approved by the RIKEN Ethics
Committee (in accordance with the Declaration of Helsinki).

EXPERIMENTAL PROCEDURE

Each subject completed five separate sessions in a random order
among subjects: one auditory-verbal WM condition, one visual
WM condition, two sequential dual WM condition, and one
simultaneous dual WM condition. Throughout the sessions, the
subjects faced a computer screen with headphones.

For the auditory-verbal WM condition (Figure 1A), at the
beginning of each trial, a word indicating a 1-digit number was
presented as the auditory-verbal stimulus to both ears for 1s
via the headphones (sample stimulus). Subjects were required to
memorize and maintain the presented number with rehearsal in
their minds. After a 2-s retention interval, another 1-digit number
was presented as the audio stimulus for 1s, and then the subjects
were asked to update and maintain the number in their minds by
adding the presented number and the maintained number for 2 s.
Subjects were required to repeat the mental addition four times,
and then determine whether the total number that they calcu-
lated mentally matched a probe audio stimulus presented after a
white fixation point on a gray PC display (test stimulus). In half
of the trials, the test stimulus matched the total number. In the
remaining trials, the wrong total number was presented as the
probe stimulus by replacing one of the four numbers presented
with a different number.

For the visual WM condition (Figure 1B), at the beginning of
each trial, 5 x 5 gridded squares and a red circle included within
one of those squares were presented for 1 s on the computer screen
as the visual stimulus (sample stimulus). Subjects were required
to memorize and then maintain the position of the red circle for
2s after the visual stimulus disappeared. Subsequently, a white
arrow designating the direction toward which the subjects had to
move the red circle in their minds was presented at the center of
the screen for 1s. The subjects manipulated the mental represen-
tations for 2 s. The direction of the arrow was upward, downward,
rightward, or leftward. Similar to the audio WM condition, the
subjects were required to repeat the mental manipulation four
times, and then determine whether the position of the red circle

that they moved mentally matched a probe visual stimulus (test
stimulus). In half of the trials, the probe stimulus matched the
mental representation. In the remaining trials, the wrong probe
was presented by changing only the fourth direction of the mov-
ing from the actual direction. The size of the red circle and the
gridded squares were 1 x 1° and 5 x 5° (1 x 1° per square),
respectively.

For the sequential dual WM condition (Figure 1D), the visual
and audio stimuli described above were presented simultaneously
on the computer screen and via the headphones, respectively
(sample stimulus). Subjects were required to memorize both
the auditory-verbal and visual stimuli and, after the retention
interval, manipulate either the auditory-verbal or the visual rep-
resentation. If an arrow was presented on the screen, subjects
performed the visual WM task; if a number was presented via
the headphones, they performed the auditory-verbal WM task.
Each task was performed randomly twice. The subjects were not
aware of the sequences of auditory-verbal and visual WM tasks.
After a total of four manipulations, the auditory-verbal and visual
stimuli were presented simultaneously and subjects were required
to judge whether they were identical to the manipulated mental
representation for both auditory-verbal and visual WM tasks or
not (test stimulus). In half of the trials, both the auditory-verbal
and visual test stimuli matched the mental representations. In the
remaining trials, the wrong probe for either auditory-verbal or
visual stimuli was presented, similar to what was observed in the
single auditory-verbal and visual WM conditions.

For the simultaneous dual WM condition (Figure 1C), the
procedures of sample display, retention interval, and test stimulus
were identical to those used in the sequential dual WM condition,
with the exception that the auditory-verbal and visual stimuli
were presented simultaneously and the participants were asked
to perform both the auditory-verbal and visual WM tasks during
each manipulation period.

In all conditions, subjects were asked to indicate, by pressing
a button, whether the stimulus was correct or not while the fixa-
tion point was kept red for 2 s. Each session consisted of 24 trials.
The duration of the inter-trial interval (ITI) was 2s (Figure1).
The ITI was defined as the baseline period in this study. In a
given session, one condition was being tested. All participants
underwent a training session before the corresponding EEG mea-
surement session. The stimulus was generated on a Windows
computer using Matlab 7.5.0 (Mathworks, Inc., Natick, MA) with
the Psychophysics Toolbox extension. The sound of each number
was highly distinctive.

EEG RECORDINGS AND ANALYSES

EEG was recorded continuously from 62 scalp electrodes
(Ag/AgCl) embedded in an electrode cap (Easy Cap; EASYCAP
GmbH, Germany) and in accordance with the placement of
the international 10/10 system. EEG signals were referenced
digitally to the averaged recordings from the right and left
earlobes. Electrode impedance was maintained below 14.6kS2.
Electrooculography (EOG) was recorded from electrodes that
were placed above and below the left eye, to monitor eye blinks or
vertical eye movements. EOG electrodes placed 1 cm lateral from
the right and left eyes monitored horizontal eye movements. The
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FIGURE 1 | Schematic illustrations of one trial sequence for the visual single WM (A), the auditory-verbal single WM (B), the simultaneous WM (C),
and the sequential WM (D) tasks.

EEG and EOG signals were amplified using the Neuroscan system
(Neuroscan, USA). The sampling rate was 500 Hz.

EEG data were preprocessed by first segmenting the EEG data
into 5-s epochs (with 1-s pre-manipulation, 3-s manipulation,
and 1-s post-manipulation periods; 2500 time points in total).
Epochs containing artifacts caused by blinks or eye movements
were detected from the EOG and EEG data using an amplitude
criterion (100 wV) and were excluded from further analyses.

Next, to identify cortical activity with reduced effects of vol-
ume conduction, we applied a current source density transfor-
mation to the voltage distribution on the surface of the scalp
using the spherical Laplace operator (Perrin et al., 1989; Kayser
and Tenke, 2006). Finally, to identify the time-frequency phases,
we applied wavelet transforms using Morlet’s wavelet function
(Tallon-Baudry et al., 1997).

We used Morlet’s wavelets for the high time and frequency res-
olutions, which allowed a better observation of transitions in both
low- and high-frequency oscillations (Herrmann et al., 2005). The
phase for each time point in each transcranial magnetic stim-
ulation (TMS) application was the arctangent of the results of
the convolution of the original EEG signal s(¢) with a complex
Morlet’s wavelet function w(t, f):

2

72> oxp (27)

Ot

v (-

where o; is the standard deviation of the Gaussian window. The
wavelet used here was roughly characterized by the number of

cycles ng, within a 60; interval (Lachaux et al., 2000), which con-
tains about 99.7% of the power of the Gaussian window. We chose
ne = 3 (= 6fo;), with f ranging from 1 to 20 Hz in 1-Hz steps.

PHASE SYNCHRONIZATION INDEX (PSI)

To identify the phase relations between any two electrodes, the
PSI for each time point and each electrode pair was defined by
the following equation:

N 2 N 2
PSLi(t, f) = (Z cos(Ad;k (i, f))/N) + <ZSiH (Adi(, ) /N>

i=1 i=1

where A®ji(t, f) is the phase difference between jth and kth
electrodes and the number of time points N with an interval of
1sis 500.

To evaluate the task-related PSI changes, we applied a boot-
strap calculation to the PSIs of the individual subjects and com-
pared the virtual PSI data during the tasks [cpfk(t, f)] and baseline

data of the ITI period [cpfk(t, )], as follows:

oYt ) = @t f)
ot ) =oft )

— G () + 9 (H)
— 9 (N) + 9 (H)

where <p *(t, f) and (p “(t, f) represent the original PSI, (p]k(f)

cpjk(f), and (p]-k(f) represent the means of (pjk(t, IR (pjk(t, )
and all of the data, respectively. We performed a 2-sample ¢-test
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using the 2000 bootstrapped re-samples of each time point for
individual subjects (Kawasaki et al., 2010).

We calculated the Z-values which mean “the degrees about
whether differences are significant or not” by using the non-
parametric Wilcoxon signed-rank test for the different normal-
ized PSI values. The null hypothesis is that the difference of the
representative PSI values between the events equals to zero. If the
Z-value is near zero, the different PSI values between the events
are not significant (the null hypothesis is not rejected). On the
other hand, if the Z-value is larger than the statistical threshold,
the difference in PSI values between the events is statistically sig-
nificant (the null hypothesis is rejected). To test if the significance
results from a chance, we repeated the Wilcoxon signed-rank tests
for 2000 times with the bootstrapped resample data of each time
point for individual subjects.

Finally, we tested whether the mean of the distribution of the
2000 resampled Z-values is zero or not by using the sign test
against the null hypothesis that the mean of Z-values equals to
zero. If the Z-value is near zero, the difference in PSI values
between the events is not significant (the null hypothesis is not
rejected). On the other hand, if the Z-value is larger than the
significance threshold, it is no coincidence that the difference in
PSI values between the events is statistically significant (the null
hypothesis is rejected).

RESULTS

BEHAVIORAL RESULTS

The subject-averaged accuracy rates were 952+ 1.6, 97.3 +
1.2, 89.9+1.9, and 94.9+£1.1% (mean accuracy rate =+
s.e.m.) for auditory-verbal (A), visual (V), simultaneous dual
(Sim), and sequential dual (Seq) WM conditions, respectively
(Tablel).

A one-way repeated measures ANOVA revealed a significant
main effect of the task conditions [F3, 39) = 5.18, P < 0.005].
There was a significant difference between visual WM and
sequential dual WM conditions but not among other combi-
nations. The post-hoc analyses (Tukey HSD test) revealed HSD-
values as follows: A vs. V, HSD = 0.021; A vs. Sim, HSD
= —0.042; A vs. Seq, HSD = —0.003; V vs. Sim, HSD = —0.063,
P < 0.01; V vs. Seq, HSD = —0024; Sim vs. Seq, HSD = 0.039.

PSI RESULTS

This study selected the AF3, P5, and Pz electrodes as repre-
sentative frontal, temporal, and parietal electrodes, respectively,
because the AF3-P5 and AF3-Pz pairs showed clear synchroniza-
tions during WM manipulation periods in our previous study
(Kawasaki et al., 2010). We calculated the PSI between a pair of
these electrodes at the theta (6 Hz) band during the manipulation
periods (for 1 s after the offset of the manipulation cue) compared

Table 1 | Mean accuracy rate + standard error mean (s.e.m.) for each
condition.

Audio Visual Sim. dual  Seq. dual

Mean accuracy 95.2+16 973+12 899+19 949+1.1

rate & s.e.m. (%)

with the corresponding values recorded during the ITI under the
four conditions.

The bootstrapped results revealed that the theta (6Hz)
PSIap3—ps5 was significant during the manipulation periods (for
1's after the offset of the manipulation cue) compared with the
corresponding values recorded during the ITI in the auditory-
verbal WM, simultaneous WM, and auditory-verbal manipula-
tion of sequential WM (P < 0.01; Figure 2). In contrast, the theta
PSIAp3—p, significantly increased in the visual WM, simultaneous
WM, and visual manipulation of sequential WM (P < 0.01). No
significant increases were observed in the theta PSIzp3_ps for the
visual WM and the PSIzp3_p, for the auditory-verbal WM.

Moreover, we analyzed the PSI of the higher-frequency bands
(i.e., alpha, beta, and gamma); however, the PSIap3_p5 and the
PSIap3—p, observed during the auditory-verbal and visual WM
conditions were not significantly different between the manipu-
lation periods and the ITI. The PSI results of the alpha (12 Hz)
band are shown in Figure 2, as examples.

DISCUSSION

The present study demonstrated clearly that theta phase synchro-
nization played an important role in selecting and connecting the
relevant brain areas during WM manipulation. A previous study
showed that the frontal area is significantly synchronized with
the parietal areas (i.e., visual regions) or with the temporal areas
(i.e., auditory-verbal regions) during the manipulation of visual
or auditory-verbal representation, respectively (Kawasaki et al.,
2010). In addition, the present study used sequential dual WM
tasks, which require manipulation of one modality and mainte-
nance of the other modality, and showed theta phase synchroniza-
tion only between the relevant brain regions (e.g., fronto-parietal
synchronization for the visual manipulation). In contrast, both
fronto-parietal and fronto-temporal theta phase synchronizations
were observed during the simultaneous dual WM, which requires
the manipulation and maintenance of both modalities.

The slow-oscillatory (i.e., theta) synchronization reflects the
dynamic, long-range linking of task-relevant brain areas within
WM brain networks (Sauseng et al., 2005; Mizuhara and
Yamaguchi, 2007; Klimesch et al., 2008; Kawasaki et al., 2010).
Previous EEG studies in human have shown that theta phase syn-
chronization between frontal and temporal regions is observed
during several WM tasks including encoding, maintenance, and
retrieval processes (Sarnthein et al., 1998; Sauseng et al., 2004;
Serrien et al., 2004). Moreover, fronto-parietal theta synchroniza-
tion is enhanced under WM tasks which required high WM load
and complex manipulation (Sauseng et al., 2005; Kopp et al.,
2006; Payne and Kounios, 2009). The present study also sup-
ports the hypothesis that theta synchronization is a requirement
of executive function.

Functional theta synchronization is also observed within the
resting-state brain network (Von Stein and Sarnthein, 2000;
Buzsaki and Draguhn, 2004; Jensen and Colgin, 2007) and long-
term memory (especially memory formation) brain networks
(Summerfield and Mangels, 2005; Sato and Yamaguchi, 2007).
For example, theta synchronization between frontal lobe and hip-
pocampus appeared during long-term memory formation and
stimulus encoding (Hasselmo et al., 2002). Moreover, a recent
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FIGURE 2 | The z-values of the phase synchronization index (PSI)
between AF3 and P5 (top) and between AF3 and Pz (bottom) during the
manipulation periods compared with the ITl under the auditory-verbal
single WM (red), the visual single WM (blue), the simultaneous WM
(black), the auditory-verbal manipulation in the sequential WM

Auditory  Visual

(magenta), and the auditory-verbal manipulation in the sequential WM
(cyan) tasks. The gray and white bars indicate the z-values of the theta and
alpha synchronizations, respectively. The dotted lines in each panel denote
the threshold value (P < 0.01). The topographies on the left show the AF3,
P5, and Pz electrodes on the recording montage.

study based on TMS and EEG showed that the resetting of
the theta phase propagates directionally from the TMS-targeted
areas to the sensory-motor brain areas (Kawasaki et al., 2014).
These findings suggest an important role for theta synchro-
nization in large-scale communication and information transfer
among distant “task-relevant” brain regions (Fries, 2005; Fell and
Axmacher, 2011).

In contrast to global theta synchronization, higher-frequency
oscillations would show local synchronizations within circum-
scribed brain areas during WM (Lutzenberger et al., 2002;
Babiloni et al., 2004; Klimesch, 2012), although some studies have
reported global beta or gamma phase synchronizations (Tallon-
Baudry et al., 2001; Axmacher et al., 2008). Unlike low frequency,
the higher-frequency phases are difficult to synchronize across
global areas, since such synchronization requires accurate simul-
taneous activation of areas that are far apart. Indeed, the present
study found no significant phase synchronization between brain
regions in the high-frequency bands for any WM manipula-
tion. Our previous study, which was performed using the same
tasks, showed enhancements of the alpha oscillations in the
local brain areas in WM maintenance periods. Moreover, many
studies demonstrated the presence of amplitude modulations
in the local relevant brain areas during several cognitive tasks
(Klimesch et al., 2008), although some studies reported global
gamma phase synchronization (Rodriguez et al., 1999; Doesburg
et al., 2008). Such high oscillations are assumed to be function-
ally related to the slow oscillations, such as the coupling between
theta phases and gamma amplitudes (Klimesch et al., 2008) and
the coupling between theta and beta amplitudes (Kawasaki and
Yamaguchi, 2013). The relationships between the global theta and

high-frequency phase synchronization in WM should be clarified
in future studies.

The finding of modality-specific posterior brain regions and
modality-nonspecific frontal regions would be consistent with
previous psychological WM models which propose the existence
of modality-independent sensory storage buffers (e.g., phono-
logical loop and visuo-spatial sketchpad) and a common central
executive (e.g., Scarborough, 1972; Baddeley, 1986; Luck and
Vogel, 1997). The overlapped prefrontal cortex are synchronized
with not only the visual (parietal) areas but also the auditory-
verbal (temporal) areas in the simultaneous dual WM task, which
might lead to dual-task interference, that is, degraded perfor-
mance relative to a single task when two tasks are being performed
simultaneously (i.e., psychological refractory period) (Pashler,
1994; Logan and Gordon, 2001). Moreover, the enhancements of
frontal activity during the shortened stimulus onset asynchrony
between the two tasks in the dual WM tasks would then be the
neural factor responsible for the bottleneck in executive func-
tions (Herath et al., 2001; Jiang et al., 2004; Marois and Ivanoff,
2005).

The behavioral data showed that the accuracy rates under the
simultaneous dual WM condition were lower than under the
other three conditions. This might be consistent with previous
findings, which suggest greater difficulty with greater dual-tasking
(i.e., psychological refractory period) (Pashler, 1994; Logan and
Gordon, 2001). However, it is difficult to compare among condi-
tions, because the accuracy rate was very high, over 90%; that is to
say, there is a ceiling effect in our behavioral data. Therefore, there
might be a possibility that the results would be different under
conditions of increased difficulty.
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On the other hand, due to the high accuracy rates, we could
accurately identify the theta synchronization by using EEG data
from the many trials in which the subjects successfully manip-
ulated the WM representations. However, on this point also, we
have no findings on how prominent the synchronization would
be at greater task difficulty.

In this study, the theta synchronization might be involved
in the manipulation rather than in maintenance of repre-
sentations. Although the one-modality manipulation periods
under the sequential WM condition are defined as not only
the manipulation of one modality but also the maintenance
of the other, the theta synchronization was observed between
only the to-be-manipulated modality-related brain areas (e.g.,
fronto-parietal theta synchronization under the visual manipu-
lation periods). However, the subjects could have processed the
other modality’s executive function (e.g., selection of the to-be-
manipulated modality and inhibition of the to-be-maintained
modality). Moreover, there is a limitation on pure compari-
son between manipulation and maintenance in our tasks, since
manipulation always included maintenance. To address this issue,
future study should isolate these functions and compare among
them clearly.
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