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A basic statistic that students learn about
in their classes is the standard devia-
tion. Like any statistic, standard deviations
are influenced by systematic factors and
randomness. I propose that researchers
should report “corrected” or “true” stan-
dard deviations and I show how to calcu-
late them.

The notion of “true” statistics comes
out of classical test theory (see Lord and
Novick, 1968; Gulliksen, 1987 for reviews).
This theory commences with the defini-
tion of a “true score”—as the expecta-
tion across an infinite set of independent
responses—and with an assumption that
an observed score equals the true score
plus error (X = T + E). Thus, measures
of constructs necessarily include random
variance, as well as non-random variance.
Many statistics—possibly the most famous
of which is the correlation coefficient—
are influenced by random measurement
error (e.g., Spearman, 1904). The dele-
terious effects of random measurement
error are well known, and many statisti-
cal packages contain provisions for cor-
recting correlation coefficients, so these
corrected correlations can be used in com-
plex path analyses and structural equation
analyses, thereby increasing their accuracy
(Skrondal and Rabe-Hesketh, 2004). In
addition, Baguley (2009) has addressed the
correction of effect sizes.

Given that it is widely accepted that
“corrected” or “true” statistics, uncontam-
inated by random measurement error, are
necessary for complex analyses such as
those mentioned above, why not obtain
them even for simple cases such as stan-
dard deviations? According to the classical
theory, the reliability of a measure (oxx’)
equals the ratio of the true score vari-
ance (symbolized as o%) to observed score

2
. . O
variance (symbolized as o)%) or pxx = 0—12

By rearranging the terms, it is possible f[(0
isolate the true score variance—that is, the
variance of the measure with random mea-
surement error removed, as is shown in
Equation 1 below.

0F = pxx 0% (1)

Because researchers usually do not have
access to population parameters, it is
necessary to estimate them from data.
The estimated true score variance (est o7
can be obtained from Equation 2 if the
researcher has collected the requisite data
to obtain the reliability of the measure of
the construct (rxx’) and its variance in the
experiment (si)

est 02 = ryysx (2)

Consider a researcher who performs an
experiment to determine whether partic-
ipants who receive an intervention have
more favorable attitudes toward recycling
than participants in a no intervention con-
trol condition. The reliability of the atti-
tude measure is 0.7, and the variance in
the experimental and control group is
0.95 and 1.3, respectively. Understanding
that the observed variances are contami-
nated by random measurement error, the
researcher wishes to estimate the vari-
ance of the attitude measure in the two
conditions uncontaminated by random
measurement error. In the intervention
condition, the estimated attitude vari-
ance is as follows: est OZT = (0.7) (0.95) =
0.665. In the control condition, it is as
follows: est ‘72T = (0.7) (1.3) = 0.91. Note
that the true attitude variance in the
intervention condition, uncontaminated

by random measurement error, differs
substantially from the observed variance of
the attitude measure contaminated by ran-
dom measurement error (0.665 vs. 0.95)
and this also is so in the control con-
dition (0.91 vs. 1.3). Standard deviations
can be obtained, as usual, with square
roots of variances. In the example, these
true standard deviations would be 0.815
and 0.954 for the intervention group and
control group, respectively, in contrast to
the observed values of 0.975 and 1.140.
The observed standard deviations actually
overestimate the true standard deviations.
Given the ease with which it is possible
to obtain estimates of true standard devi-
ations, provided that the reliability of the
measure is known, it makes sense to report
true standard deviations either in place
of, or in addition to, observed standard
deviations.

There is, however, a complication with
the foregoing. Specifically, reliability coef-
ficients are not perfectly precise (e.g.,
Zimmerman, 2007) and that imprecision
might be carried over into the computed
true standard deviation. One way of han-
dling this is to define an interval (Hayduk,
1987) but a caveat is important here. As an
example, when a researcher defines a 95%
confidence interval, this does not imply
that the parameter of interest has a 95%
chance of being in the interval. Rather,
it means that if there were an infinite
number of replications, and a confidence
interval were computed each time, 95%
of the computed intervals would enclose
the parameter. Unfortunately, there is no
known way to make the valid inverse infer-
ence about the probability that a given
interval encloses the parameter of inter-
est. Nevertheless, intervals can be use-
ful though defining them is necessarily
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somewhat arbitrary. Hunter and Schmidt
(2004) discussed issues pertaining to con-
fidence intervals for true statistics.

Suppose, that a dependent measure has
been tested—either in the literature or in
pilot research—and the reliability equals
0.7. We might define a reliability inter-
val as within 10 points in either direction
(0.6-0.8) and use Equation 2 to obtain
the standard deviations based on the end-
points of the interval. If we imagine that
the observed variance is 2 (SD = 1.41),
the interval for that variance would range
from 1.20 to 1.60, and so interval for the
corresponding standard deviation would
range from 1.09 to 1.26.

Alternatively, as for many personality
tests, several reliability coefficients may be
reported, such as between 0.7 and 0.8.
It might be reasonable to go ahead and
define an interval empirically (0.7-0.8),
based on the literature. Or if there have
been many reports, one could define an
empirical interval based on a range such as
the middle two quartiles of reported val-
ues. However, the interval is defined, the
procedure for using it would be similar to
that illustrated earlier.

My argument can be summarized eas-
ily. Researchers agree that standard devi-
ations matter. But should researchers
report standard deviations that are con-
taminated by random measurement error,
uncontaminated by random measurement
error, or both. I submit that there will
be times when it is desirable to know
standard deviations that are uncontam-
inated by random measurement error,
and Equation 2 provides a way by which
they can be attained easily. Therefore, I
advocate reporting true standard devia-
tions in addition to observed standard
deviations.
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