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1. INTRODUCTION

Based on the incremental nature of knowledge acquisition, in this study we propose a
growing self-organizing neural network approach for modeling the acquisition of auditory
and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps
(I-GSOM) algorithm, which takes associations between auditory information and semantic
information into consideration, in this paper. Direct phonetic-semantic association is
simulated in order to model the language acquisition in early phases, such as the
babbling and imitation stages, in which no phonological representations exist. Based on
the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic
training data. We use a cyclical reinforcing and reviewing training procedure to model
the teaching and learning process between children and their communication partners.
A reinforcing-by-link training procedure and a link-forgetting procedure are introduced to
model the acquisition of associative relations between auditory and semantic information.
Experimental results indicate that (1) I-GSOM has good ability to learn auditory and
semantic categories presented within the training data; (2) clear auditory and semantic
boundaries can be found in the network representation; (3) cyclical reinforcing and
reviewing training leads to a detailed categorization as well as to a detailed clustering,
while keeping the clusters that have already been learned and the network structure
that has already been developed stable; and (4) reinforcing-by-link training leads to
well-perceived auditory—semantic associations. Our I-GSOM model suggests that it is
important to associate auditory information with semantic information during language
acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted
as a biologically-inspired neurocomputational model.

Keywords: neural network, neurocomputational models, interconnected growing self-organizing map, auditory
feature map, semantic feature map, auditory-semantic association, language acquisition

and (social) communicative learning in which they combine pat-

During language acquisition, children receive various kinds of
information through their interactions with communication
partners and the surrounding environment. In this process, chil-
dren are presented with information from different channels
simultaneously, including auditory information (which can be
acquired through auditory feedback), somatosensory informa-
tion (which can be acquired through tactile feedback from their
articulators) and semantic information (which can be abstracted
from visual feedback, tactile feedback, olfactory feedback, etc.).
Children face the task of acquiring information and organizing
it into the appropriate linguistic categories. However, children do
not receive explicit language instruction, nor are they able to make
inquiries about the structures that they are learning (Gauthier
et al., 2007a). Instead, they must discover the linguistic categories
of their native language through their interactions with commu-
nication partners. This task is further complicated by the fact that
they do not know how many categories there are to discover along
any particular input dimension (Gauthier et al., 2007a). Language
acquisition, for children, is a combination of statistical learning

tern detection and computational abilities with special social skills
(Kuhl, 2004, 2010). In the present paper, we propose a feasible
approach that is able to explain the acquisition of auditory cate-
gories, semantic categories and the associations between auditory
and semantic information.

From the perspective of modeling, language acquisition can
be abstracted as a knowledge acquisition process. Among various
kinds of knowledge acquisition algorithms, Kohonen (1982, 1990,
2001, 2013) introduced the idea of self-organizing neural net-
works, known as the Self-Organizing Map (SOM), which has the
ability to project high-dimensional data onto a low-dimensional
feature map. Its highly visual nature (especially in the case of two-
dimensional feature maps) enables analysts to gain an overview
of the underlying category structures of a data set. Ritter and
Kohonen (1989) were among those who first applied the SOM
algorithm to linguistic tasks. Their research on semantic mod-
eling revealed that SOM has the ability to detect the “logical
similarity” between words and group similar words into clus-
ters. In recent years, the topography-preserving ability and the
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self-organizing ability of the SOM have been increasingly applied
to tasks involving the modeling of acquisition, especially in lin-
guistic field, covering many areas including tonal acquisition
(Gauthier et al., 2007a,b, 2009), lexical acquisition and develop-
ment (Li et al., 2004, 2007; Hernandez and Li, 2007), bilingual
lexical development (Zhao and Li, 2007, 2008, 2010; Li, 2009;
Zinszer and Li, 2010), grammatical acquisition (Li and Zhao,
2009; Zhao and Li, 2009), semantic representation (Zhao et al.,
2011), the relation between sensory, and motor states (Kroger
et al., 2006a,b), the acquisition of vowel and consonant auditory
categories (Kroger et al., 2009b), the acquisition and development
of articulatory movements (Kroger et al., 2011a,b; Warlaumont
et al., 2013), etc. Li and Zhao (2013) provide an excellent review
of SOM-based language models. It has been shown that SOMs
can be used to model the topographic structure of knowledge and
the self-organizing process of knowledge acquisition.

The essential feature of a knowledge acquisition process is the
dynamic scalability of knowledge (i.e., both knowledge and the
fields it covers continually increase during the process). Although
SOMs work well for modeling the topographic structure and the
knowledge reorganization of a learning process, they do have lim-
itations in modeling the incremental nature of knowledge growth.
The fundamental problem here is the phenomenon of “catas-
trophic interference” (French, 1999). If a SOM network is trained
to acquire 100 words, for example, and then the trained net-
work is applied to train on another 100 new words, the addition
of the second set (or new knowledge) will disrupt the learning
result of the first 100 words (Li et al., 2004). Therefore, SOMs
have difficulties in integrating new knowledge into an existing
trained network. In other words, the structure of a SOM cannot
be extended easily and thus cannot be directly used to model the
knowledge acquisition process realistically.

Exploring extendable SOMs in the field of data min-
ing, Alahakoon et al. (2000) proposed an extendable self-
organizing neural network called the Growing Self-Organizing
Map (GSOM), which allows new nodes to smoothly join the
existing network and dynamically extend the size of the network.
Its dynamic structure was shown to be very effective for knowl-
edge discovery applications (Alahakoon et al., 2000). In our study,
the Growing Self-Organizing Map algorithm is adapted for the
modeling of language acquisition.

Due to the fact that auditory information and semantic infor-
mation are presented to children simultaneously, the associations
between these two types of information are specially taken into
account in our model. As described in Kroger and his colleagues’
language acquisition model (Kroger and Heim, 2011; Kroger
et al., 2011a,b), auditory information and semantic information
are acquired at two different levels. Therefore, we use two sepa-
rate maps for modeling the acquisition of auditory information
and semantic information, respectively.

Taking the structure of the DevLex model (Li et al., 2004)
and connectionist SOM model (Zinszer and Li, 2010) as a point
of departure, in this study, we propose an interconnected self-
organizing neural network model which consists of an auditory
growing map, a semantic growing map, and associative links
between the two maps (see section 2.2 for a description of the
model). Although the overall structure of our model is similar

to that of the DevLex and the connectionist SOM, there are
three main differences. (1) While the previous models simu-
late the phonological-semantic interface, our approach directly
simulates the phonetic—semantic interface. Also, in DevLex, the
connectionist SOM, and DevLex-II (Li et al., 2007; Li and Zhao,
2013), it is reasonable to link phonological representations with
semantic representations since those models aim at modeling
later phases of language acquisition such as vocabulary spurts.
In our I-GSOM approach, in contrast, we attempt to model
language acquisition in early phases, such as the babbling and
imitation stages, in which no phonological representations exist.
Phonological representations are generally language specific, so
they are a result of early language learning. Thus, the develop-
ment or emergence of phonological representations relies on the
early acquisition of phonetic and semantic categories (Kroger
et al., 2011a,b; Eckers and Kroger, 2012). (2) In each growing
map, GSOM is used instead of GMAP or SOM to better capture
the growing nature of knowledge acquisition. GSOM has a sim-
pler structure and great extendibility, so it is more suitable for
complex linguistic modeling tasks. Based on the GSOM train-
ing procedure developed by Alahakoon et al. (2000), a cyclical
reinforcing and reviewing training procedure is introduced to
capture communicative effects during early language acquisition.
(3) Novel associative link definitions and weight update rules for
associative links are introduced, including a reinforcing-by-link
training procedure and a link-forgetting procedure, which cap-
ture the communicative effects and the feature of forgetting in
auditory—semantic-information linking.

2. MATERIALS AND METHODS

2.1. TRAINING DATA

2.1.1. Audio data

To simplify the tasks of audio post-processing and neural repre-
sentations, the audio recording was conducted on the level of sin-
gle syllable, with three syllable types, V, CV and CCV (V stands
for vowels, C stands for consonants). Phonemes comprising our
recording syllables were selected from Standard German: five
vowels [i], [e], [a], [0], [u]; six plosives [b], [p], [d], [t], [g], [Kk];
two nasals [m], [n]; and the lateral approximant [1]. When pro-
nouncing isolated vowels in Standard German, a glottal stop [?]
is inserted before the vowel (i.e., [a] is pronounced as [?a]). In
total, 70 syllables were listed as our recording scripts.

The voice in the audio recording was provided by a female
speaker of Standard German with no speaking or hearing deficits
(26 years old). The speaker was asked to produce each syllable
three times. Carrier sentences were used during the recording. In
total, the audio recording consists of 210 records (70 syllables x 3
realizations). The sampling rate for the recording is 44.1 kHz.

An important characteristic of a speech signal is duration.
However, the modeling of the temporal information of a training
stimulus is limited in neurocomputational models such as SOM
and GSOM: it is only possible to model a temporal succession
of training items (training stimuli) and a co-occurring temporal
succession of changes of link weights. To overcome this problem,
in our approach, the speech signals are converted into neural rep-
resentations of auditory states (or spectrograms) according to the
method outlined in Kannampuzha et al. (2011) and Pasley et al.
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(2012). Calculations were done through a series of processing
steps.

The first step is annotation. The time instant of release of
obstruction (closure or constriction) was marked. For V sylla-
bles, the release position was marked at the release of the glottal
stop [?]; for CV syllables, the release position was marked at the
obstruction release of the C; for CCV syllables, the release posi-
tion was marked at the obstruction release of the second C. Then,
the time duration for the part before the release position and for
the part after the release position were calculated for each speech
signal. Maximum durations of those two parts were calculated for
all 210 speech signals.

The second step is signal alignment and normalization. The
first-order derivation was applied to the speech signal acting as
a 6 dB/oct high pass filter to filter out F0 interference. Then, all
signals were aligned based on their release positions and nor-
malized to the same duration length by zero-padding signals
with shorter duration length before or after the release position
to the maximum duration length. Alignment and normalization
are crucial processes for calculating our neural representations.
Alignment guarantees that, between differently-aligned signals,
the same time point carries the same type of acoustic features.
Normalization guarantees that each speech signal has the same
duration, so that the neural representations of training vectors of
each speech signal can be represented in the same length of time
(i.e., by the same number of neurons).

The third step is calculation of the spectrogram representa-
tions. A 2048-point FFT was conducted on each speech signal,
with 256-point Hamming window overlapping every 45 sam-
pling points. Therefore, along the frequency dimension, there
are 2048 sampling points, which guarantees high frequency
resolutions. Along the time dimension, the window length is
256/44, 100 ~ 5.8 ms, which guarantees the retrieval of wide-
band spectrum information. The time resolution is as high as
45/44, 100 ~ 1 ms/sample. The amplitude information was then
converted to dB representations by Equation (1) with upper
boundary 100dB and lower boundary 60dB, where 2 x 107>
is a reference amplitude set according to the lowest perceiv-
able amplitude by humans (Reetz and Jongman, 2011). Linear
normalization was then performed on each signal locally to nor-
malize the amplitude values of signal representation into the

interval between 0 and 1. This is done in order to guarantee
that the amplitude information of each signal can occupy the full
neural activation space.

(1)

litud
B — 20 x 1Og<w>

2 x 10—

The fourth step is conversion of the spectrogram representa-
tions into neural representations. Along the frequency dimension,
frequency information was converted into 24-Bark scale repre-
sentations. Then, each Bark neural group was calculated on the
basis of the mean amplitude of all frequency bands occurring
within that specific Bark group. Along the time dimension, time
information was calculated on the basis of the mean of every
10 samples. As a result, the frequency dimension is represented
by 24 neurons (representing the 24 Bark groups) and the time
dimension is represented by 57 neurons (each representing a time
window of approximately 10.2 ms). In total, each speech signal is
represented by 24 x 57 = 1368 neurons. A linear normalization
was then performed locally on the neural representation of each
signal, so that the normalized amplitude of each signal would
fit into the interval between 0 and 1. Thus, the degree of neural
activation is represented by the amplitude (gray-scale value) of
each neural representation (0 or white stands for no activation;
1 or black stands for full activation). An example of the auditory
neural representation of the syllable [lo] is given in Figure 1. As
shown in Figure 1, along the frequency dimension, the formant
information of segments [1] and [o0] as well as a clear formant
transition between the two segments can be observed; along the
time dimension, the duration information of each segment and
the whole syllable are clearly presented.

2.1.2. Semantic data

A Standard German children’s books corpus (Kroger et al.,
2011a) was used as the basis for generating our semantic data
set. The corpus comprises transcriptions of 40 books targeted
to children from age 1 to 6. In total, 6513 sentences and 70,512
words are transcribed in the corpus. Morphologically distinct
forms of the same word are treated as separate words (e.g., “Kind”
meaning “child” and “Kinder” meaning “children,” are treated
as two different words). The corpus therefore consists of 8217

Neuron Representation of [lo]

I I

Frequency[bark]
&
|

3
I

I I

FIGURE 1| The auditory neural representation of the acoustic
signal of the syllable [lo]. The frequency dimension is represented
by 24 neurons, and the time dimension is represented by 57

Time[s]

neurons. The gray-scale value represents the activation of each
specific neuron: 0 or white stands for no activation; 1 or black
stands for full activation.
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different words, which is assumed to approximately represent a
6-years-old child’s mental lexicon, as reported in Anglin et al.
(1993). In this study, only nouns were used for our experiments,
and only the 70 most frequent nouns were chosen in order to fit
into the 70-syllable list. The 10 most frequent nouns are listed in
the left columns of Table 1.

Two native speakers of Standard German (undergraduate stu-
dents at RWTH Aachen University) developed a list of semantic
features for the corpus using a simple brain storming procedure.
Thus, 470 features in total were developed for the 70 nouns. To
reduce the dimensions of the training vector, we dropped features
that only occur once, while keeping all words distinguishable by
their semantic features. In other words, a feature was dropped if it
occurred only once, but if the deletion would have resulted in two
words having the same vector value, the feature was then retained.
Finally, 361 features were kept (the 10 most frequent features are
listed in the right columns of Table 1). Therefore, each word in
our semantic data set is represented by the set of features we kept.
Binary coding is used to represent the semantic features of each
word. Thus, for each word, among the set of binary features we
kept, “1” is used to mark the features of the word, and “0” is used
to mark features not belonging to this word.

2.1.3. Acoustic-semantic (sound—-meaning) pairs

Since auditory information (the sounds of a word) is associated
with semantic information (the meaning of a word), during the
training process, audio data and semantic data should be pre-
sented simultaneously to the network. However, due to our sim-
plification during audio recording, our acoustic representations
are not directly correlated with the word form representations in
the semantic data set, so associations between our audio data and
our semantic data needed to be developed. The arbitrary associa-
tions between the phonetic representations and semantic features
of words were assigned by creating a model language (Kroger
etal., 2011c). Thus, acoustic—semantic (or sound—meaning) pairs
were built.

In total, there are audio data for 70 syllables with 3 realizations
each and semantic data for 70 nouns. A basic rule we applied
was pronunciation similarity. For example, the audio syllable
[ma] was chosen as the acoustic realization of the word “Mama,”

and acoustic—semantic pair [ma]—“Mama” was built. Inevitably,
there were exceptions, in that some words could not be matched
to acoustic realizations with similar pronunciations. In that case,
those words were manually paired with the remaining audio syl-
lables, based on the fact that the association between the phonetic
and semantic values of a word is mainly arbitrary and differs from
language to language. While three realizations of an audio sylla-
ble are treated as three different acoustic signals, they share the
same acoustic—semantic pair relation (i.e., the second and third
acoustic realization of the syllable [ma] are also paired to the word
form “Mama”). In total, 210 acoustic—semantic pairs were built.
Those acoustic—semantic pairs represented by their correspond-
ing acoustic and semantic feature were used as the training data
for our experiments.

2.2. DESCRIPTION OF THE MODEL

The Interconnected Growing Self-Organizing Map (I-GSOM)
consists of two growing maps connected by associative links
between them (see Figure 2). An auditory growing map is used
to process auditory information, and a semantic growing map
is used to process semantic information. Each growing map is
defined and trained based on the same GSOM algorithm, but
the biological structures they represent are different. The asso-
ciative links between the two maps are defined as bidirectional
links that associate the activations in the two maps. Links are
only built and updated between the winner neuron in the audi-
tory map and the winner neuron in the semantic map for a

self-organization

Semantic S-GSOM
representations Semantic Map

“auditory—semantic

N associative links
self-organization ¥y

Acoustic A-GSOM
representations Auditory Map

FIGURE 2 | The Interconnected Growing Self-Organizing Maps model.

Table 1| The 10 most frequent nouns (left) and semantic features (right) in the 70-word data set.

Nouns Semantic features
Rank German words English translation German descriptions English translation
1 Mama Mom Hat zwei Augen Has two eyes
2 Bar Bear Hat eine Nase Has a nose
3 Papa Dad Hat einen Kopf Has a head
4 Mond Moon Hat zwei Beine Has two legs
5 Kinder Children Ist ein Gegenstand Is an object
6 Katze Cat Ist ein Tier Is an animal
7 Frau Wife Hat eine Haut Has a skin
8 Bett Bed Hat zwei Arme Has two arms
9 Méadchen Girl Hat einen Mund Has a mouth
10 Wasser Water Es gibt verschiedene Arten There are different types
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given acoustic—semantic pair (see section 2.4 for detailed training
algorithms for associative links).

2.3. STRUCTURE OF THE GROWING SELF-ORGANIZING MAP
Compared with traditional SOMs, the structure of Growing Self-
Organizing Map (GSOM) is simpler. Instead of having a rectan-
gular map of a predetermined size, the network of GSOM does
not have a fixed size or shape. Starting with four initial nodes, new
nodes can grow at boundary nodes and smoothly join the exist-
ing network (see Figure 3B). Thus, the network can be expanded
dynamically in any direction outwards depending on the new
growing nodes (see Figure 3A).

Two factors, the accumulative error (E,..) and growth thresh-
old (Tgow), are introduced into GSOM. The error value is
calculated on the basis of the Euclidean distance between an input
vector and the weight vector of the best matching unit (BMU).
Thus, each BMU node has an error value as an additional char-
acteristic parameter, and its value is accumulated throughout the
training process. When the E,.c value of a BMU exceeds Tgrow,
the corresponding Voronoi region (Okabe et al., 2009) is said to
be underrepresented, and new nodes are then introduced into the
network. A high Tgow value will result in a map with fewer nodes,
while a low Tgrow value will produce a map with more nodes
(Alahakoon et al., 2000).

2.4. THE BASIC GROWING TRAINING PROCEDURE

Training data (i.e., a set of acoustic—semantic pairs represented by
feature vectors) are treated as input tokens for the network train-
ing process. The basic growing training process of our I-GSOM
model contains two phases described in the following two sec-
tions. The pseudo algorithm of the basic growing training process
is demonstrated in Algorithm 1.

2.4.1. The initializing phase
At the beginning, four neurons are initialized in the auditory map,
and four are initialized in the semantic map. The feature values
of their weight vectors are assigned randomly within the interval
0-1, and their E,.. values are initialized to 0. In contrast to the
approach of Alahakoon et al. (2000), in our approach, Tgrow is set
arbitrarily to fit our experimental requirements.

After initialization, all our starting nodes are boundary nodes
and thus free to grow in any direction outwards. This results in
great flexibility in terms of network growth.

A B New node
T 1
— —_
New node
— —_

IO

FIGURE 3 | The initial structure of a GSOM. (A) The network can be
expanded in any direction at the beginning. (B) New nodes can expand the
network at boundary nodes (Alahakoon et al., 2000).

2.4.2. The growing phase

(a) Input tokens are presented to the network one by one sequen-
tially. Audio data are presented to the auditory map for
training, and simultaneously, the corresponding semantic
data are presented to the semantic map for training. Each
token is trained several times before moving to the next.
This approach is consistent with the gradual learning pro-
cess in natural language acquisition: parents often teach their
children just one word at a time and repeat it several times.

(b) In GSOMs, the weight updating and network reorganiz-
ing processes are performed locally. Therefore, the learning
rate and neighborhood size are initialized to their initial
value with each new input token. The learning rate (Rjearn)

Algorithm 1 | The basic growing training procedure.

. procedure INITIALIZING PHASE
initialize the growth threshold (Tgrow)
for each of the 4 initial nodes in AMap and in SMap do

randomly initialize the weight vector of the node

1
2
3
4: initialize the accumulated error (Ezcc) of the node to 0
5
6 end for

7

. end procedure

8: procedure GROWING PHASE

9 for each training token do

10: initialize the neighborhood size and learning rate

11: present the audio training data to AMap and the semantic training

data to SMap

12: identify the BMU in AMap and the BMU in SMap

13: for the BMU in each map do

14: if Eacc > Tgrow and the BMU is a boundary node then

15: grow new nodes

16: initialize the weight vector of each new node

17: else

18: while neighborhood size > 1 do

19: if Eacc < Tgrow then

20: update the weight vector of the BMU and its
neighbors

21: calculate the error value and accumulate it to Egce of
the BMU

22: if an associative link exist between BMU in AMap
and BMU in SMap then

23: update the weight of the associative link

24: else

25: build an associative link between the two BMUs

26: initialize the weight of the associative link

27: end if

28: else if the BMU is not a boundary node then

29: do error distribution

30: end if

31: reduce the neighborhood size and learning rate

32: end while

33: end if

34: end for

35: end for

36: end procedure
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update rule is defined as a function of the total number
of nodes in the network, i.e., Riearn(t + 1) = @ X @(n) X
Riearn (t), where o is the reduction factor of the learning rate
with0 < @ < 1; ¢(n) = 1 — Q/n(¢) is a function of the total
number of current nodes in the network; Q is a constant set
to 3.8 since the starting number of nodes is four (Alahakoon
et al., 2000); and n(¢) is the number of nodes in the network
at time t. Since the auditory map may have a different size
compared with the semantic map during the growing pro-
cess, the decreasing rates of the learning rate are not exactly
the same for those two maps.

(c) The distances between weight vectors and the vectors of input
training tokens are calculated using the Euclidean distance
measure, and the best matching unit (BMU) with minimum
distance is detected simultaneously within the auditory map
and the semantic map for the current training token.

(d) In each map, if the E,.c value of a BMU exceeds Tgrow and
this BMU is a boundary node, then new nodes grow at all free
directly adjacent positions. The weight vectors of new nodes
are initialized with regard to the weight vectors of the rele-
vant BMU and its direct neighbors. (The process performed
in Step d is called weight distribution.)

(e) In each map, if the E, value of a BMU does not exceed
Tgrow then a weight update is applied to the BMU and its
neighbors within the neighborhood. Gaussian distribution
is chosen as a part of the neighborhood function that can
be represented by h(t) = exp (—dizx /20 (t)z) , where d;, repre-
sents the Euclidean distance between the weight vector w; in
the BMU and the training vector x in the training token; o (¢)
represents the current neighborhood size. The value of o (¢) is
calculated by o (t) = B x o (+ — 1), where B is the reduction
factor of the neighborhood size with 0 < 8 < 1; o(t — 1)
represents the neighborhood size in the previous state. The
weight update function can be expressed as in Equation (2).
The Euclidean distance between this BMU vector and the
training vector is accumulated as the E, . value of the BMU.

wi(t + 1) = (1) + Riearn (1) X h(t) X (x(t) — wj(1)) ,i € N

(2)
If an associative link already exists between the BMU of the
auditory map and the BMU of the semantic map, the weight
of the associative link is then updated using the weight update
rule defined in Equation (3), where L is a constant set to 0.1
in our experiment. If the link does not exist, a new associative
link is then established between the two BMUs, and its weight
is initialized to 0.1.

wlink(t + 1) = wjink(t) + L (3)

(f) In each map, if the E;c value of a BMU exceeds Tgrow but
this BMU is not a boundary node, then error distribution
is performed. Thus, the error value of this BMU is reduced
to Tgrow/2, and the error values of its immediate neighbors
increase by y X Tgrow, Where y is a factor of error distribution
with 0 < y < 1. (The process performed in Step f is called
error distribution).

(g) Several iterations are done for the current training token
(Steps c to fare repeated several times). The learning rate and
neighborhood size decrease at each iteration. The iteration
process stops when neighborhood size reduces to unity.

(h) Finally, the next training token is processed by repeating
Steps b to g until all training tokens have been presented.

2.5. THE CHECKING PROCESS

The checking process does not change the network. It consists
of two procedures (the pseudo algorithm of the checking pro-
cess is demonstrated in Algorithm 2). First, it is performed to
check whether the trained network has learned a good represen-
tation of the categories represented within the training data. This
is done by identifying the winner positions in the trained audi-
tory map and semantic map for each token and can be considered
as a calibration phase if known data are used (Alahakoon et al,,
2000). The closeness of a token to each neuron in the network is
measured by Euclidean distance.

Second, the accuracy of each associative link is checked. In
this study, presently, only the perceiving path (originating in the
auditory map and ending in the semantic map) is checked dur-
ing the checking process. Thus, for each winner in the auditory
map, among all associative links originating from that node, the
one with the maximum weight is chosen as the winner link of
the winner neuron. If the winner link connects to no word repre-
sentations in the semantic map, the link is marked as incorrect; if
the winner link connects to a word representation in the semantic
map, but that word is not represented by the appropriate audio
data, the link is marked as incorrect; if the winner link connects to
a word representation in the semantic map, and that word is rep-
resented by the linked audio, the link is marked as correct. The link
accuracy can be calculated as the ratio of the number of correct
links to the total number of links.

Algorithm 2 | The checking process.

1: procedure CHECK MAP ACCURACY

2: present checking set to the trained AMap and SMap
3: identify the BMU in AMap and the BMU in SMap

4: end procedure

5: procedure CHECK LINK ACCURACY

6: identify the winner link for each solid node in AMap

7: if the winner link connects to no word representations in SMap then
8: mark the link as incorrect

9: else if the connected representation is wrong then

10: mark the link as incorrect

11: else

12: mark the link as correct

13:  endif

14: end procedure

2.6. CYCLICAL REINFORCING AND REVIEWING TRAINING

During language learning process, children cannot learn every-
thing (i.e., all auditory and semantic categories represented by
the training tokens) at once, so imperfections in clustering are
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inevitable. During language acquisition, errors may represent
a current inability to distinguish between words with different
sounds or different meanings. Reflected in the network, this
fact is represented by those neurons that are found to represent
many audio data sequences or words in the checking process.
This is comparable to the following real-world learning situa-
tion: when parents teach their child, if they find that their child
always confuses the same sounds or meanings, parents will repeat
those stimuli and reinforce the differences between them in order
to help their child learn the difference. During the reinforce-
ment process, some learned sound—meaning pairs would also
arise and get enforced in the communication between the child
and parents. Therefore, not only the confused words, but also
some learned words should be included for further training. The
descriptions above involve communicative learning. Since social
communication is essential for early language acquisition (Doupe
and Kuhl, 1999; Kuhl, 2003; Kuhl et al., 2005), the modeling of
communicative effects is important in our model.

When the growing phase is complete and the checking pro-
cess has been performed, the trained network may end up with
some “unsolved” edge nodes, which means that some nodes may
represent the characteristics of many tokens comprising different
auditory or semantic categories. (These nodes are called “high-
density” nodes.) In order to resolve the high-density nodes, a
series of reinforcing and reviewing training can be performed on
both maps.

For the reinforcing phase, the starting point is the trained
network after completing the growing phase, and the training
process is similar to that of the growing phase. Training data
consist of those acoustic—semantic pairs whose auditory informa-
tion or semantic information is represented in the high-density
nodes, found in the checking process. The initial learning rate is
increased to give more weight to the input token, and the Tgroy
value is decreased to stimulate the network growth at high-density
nodes.

For the reviewing phase, the starting point is the trained net-
work after completing the reinforcing phase, and the training
process is similar to that of the growing phase. Compared with
the reinforcing phase, more tokens from the training set are used
in the reviewing process to simulate the reoccurrence of knowl-
edge that has already been acquired. The initial learning rate
and the Tgow value are set to the same level as in the growing
phase.

A reinforcing phase followed by a reviewing phase together
form a combined training process of reinforcing and review-
ing training. According to our experimental requirements, this
combined training process repeats in a cyclical (or iterative) way
several times until the average number of words represented by
a neuron reaches a minimum in both the auditory map and
the semantic map (see the left y-axis of Figure 7 in section 3.1).
The pseudo algorithm of the cyclical reinforcing and reviewing
training process is demonstrated in Algorithm 3.

In this study particularly, the entire training set is used in the
reviewing phase. In other words, the reviewing phase in this study
is almost the same as the growing phase. The function of the
reviewing phase here is to consolidate the knowledge that has
already been acquired.

Algorithm 3 | Cyclical reinforcing and reviewing training.

1: procedure REINFORCING PHASE

2: perform the checking process

3: select tokens for the reinforcing training

4: assign a smaller Tyro, and bigger initial Rjgarn
5: do reinforcing training

6: end procedure

7. procedure REVIEWING PHASE

8: select tokens for reviewing training

9: assign Tgrow and initial Rjesry to the same value as in the growing
phase

10:  do reviewing training

11: end procedure

2.7. REINFORCING-BY-LINK TRAINING

As mentioned above, during the learning process, imperfec-
tions in sounds—meaning linking are inevitable. During language
acquisition, the errors may represent a current inability to deter-
mine the correct meaning of a speech signal. Reflected in the
network, this fact is represented by those incorrect links from
the auditory map to the semantic map. Therefore, as mentioned
in the description of the reinforcing phase in section 2.6, rein-
forcement is needed to help the network (or in the real world,
the child) to learn the correct associations between the auditory
information and semantic information.

The reinforcing-by-link training does not correct the incor-
rect links directly. In fact, this is done in a more realistic way:
in the real world, parents would repeat those misunderstood
sound—meaning pairs and reinforce the relations between them
in order to help the child learn the correct associations. Thus,
the reinforcing-by-link phase is not introduced to the training
process from the beginning, since well-developed auditory and
semantic maps are required in order to function as the basis
for the process. Therefore, the reinforcing-by-link phase is intro-
duced at a middle stage in our training procedure and is applied
before each reinforcing and reviewing cycle. The starting point
for this training cycle is the trained network from the previous
reviewing phase. The training data consist of those acoustic—
semantic pairs whose auditory information or semantic informa-
tion is represented in the incorrect links from the auditory map to
the semantic map. As in the reinforcing phase, the initial learning
rate is increased to give more weight to the input token simu-
lating the reinforcement effect, and the Tgoy value is decreased
to stimulate the network growth at high-density nodes. In this
study, experiments performed with and without the reinforcing-
by-link phase were conducted, in order to explore the effect
of our reinforcing-by-link training procedure. The pseudo algo-
rithm of the reinforcing-by-link training process is demonstrated
in Algorithm 4.

2.8. THE LINK-FORGETTING PROCEDURE

From the simple weight update rule for associative links as
represented in Equation (3), we can see that the weight will
keep increasing and lead to a constant enhancement of all
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Algorithm 4 | The reinforcing-by-link training.

1: procedure

2: perform the checking process

3: select tokens for the reinforcing-by-link training
4: assign a smaller Tyro, and bigger initial Rjgzrn
5: do reinforcing-by-link training

6: end procedure

auditory—semantic links during the training process. However,
this does not correspond to natural or real-world mecha-
nisms of how knowledge enters long-term memory. In addition,
not everything can be retained in the long-term memory and
remembering is a highly selective process. In fact, remember-
ing can cause forgetting (Anderson et al., 1994). The recall-
ing of a remembered item will increase the likelihood that
it will be recallable again at a later time, but items that are
associated to the same cue or cues as another item may be
put in greater jeopardy of being forgotten (Anderson et al,
1994). Moreover, by modeling the language learning process,
Barrett and Zollman (2009) showed that forgetting is bene-
ficial for evolving an optimal signaling language. Therefore,
while remembering is modeled by the weight update rule rep-
resented in Equation (3), forgetting should also be modeled in
our approach as an indispensable part of the real-world learn-
ing process. In addition, if no forgetting procedure is applied
to associative links, our I-GSOM network can run into prob-
lems. Since both maps grow outwards from their four ini-
tial nodes, the associative links trained earlier will gain too
much weight and can easily overpower other links. However,
since both networks continually grow and reorganize during
the training process, the network structure, as well as auditory
and semantic clusters, remains in a dynamic changing process.
Therefore, if those links that were trained earlier have very
strong weights, the corresponding linked neurons in the auditory
map and the semantic map have little possibility of representing
paired acoustic—semantic features. Based on these considera-
tions, we introduced a link-forgetting procedure into our training
process.

Howe and Courage (1997) reported that over a 3-month delay,
15-month-olds evidenced more forgetting than 18-month-olds,
and 12-month-olds evidenced more forgetting than 15-month-
olds. Based on their findings, we also assume that younger chil-
dren may have greater forgetting rates. We interpret this result
as indicating that younger children may have a less developed
brain structure (network structure) and therefore have less capac-
ity for remembering the knowledge they have already acquired.
Based on this idea, a link-forgetting rate, defined as a function of
the number of all possible links between the auditory map and
the semantic map, is introduced into our model. The number
of all possible links (Njink) is calculated by the multiplication of
the total number of nodes in the auditory map and the semantic
map. Therefore, the initial Njj,k equals to 4 x 4 = 16. The link-
forgetting rate (Awjink) is calculated as in Equation (4), where
Niink (#) stands for the number of all possible links in the cur-
rent training state and Njjk(f — 1) stands for the number of all

possible links in the previous training state.

[ Niink(#) — Niink (¢ — 1)
Aetink = \/ Nink (1) W

The link-forgetting procedure is applied to all existing links in the
current trained network when each training phase ends. Thus,
it is applied after each growing phase, reinforcing-by-link phase,
reinforcing phase, and reviewing phase. The forgetting strategy
implemented by Barrett and Zollman (2009) was to reduce the
possibility that past partial success would continue to reinforce
suboptimal practice. Taking their ideas as a starting point, we
defined a preliminary link-forgetting rule as in Equation (5),
where wjink (¢) stands for the weight of a link in the current train-
ing state and wjink (t + 1) stands for the weight of the link after the
link-forgetting procedure. The pseudo algorithm of the procedure
is expressed in Algorithm 5.

wlink(t + 1) = ojink(t) X (1 — Awjink) (5)

3. RESULTS

In this section, we present our experiment procedures and exper-
imental results in detail. The order of operations for the training
procedures is shown in Figure 4. Three simulations with identical
model parameters (listed in Table 2) were performed. From our
analysis, all three simulations behave similarly and lead to com-
parable results. The results reported in sections 3.1 and 3.2 are
based on the averages of the three simulations. In section 3.3, we
mainly report on, in detail, and discuss the results from our first
simulation.

3.1. FUNDAMENTAL TRAINING
The fundamental training is implemented to check the basic
performance of our model and build a foundation for later
reinforcing-by-link training (since as mentioned in section 2.7,
well-developed auditory and semantic maps are required, which
form the basis for the reinforcing-by-link training process). The
fundamental training consists of a basic growing training phase
(see section 2.4) followed by cyclical reinforcing and reviewing
training phases (see section 2.6). The training process was divided
into 31 steps. Step 1 represents the basic growing training. The fol-
lowing 30 steps represent the steps in the cyclical reinforcing and
reviewing training (from Step 2, even numbers represent the rein-
forcing training steps and odd numbers represent the reviewing
training steps). In total, one basic growing training and 15 cycles
(30 steps) of reinforcing and reviewing training were performed.
During the reinforcing phase, acoustic—semantic pairs which
needed to be reinforced were selected by the following procedure.

Algorithm 5 | The link-forgetting procedure.

1: procedure

2: for each link do

3: reduce the weight of link by link-forgetting rule
4: end for

5: end procedure
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Basic growing training

| Initializing phase |

| Growing phase |
link forgetting

Cyclical reinforcing and
reviewing training

—>{Checking process|

[Reinforcing phase]
link forgetting

| Reviewing phase |

Link-forgetting
procedure

link forgetting

loop

Reinforcing-by-link training
~|  Checking process |

[ Reinforcing-by-link phase |

link forgetting

| Checking process |

I

[ Reinforcing phase |
link forgetting

| Reviewing phase |
link forgetting

loop

FIGURE 4 | The order of operations for the training procedures.

Table 2 | Parameters used in the various training phases.

Training phases Initial Ry,r,  Initial o (t) Trow o B y
Basic growing 0.5 2 2 0.9 0.9 0.5
Reinforcing 0.8 2 1 0.9 09 05
Reviewing 0.5 2 2 0.9 09 05
Reinforcing-by-link 0.8 2 1 0.9 0.9 0.5

Initial Rigarn represents the initial value of the learning rate; Initial o (t) repre-
sents the initial value of the neighborhood size; Tgrow represents the value of
the growth threshold; a represents the reduction factor of the learning rate; B
represents the reduction factor of the neighborhood size; y represents the factor
of error distribution.

First, the checking procedure was performed on both the trained
auditory map and the trained semantic map after the previous
training step. (For the first reinforcing phase, the “previous train-
ing step” refers to Step 1; for the following reinforcing phases,
the “previous training step” refers to each reviewing phase before
the reinforcing phase). Then, if a neuron in the auditory map
is found to represent more than four audio data segments, or
the average Euclidean distance between a neuron and its repre-
sented audio information is greater than 2.5, the corresponding

acoustic—semantic pairs which contain those audio data segments
are then taken as the training data for the reinforcing phase. At
the same time, if a neuron in the semantic map is found to rep-
resent more than four words, or the average Fuclidean distance
between a neuron and its represented words is greater than 2.5,
the corresponding acoustic—semantic pairs which contain those
words are then taken as the training data for the reinforcing
phase. If the auditory information and semantic information of
an acoustic—semantic pair are both perceived incorrectly, redun-
dant acoustic—semantic pairs will occur in the training data for
the reinforcing phase. In such cases, only one pair was kept.
During the reviewing phase, the complete training set was used
as the training data.

With the processing of the training phases, the network keeps
growing. Figure 5 shows the growing trends of the total number
of nodes and the number of nodes with representations in the
auditory map and the semantic map. All curves show a significant
increase after the first reinforcing training. The network contin-
ually expands, while the increasing rate gradually decreases. In
Figure 6, both the ratios of boundary nodes to all nodes for both
the audio and the semantic maps decline with the training process
and then gradually become stable, which indicates that both maps
gradually form a compact network. By comparing the lines rep-
resenting the auditory and semantic maps in Figures 5, 6, we can
conclude that the semantic map achieves a stable state (at Step
15) much faster than the auditory map. This may be due to the
fact that the semantic map has fewer unique items to learn than
that of the auditory map (70 for the semantic map, 210 for the
auditory map). The auditory map ends up with a reasonable size
of 857 nodes and a good neuron representation resolution of 203
syllables (96.67% of all syllables represented in the training set
are resolved). The semantic map ends up with a reasonable size of
389 nodes and a full neuron representation resolution of 70 words
(100%).

An important aspect of language acquisition is the ability to
disambiguate. Thus, in an ideal situation, no neuron should rep-
resent more than one neuronal state. As shown in the left y-axis of
Figure 7, with the development of the training process, the aver-
age number of words represented by a neuron in the semantic
map is reduced to 1 and remains stable from Step 11 on; in the
auditory map, the number is reduced gradually and approaches
1 in the late stages. The right y-axis of Figure 7 shows the max-
imum number of words represented by a single neuron in the
auditory and semantic maps. Although some fluctuations can be
seen during the initial and mid-late stages of the training process,
a general declining trend can be found in both lines. Therefore,
conclusion can be drawn from above observations that the cyclical
reinforcing and reviewing training can help the network resolve
high-density nodes, thus can help children to disambiguate the
sound and meaning of words in the case of clustered audios or
words at one node.

Comparing Figures 6, 7, and observing the structure of the
trained network step by step, our results indicate that the cyclical
reinforcing and reviewing training can help the network distin-
guish “unsolved” sound-meaning pairs and build more detailed
clusters while keeping the already-acquired network structure
stable.
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FIGURE 5 | Total number of nodes and number of nodes with representations in the auditory map. The dotted red line represents the
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3.2. EFFECTS OF REINFORCING-BY-LINK TRAINING

By checking the network trained in Step 1, we found that the
accuracy of associative links was poor (see section 2.5 for the
accuracy measurement of associative links). Even after a series
of further reinforcing and reviewing training phases, as done
through Step 31, accuracy still did not reach 90% (see the result
of Step 31 in Figure 8). To further investigate the learning of asso-
ciative links, two series of additional training experiments were
performed based on the training results of Step 31. In Experiment
1, we continued training as usual (i.e., without introducing a new
reinforcing-by-link training phase). In Experiment 2, we con-
tinued training but introduce a new reinforcing-by-link training
phase (as described in section 2.7, it is reasonable to introduce
the reinforcing-by-link phase at this stage since the auditory and
semantic maps are well developed). In both experiments, 15
training cycles were performed. In Experiment 1 (no reinforcing-
by-link training), one cycle consists of a reinforcing phase and
a reviewing phase. In Experiment 2 (with a reinforcing-by-link
training phase), one cycle consists of a reinforcing-by-link phase,
a reinforcing phase and a reviewing phase. The trained network
resulting from Step 31 was used as the starting point for both
experiments. For Experiment 2 (conducted with a reinforcing-
by-link training phase), only those links whose weights ranked
in the top 20% were taken into consideration during the checking
process, since a large amount of links would result in very weak
weights, and weak weights have less influences on the selection

of winner links. The accuracies of the associative links with and
without reinforcing-by-link training were checked in the checking
process. The results are presented in Figure 8.

As shown in Figure 8, by introducing the reinforcing-by-link
training phase, the accuracy of associative links improves signif-
icantly. The associative links end up with 88.00% accuracy in
Experiment 1 (no reinforcing-by-link training) and 94.70% accu-
racy in Experiment 2 (with a reinforcing-by-link training phase).
The reinforcing-by-link training phase here models a kind of
selection of learning stimuli as it may occur in real-world learn-
ing situations. The selected acoustic—semantic pairs are extracted
from bad communication results (i.e., from the “misunderstand-
ings” between a child, or in our case, the learning model, and
their caretakers; see section 2.7). The results of Experiments 1
and 2 suggest that by presenting the “misunderstood” acoustic—
semantic pairs to the network (the child) and reinforcing the
sound—meaning associations using reinforcing-by-link training,
the network (the child) can develop more accurate associations
between paired acoustic and semantic representations.

3.3. NETWORK STRUCTURE ANALYSIS
Our analysis of network structure is based on the training
result of Experiment 2 (see section 3.2) from our first simu-
lation. After training, the checking procedure was performed
simultaneously on the auditory map, the semantic map and the
auditory—semantic associative links.

Frontiers in Psychology | Language Sciences

March 2014 | Volume 5 | Article 236 | 10


http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences/archive

Cao et al.

GSOM-based auditory—semantic acquisition modeling

The Ratio of Boundary Nodes to the Total Number of Nodes in the Network

0.361|||x!||\!||{

T T T T T T T T T T I 1 I T
: : : : AMap
SMap |

Ratio

T Y N TN TR B [
234567891 3141

011121

Training Steps
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minimum if the shape of the corresponding neural network forms
into a circle (the most compact configuration). Thus, this measure
reflects the compactness of the shape of a neural network (see
Figures 9-13).

We will first discuss the auditory map. The trained network
structure and the checking result of the auditory map are shown
in Figures 9-11, demonstrating the clustering result based on
vowel categories, CV/CCV distinctions and manner of articula-
tion, respectively.

As shown in Figure 9, clusters of the five different vowels can
be found in various areas. The vowel [a] occupies a stable region
in the right and upper right areas of the network. The vowels [i]
and [e] occupy relatively stable regions, but there is some interfer-
ence between the two. The vowels [0] and [u] are mixed together,
and no clear cluster boundaries can be found between them.
A low-high dimension can be observed in the cluster distribu-
tion. The overall trend, with some exceptions, is that low vowels
occupy the upper right region, while high vowels occupy the lower
left region.

As shown in Figure 10, a clear CV and CCV distinction can
be found, which means the network can successfully distinguish
between CV syllables and CCV syllables. By checking the neu-
ral representations of CV and CCV audio signals (see section
2.1.1 and Figure 1 for an example of a CV syllable), we find that
CV syllables usually have a shorter duration than CCV syllables.
Therefore, the network (the child) can use duration information
as an important cue to distinguish CV and CCV syllables.

As shown in Figure 11, clusters of the three different manners
of articulation (Nasal, Lateral and Plosive) can be observed. By
checking the neural representations of audio signals (see section

2.1.1 and Figurel for an example of a CV syllable), we find
that the manner of articulation of consonants can be reflected
in the spectrogram information in formant information and for-
mant transitions. Therefore, the network (the child) can make use
of spectrogram information to distinguish different manners of
articulation among consonants.

Summarizing the findings from Figures 9-11, during the
learning (training) process of our model, distinctions between
different vowel categories are mainly acquired on the basis of
their low-high relations; distinctions between CV and CCV
syllables are mainly acquired on the basis of their duration;
and distinctions between different manners of articulation are
mainly acquired through the spectrogram information (i.e., for-
mant information and formant transitions) of the syllable. These
results, to some degree, explain a possible learning pattern of
auditory information in children.

Next, we will discuss the semantic map. The trained net-
work structure and the checking result of the semantic map are
shown in Figure 12. Clusters of different semantic categories can
be found in the figure, such as “Animals,” “People and Body
Parts,” “Housewares,” “Nature,” “Fantasy,” “Minds,” “Names,”
“Numbers,” and “Time.” Within clusters, some fine-grained cate-
gorical detail can be seen. For example, in the cluster “Animals,”
the grouping of items into the two categories of animals, birds and
4-legged mammals, is reflected in their location, with items from
a category clustering together. In the cluster “People and Body
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FIGURE 7 | Left y-axis: The average number of words represented by a
neuron among all those nodes with representations in the auditory and
semantic maps. The result was calculated as the ratio of the total number
of unique training items (70 for the semantic map, 210 for the auditory
map) to the number of nodes with representations (i.e., non-empty, or
solid, nodes; see Figures 9-13). The solid blue line represents the auditory
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map (AMap), and the solid red line represents the semantic map (SMap).
Right y-axis: The maximum number of audio data sequences represented
by a node in the auditory map and the maximum number of words
represented by a node in the semantic map. The dotted blue line
represents the auditory map (AMap), and the dotted red line represents the
semantic map (SMap).

Parts,” the items representing men, “grandpa,” “papa,” and “man,”
are located close to each other, and the items representing women,
“grandma,” “mama,” and “woman,” are located together. In the
cluster “Nature,” the items representing heavenly bodies, “sun,”
“stars,” and “moon,” are close together, and the earthly items
“water,” “sea,” “path,” and “forest” are close together. Between
clusters, some clusters with similar meanings are located close
to each other. For example, “Animals” is located next to “People
and Body Parts” since biologically, humans are a type of animal;
“Names,” “Time,” and “Numbers” are adjacent since they are all
abstract concepts.

The results for the semantic map demonstrate that our model
has the ability to learn the semantic categories of the training
data and build semantic clusters. In the mean time, the close-
ness of different words within one semantic cluster and the
closeness of different semantic clusters are generally modeled by
our model. At this stage, each solid node in the network rep-
resent the semantic features of only one word, and the average
Euclidean distances between a node and the word it represents
words are all less than 0.5. This means that the semantic map
is well developed and the semantic features are well acquired.
A possible learning pattern of semantic information for chil-
dren is demonstrated in Figure 12, in that semantic information
is stored with regard to meaning relations (i.e., words with
a similar meaning are clustered into one semantic category,

and clusters with similar meanings are located close to each
other).

Finally, we will discuss the auditory—semantic associative links.
The trained associative links and the accuracy checking result,
together with the network structure and checking results of the
auditory and semantic maps, are shown in Figure 13. As can be
seen in this figure, most activated nodes in the auditory map are
linked to the semantic map by associative links. Also, most acti-
vated nodes in the semantic map are linked from three nodes
(since each word has three corresponding acoustic realizations;
see section 2.1.3) in the auditory map by associative links. These
results suggest that during the perceiving (checking) process, our
trained I-GSOM model has the ability to activate the correct
neuron in the auditory map in order to process the correspond-
ing auditory information, then activate the correct associative
links to activate the corresponding neuron in the semantic map
and find the semantic meaning of the audio input. Therefore by
introducing the reinforcing-by-link training phase, the network
(the child) can acquire good associations between paired acoustic
and semantic representations. The modeling results suggest that
during language acquisition, auditory information and semantic
information can be linked together and therefore processed and
learned simultaneously by children (the model). Thus, the linking
relation between auditory information and semantic information
is an important aspect of language acquisition.
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Accuray of Auditory—semantic Links With and Without Reinforcing—by-link Training
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FIGURE 8 | The accuracy of the associative links for Experiment 1 (no
reinforcing-by-link training) and 2 (with reinforcing-by-link training). The
red line represents Experiment 1, and the blue line represents Experiment 2.

38
Training Steps

39 40 41 42 43 44 45 46

Training Step 31 refers to the state of the network as trained through Step 31
of Fundamental training (see section 3.1); Training Steps 32-46 refer to the
15 training cycles preformed in Experiments 1 and 2.

4. DISCUSSION

In this paper, an Interconnected Growing Self-Organizing Maps
algorithm (I-GSOM algorithm) is introduced as an approach
to modeling the acquisition of auditory information, semantic
information and the associations between them. As described in
Kroger and his colleagues’ language acquisition model (Kroger
and Heim, 2011; Kroger et al., 2011a,b), auditory informa-
tion and semantic information are acquired at two different
levels. Therefore, two separate maps (GSOMs) are used to
model the acquisition of auditory information and semantic
information separately. Taking as a starting point the struc-
ture of the DevLex model (Li et al., 2004) and the connec-
tionist SOM model (Zinszer and Li, 2010), associative links
are built between the two maps. However, in contrast to the
phonological-semantic interface modeled in the DevLex model,
the connectionist SOM model and the DevLex-II model (Li
et al., 2007; Li and Zhao, 2013), in our model, associative
links are built at the phonetic—semantic interface between audi-
tory information and semantic information. It is reasonable
to link phonological representation with semantic representa-
tion in the previous approaches since those models are used to
develop later phases of language acquisition such as vocabulary
spurts. In our I-GSOM approach, we attempt to model language
acquisition at early phases, such as the babbling and imitation
stages, in which no phonological representations are available.
Phonological representations are generally language specific, so
acquiring them is a result of early language learning. Thus, the

development or emergence of phonological representation relies
on the early acquisition of phonetic and semantic categories
(Kroger et al., 2011a,b; Eckers and Kroger, 2012). The auditory—
semantic associated links between the two maps guarantee the
perception of associations between paired acoustic and seman-
tic representations, which is very important for early language
acquisition.

Also, in contrast to other growing neural network models
(Fritzke, 1994, 1995a,b; Bruske and Sommer, 1995; Burzevski
and Mohan, 1996; Cheng and Zell, 1999, 2000; Dittenbach et al.,
2002a,b; Marsland et al., 2002; Rauber et al., 2002; Li et al.,
2004), the GSOM we use has a simpler structure and great
extendibility, so it is more suitable for complex linguistic mod-
eling tasks. The self-organizing ability enables it to model the
clustering of auditory and semantic categories (i.e., the process
of learning acoustic and semantic features), and the dynamic
growing structure enables it to model the incremental nature
of knowledge growth. By reading in input tokens one at a time
and training it for further iterations, the training process of the
GSOM simulates the gradual learning process in practice. By
introducing the GSOM algorithm based on the accumulative
error (Eyec) and growth threshold (Tgrow) factors, the network
can produce a vivid biological picture of the knowledge acqui-
sition process. The weight distribution passes the weights of
the nodes within the neighborhood to the new adding nodes,
so that the network structure can remain stable throughout
the growing stage. The rules for learning rate adaptation and
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FIGURE 9 | The trained network structure and checking result of the smaller than 0.5. Blue nodes represent neurons with an average distance
auditory map for vowel categories. Clusters of vowel categories are greater than 0.5. The labels next to the nodes give the best-represented
shown. Solid nodes represent those neurons with audio representations; audio data sequence for that neuron, and numbers below the nodes
empty nodes represent those neurons with no audio representations. Red represent the number of audio data sequences represented by that
nodes represent neurons for which the average Euclidean distance neuron. Annotations in the figure represent different clusters, and solid
between the neuron and the audio representations it is associated with is lines represent cluster boundaries.

localized weight update ensure that tokens which enter rela-
tively late can also occupy the appropriate stable regions in the
network.

In our I-GSOM algorithm, the auditory and semantic acqui-
sition is modeled using a basic growing training followed by
a series of cyclical reinforcing and reviewing training process
and a reinforcing-by-link training process, assisted by a link-
forgetting procedure. The basic growing training, like most SOM
and growing SOM approaches (Li et al.,, 2004; Kroger et al.,
2009b), is a kind of statistical learning process (unsupervised
learning). It models language perception based on distributional
patterns of sounds and meanings, which provide clues about
the phonetic and semantic structure of a language. The rein-
forcing training steps simulate a situation in which caretakers
repeat those words whose sounds or meanings have been misun-
derstood by the child (the network) and reinforce their specific
differences in order to help the child (the network) to cor-
rectly distinguish between them. The reviewing training steps
simulate the reoccurrence of some knowledge that has already
been acquired during the reinforcement learning process. The

reinforcing-by-link training steps simulate a situation in which
caretakers repeat the “misunderstood” acoustic—semantic pairs
and reinforce the correct relations between them, in order to
help the child (the network) develop the correct associations.
The cyclical reinforcing and reviewing training process, combined
with reinforcing-by-link training, forms a kind of communica-
tive learning (semi-supervised learning) process, and it supports
language acquisition through a communicative error correction
learning mechanism, which is described as the “error process-
ing” module in the DIVA model (Guenther, 2006; Guenther
et al., 2006; Guenther and Vladusich, 2012). In our approach,
we are among the first to implement this idea in neurocom-
putational models. Furthermore, remembering and forgetting
coexist in real-world learning processes (Anderson et al., 1994).
While the weight update rule of GSOM (see Equation 2) mod-
els the remembering and forgetting mechanisms for auditory
and semantic information, the weight update rule described as
in Equation (3) is not capable of modeling the forgetting phe-
nomenon of associative links. Therefore, a link-forgetting proce-
dure is introduced to the associative link learning process. The
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FIGURE 10 | The trained network structure and checking result of the auditory map for CV and CCV distinction. Clusters of CV and CCV syllables are

shown. (See caption of Figure 9 for more details.)

link-forgetting procedure guarantees the network good accuracy
level in auditory—semantic associations.

From our experimental results, we can conclude that our I-
GSOM algorithm, in combination with the use of reinforcing
and reviewing procedures, demonstrates the ability to learn the
acoustic and semantic features in the training data and to build
corresponding auditory and semantic clusters in the auditory
and semantic maps, respectively. By introducing a reinforcing-
by-link training phase, our model demonstrates the ability to
associate acoustic features in the auditory map with the semantic
features in the semantic map. From the checking results, gen-
eral vowel clusters, clear CV/CCV distinctions and clear manner
of articulation clusters can be found in the neuron representa-
tions of the auditory map; clear semantic clusters can be found in
the neuron representations of the semantic map. Thus, we show
that cyclical reinforcing and reviewing training is able to help
the network distinguish between confused sounds and mean-
ings and build more detailed clusters (i.e., acquire more detailed
acoustic as well as semantic features), while keeping the estab-
lished clusters and the network structure stable. We show that
the reinforcing-by-link training phase is able to help the net-
work develop the correct associative links between neurons in the
auditory map and neurons in the semantic map (i.e., acquire the

correct associations between auditory information and semantic
information).

So far, there has been no empirical research on how chil-
dren acquire auditory information, semantic information and the
auditory—semantic associations in the paradigm as we have pro-
posed in this study. In contrast to Li et al. (2004, 2007), our
approach currently is not designed to separate training items in
a series of increasing lexical items (e.g., 50 words, 100 words, 150
words, ... 500 words) as occurs in children’s language learning
during the first 2 years of life. Thus, our current approach is not
yet capable of modeling empirical facts such as the vocabulary
spurt occurring around 18 month (which is modeled in Li et al,,
2004, 2007). In contrast, our approach addresses the problem
that children do not have a phonological (i.e., language-specific)
speech representation at birth, and it shows how phonological
features may emerged. First, we can achieve an ordering of pho-
netic features at the level of the auditory map based on our
syllable repository (see Kroger et al.,, 2009a). This ordering of
language-specific syllable states with respect to phonetic features
(i.e., phonetotopy, see Kroger et al., 2009a) is the starting point
for building up phonological features. Second, our approach is
capable of showing that specific links can be established between
neurons (or states) of the auditory and semantic maps. This
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FIGURE 11 | The trained network structure and checking result of the auditory map for manner of articulation. Clusters of three different manners of
articulation (Nasal, Lateral, and Plosive) are shown. (See the caption of Figure 9 for more details.)

0 5 10 15 20

means that our phonetic ordering of syllables is now linked with
language-specific (phonological) distinctiveness, i.e., with differ-
ent meanings of words (or morphemes). Although there has been
no empirical study of the development of phonological features
for very young children aged 1-3, we believe that the develop-
ment of such emerging abilities likely plays an important role in
children’s early language acquisition.

There are still some drawbacks to our approach, but they
can be overcome by further refining the model in future study.
Although the I-GSOM provides great flexibility and extensibil-
ity, its growing mechanism still has two main problems. (1) New
nodes grow at all available positions of the BMU’s direct neigh-
bors, which leads to “blind growing” without clear directions.
This leads to the problem of redundant nodes. (2) New nodes
can only grow at network boundaries and cannot be added to
the interior of the network. This limits the expanding process
of the network and creates difficulties in modeling real knowl-
edge expansion and visualizing clustering results. Therefore, a
further step to improve our model would be to introduce direc-
tional growing and interior growing into the I-GSOM algorithm.
Related topics have been explored by other researchers: Tai and
Hsu (2010, 2012) introduced a “cross insert” growing algorithm,
which grows only one new node toward a best-selected direction

each time; Ayadi et al. (2007) introduced an Interior and Irregular
Boundaries GSOM (2IBGSOM), which makes it possible to add
new nodes to the interior of the network. In our future stud-
ies, these approaches could be easily integrated into our I-GSOM
model.

With respect to the modeling of auditory and semantic acqui-
sition, there are some limitations in our current approach. (1)
Acoustic representation displays high variability across speakers.
During language acquisition, children must not only build their
own acoustic representations, but also learn to deal with acous-
tic variability in order to be able to understand other speakers.
In addition, from the embodied cognition perspective (Barsalou,
2008), semantic representations also differ among individuals.
Our I-GSOM approach currently focuses on a back-end knowl-
edge acquisition mechanism, so speaker variability is not taken
into consideration at the current stage. Therefore, the front-end
speaker normalization is not yet integrated into our approach,
and speaker-independent normalization is beyond the scope of
this study. In comparison, the DevLex, the DevLex-II and connec-
tionist SOM models are more balanced because they use abstract
representations. (2) Words in natural language are formed by one
or more syllables. In our approach, as a simplification, only one-
syllable words are modeled. Due to the limitations of SOM-based
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FIGURE 12 | The trained network structure and checking result of and blue nodes represent neurons with an average distance greater
the semantic map. The clusters of semantic categories are shown. than 0.5. The labels next to the nodes give the best-represented
Solid nodes represent neurons with semantic representations, and semantic representation for that neuron, and the numbers below the
empty nodes represent neurons with no semantic representations. Red nodes represent the number of words represented by that neuron.
nodes represent neurons for which the average Euclidean distance Annotations in the figure represent different clusters, and solid lines
between the neuron and the word it represents is smaller than 0.5, represent cluster boundaries.

algorithms, training tokens must have the same vector length.
Therefore, our I-GSOM approach is not yet capable of dealing
with tokens of different vector lengths (i.e., words comprising
different numbers of syllables). New data feature representation
methods or training algorithms must be developed in the future
to address this problem. (3) Language acquisition involves enor-
mous amounts of linguistic stimuli. Both the number of stimuli
and the linguistic features those stimuli may have are not precisely
modeled in this study. Since our aim in this study was primarily to
propose a new modeling perspective, we used a rather small data
set consisting of only 70 words (as compared to Li et al., 2004,
2007 in which several hundreds of words were simulated in their
models). However, this does not mean that our I-GSOM model
is not scalable. Our recent study (Cao et al., 2013), concerning
semantic acquisition alone, clearly shows the network scalabil-
ity of the GSOM algorithm on a relatively large-scale semantic
data set (with 1929 training tokens and 724 features in each).
Therefore, in term of using our I-GSOM algorithm for large-scale

modeling, we expect that the network can form more detailed cat-
egories and that some categories can become more compact since
more information and more stimuli would be available.

The I-GSOM model we propose is partly connectionist and
partly general-computational. On the one hand, the model neu-
rons defined in our approach represent an ensemble of natural
cortical neurons, which are spatially and functionally closely con-
nected. Thus, each model neuron may represent, for example, a
cortical column (this concept is mainly used in vision, e.g., by
Obermayer et al., 1990 and Bednar et al., 2004). On the other
hand, the auditory and the semantic maps are connected by
simple associative links rather than connectionist activity prop-
agation such as Hebbian learning. In addition, starting from a
quite small network size (four nodes), it would also be justi-
fied to describe it as a cognitive/computational approach: from
the biological perspective, it is known that infants are born
with redundant networks (with abundant connections) that go
through massive synaptic pruning. Therefore, we state that our
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and the blue lines represent those links with incorrect auditory-semantic
associations. Among the links, 94.70% are correct. (For detailed information
about the auditory and semantic maps, see Figures 9, 12, respectively).

I-GSOM model is a biologically-inspired neurocomputational
model. Although the I-GSOM is highly abstract, its biologi-
cal features can be carefully interpreted to a specific degree
because it incorporates important neurofunctional principles
such as self-organization, associative learning, adaptation, and
neural plasticity. Therefore, this kind of simplification on the
“microscopic” neurofunctional level allows us to model large-
scale and higher-level brain functions and at the same time
allows us to model “macroscopic” behavior (e.g., speech learn-
ing and speech processing) on the basis of neurofunctional
principles.
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