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The concepts of attention and intrinsic motivations are of great interest within adaptive
robotic systems, and can be exploited in order to guide, activate, and coordinate multiple
concurrent behaviors. Attention allocation strategies represent key capabilities of human
beings, which are strictly connected with action selection and execution mechanisms,
while intrinsic motivations directly affect the allocation of attentional resources. In
this paper we propose a model of Reinforcement Learning (RL), where both these
capabilities are involved. RL is deployed to learn how to allocate attentional resources in
a behavior-based robotic system, while action selection is obtained as a side effect of the
resulting motivated attentional behaviors. Moreover, the influence of intrinsic motivations
in attention orientation is obtained by introducing rewards associated with curiosity drives.
In this way, the learning process is affected not only by goal-specific rewards, but also by
intrinsic motivations.
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INTRODUCTION
Attention and intrinsic motivations play a crucial role in cognitive
control (Posner et al., 1980) and are of great interest in cogni-
tive robotics. Indeed, attentional mechanisms and motivational
drives are strictly involved in the process of guiding and orches-
trating multiple concurrent behaviors. Attentional mechanisms,
beyond their role in perception orientation, are also considered
as key mechanisms in action selection and coordination (Posner
et al., 1980; Norman and Shallice, 1986). The capability of select-
ing and filtering the information is associated with the process
of focusing cognitive and executive resources toward the stimuli
that are relevant for the environmental and behavioral context.
On the other hand, another key factor affecting action selec-
tion is represented by the so called intrinsic motivations such
as the curiosity (Baldassarre, 2011), which can indirectly affect
action selection because of its influence on attentional shifting.
For instance, the curiosity drive can attract the attentional focus
toward novel stimuli and, consequently, can elicit the execution of
actions which are not directly related to the current behavior or
goal. Albeit there is not a clear consensus on how intrinsic moti-
vations differ from the extrinsic ones (Baldassarre, 2011), their
role in pushing human/animal beings to spontaneously explore
their environment (Baldassarre and Mirolli, 2013) and to execute
this activity only for their inherent satisfaction (Ryan and Deci,
2000), rather than for satisfying some basic needs such as hunger
or thirst (White, 1959; Berlyne, 1960), is widely accepted.

In this work, we focus on the intrinsic motivation provided by
the curiosity, which is considered as the main drive for humans
to explore novel situations and to learn complex behaviors from
experience (Berlyne, 1954; Litman, 2005). Recent studies have
also shown that both attention and curiosity are strictly related
to the dopaminergic system responsible for action driving. It is
widely accepted, indeed, that dopamine affects both the reward
excitement, fundamental in the learning process, and the demand
of more attention by novel stimuli (Nieoullon, 2002; Redgrave
and Gurney, 2006; Jepma et al., 2012). Unpredicted events can
generate intrinsic reinforcement signals, which support the acqui-
sition of novel actions. In particular, it has been shown that the
dopamine release is triggered not only in response to unexpected
environmental changes and goal-directed action-outcome learn-
ing (Heidbreder and Groenewegen, 2003; Dalley et al., 2004), but
also in response to the detection of novel events (Lisman and
Grace, 2005).

The typical approach adopted for modeling the dopamine-
like rewarding system (Montague et al., 1996) and for coping
with the problem of treating intrinsic motivations (Barto et al.,
2004; Mirolli and Baldassarre, 2013) is represented by the well
known Reinforcement Learning (RL) process. Recent works have
been proposed to incorporate models for novelty (Marsland et al.,
2000) and curiosity (Schmidhuber, 1991) within Motivated RL
algorithms (Barto et al., 2004) providing accounts for behav-
ior adaptation, action selection learning, mental development,
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and learning of hierarchical collections of skills depending on
the robot experience (Kaplan and Oudeyer, 2003; Barto et al.,
2004; Oudeyer and Kaplan, 2007; Schembri et al., 2007; Singh
et al., 2010; Baranes and Oudeyer, 2013). Typically, within these
approaches, RL is used to directly model and generate the action
selection strategies. In contrast, we propose a system where RL
is deployed to learn attentional allocation and shifting strategies,
while action selection emerges from the regulation of attentional
monitoring mechanisms (Di Nocera et al., 2012), which can be
affected by the intrinsic motivation of curiosity. Our curiosity
model is inspired by the interest/deprivation model proposed
by Litman (2005), which captures both optimal-arousal and
curiosity-driven approaches of curiosity modeling. Following this
approach, attentional shifting mechanisms can be generated tak-
ing into account not only extrinsic motivations, like mission goals
and primary needs satiation, but also intrinsic motivations, like
the need of acquiring knowledge (Litman’s deprivation model)
and the attraction toward novel stimuli and opportunity of learn-
ing (Litman’s interest-based model). In this context, we aim to
investigate whether our account of curiosity and attentional reg-
ulation learning is feasible and effective for the generation of
attentional allocation and shifting strategies, whose side effect is
an adaptive emergent behavior for the robot. We are also inter-
ested in the impact of our model of curiosity on the learning
process. Specifically, we want to assess whether the proposed
intrinsically motivated system affects the progress in learning.

We detail the approach by describing our intrinsically moti-
vated RL model and analyzing its performance in a simulated
survival domain. In this scenario, the robot is engaged in survival
tasks such as finding food or water, while avoiding dangerous sit-
uations. The goal is to learn attentional allocation and shifting
policies that allow the robot to survive in the particular environ-
ment. The system evaluation is based on a comparison between
the performance of the attentional policies, which are learned
with the curiosity model, with respect to the ones generated with-
out taking into account the curiosity drive. The collected results
show that our intrinsically motivated learning approach is fea-
sible and effective. Indeed, the curiosity-driven learning system
allows us to find satisfactory attentional allocation and shifting
policies showing a faster convergence of the learning process,
safer policies of the selected action, and a higher wellness state
of the robotic system in terms of energy gained during the explo-
ration of the environment. In particular, in the curious setting
the robot behavior seems more flexible because endowed with
an additional capacity of adaptation. Indeed, different attentional
allocation (or shifting) policies, and consequently, various action
selection policies, can be defined depending on the current level
of curiosity.

MATERIAL AND METHODS
ATTENTIONAL SHIFTING SYSTEM
In this work, we refer to the attentional framework introduced
by Burattini et al. (2010). Here, the attentional system is mod-
eled as a reactive behavior-based system (Brooks, 1986; Arkin,
1998), endowed with internal attentional mechanisms capable
of distributing and shifting the attention among different con-
current behaviors depending on the current saliency of tasks

and stimuli. These attentional mechanisms allow the robotic
system to supervise multiple concurrent behaviors and to effi-
ciently manage limited resources. In contrast with typical works
on visual attention (Itti and Koch, 2001), the Burattini et al.
(2010) approach is not concerned with the orientation of the
attention in the space (i.e., the field of view), but it is about
the executive attention (Posner et al., 1980) and the temporal
distribution of the attentional resources needed to monitor and
control multiple processes. This model of attention is inspired by
Pashler and Johnston (1998), where the attentional load due to
the accomplishment of a particular task is defined as the quantity
of attentional time units devoted to that particular task, and by
Senders (1964), where attentional allocation and shifting mecha-
nisms are related to the sampling rate needed to monitor multiple
parallel processes. In particular, Burattini et al. (2010) propose a
frequency-based model of attention allocation, where the incre-
ment of the attention due to salient stimuli is associated with
an increment of sensors sampling rate and of the behavior acti-
vations. Specifically, starting from a behavior-based architecture,
each behavior is endowed with an internal clock regulating its
activation frequency and sensory sampling rate: the higher the
sampling rate, the higher the resolution at which the behavior
is monitored and controlled. The internal clock can increase or
decrease the attentional state of each behavior with respect to
salient internal/external stimuli by means of suitable attentional
monitoring functions. In this context, the internal stimuli are
modeled as internal needs, such as, for example, thirst or hunger,
while the external stimuli are associated with salient events or
discontinuities perceived in the external environment.

An explicative example of this behavior-based attentional sys-
tem at work is presented in Figure 1. The plot shows how the
sampling rate of a behavior (for example a give task) changes
(see Figure 1A) depending on different stimuli (for example, the
human hand speed, in Figure 1B, and the distance between the
human hand and the robot end effector, in Figure 1C). It is pos-
sible to observe that if non-salient stimuli are presented to the
behavior, the attentional process monitors the environment in a
relaxed manner, instead, if something salient happens, the clock
frequency of the behavior is enhanced and more attention is con-
sequently paid toward the stimulus. This general model permits
to monitor and control different internal and external processes,
shifting, from time to time, the allocation of computational
and operational resources. Notice that, this adaptive frequency
implicitly provides a mechanism for behaviors prioritization.
Indeed, high-frequency behaviors are associated with activities
with a high relevance and priority in the current operational
context.

Formalization of the model
Following the approach of Burattini and Rossi (2008), we con-
sider a Behavior-based architecture (Brooks, 1986; Arkin, 1998),
where each behavior is endowed with an attentional mechanism
represented by an internal adaptive clock.

A schema theory representation (Arbib, 1998) of an atten-
tional behavior is illustrated in Figure 2. This is characterized by
a Perceptual Schema (PS), which elaborates sensor data, a Motor
Schema (MS), producing the pattern of motor actions, and an
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FIGURE 1 | Example of the attentional allocation strategies presented in Sidobre et al. (2012). (A) The sampling rate associated with the behavior of giving
an object changes depending on internal or external stimuli: (B) the human hand speed and (C) the distance between the human hand and the robot end-effector.

FIGURE 2 | Schema Theory representation of an attentional behavior.

attentional control mechanism, called Adaptive Innate Releasing
Mechanism (AIRM), based on a combination of a clock and a
releaser. The releasing mechanism works as a trigger for the MS
activation (e.g., the view of a predator releases the escape behav-
ior), while the clock regulates the sensors sampling rate and,
consequently, the activation rate of the behaviors. The clock acti-
vation rate changes following an attentional monitoring strategy,
which can adaptively increase or decrease the clock frequency,
according to salient internal and external stimuli. More formally,
the attentional mechanism is characterized by:

• An activation period pb ranging in an interval [pb
min, pb

max],
where b is the behavior identifier.
• A monitoring function f

(
σ b(t), pb

t− 1

) : Rn → R that adjusts

the current clock period pb
t , according to the internal state of

the behavior and to the environmental changes.
• A trigger function ρ(t, pb

t ), assuming a 0/1 value, which
enables/disables the data flow σ b(t) from sensors to PS at each
pb

t time unit.
• Finally, a normalization function φ(f (σ b(t), pb

t− 1)) : R→ N

that maps the values returned by f into the allowed range
[pb

min, pb
max].

The clock period at time t is regulated as follows:

pb
t = ρ

(
t, pb

t− 1

)
· φ

(
f (σ b(t), pb

t− 1

)
+

(
1− ρ(t, pb

t− 1)
)
· pb

t− 1

(1)
That is, if the behavior is disabled, the clock period remains
unchanged, i.e., pb

t− 1. Otherwise, when the trigger function is 1,
the behavior is activated and the clock period changes according
to the φ(f ). In order to learn attentional monitoring strate-
gies, various methods such as Differential Evolution (Burattini
et al., 2010) and RL techniques (Di Nocera et al., 2012) have
been deployed, respectively for off-line and on-line tuning of the
parameters regulating the attentional monitoring functions. In
the following sections, we will present an intrinsically motivated
RL (IMRL) approach to the attentional allocation problem in our
frequency-based model of attention.

INTRINSIC MOTIVATIONS: CURIOSITY MODEL
Curiosity is an appetitive state involving the recognition, pursuit,
and intense desire to investigate novel information and experi-
ences that demand one’s attention. In literature, we find two main
theoretical accounts of curiosity: the optimal arousal model and
curiosity-drive theory. The curiosity-drive model assumes that the
main drive of curiosity is the reduction of uncertainty: novel and
ambiguous stimuli cause a need for coherence restore that reduces
the uncertainty. This reduction is considered as rewarding. This
model is supported by studies showing that unusual situations are
associated with approaching behaviors and attentional states (e.g.,
see the Loewenstein, 1994 knowledge gap/approach gradient).
However, the curiosity-driven model cannot explain why biolog-
ical organisms initiate exploratory behaviors without any stimuli.
These situations are instead well explained by the optimal-arousal
model (e.g., see the Spielberger and Starr, 1994 model). Following
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this model, the biological systems are associated with an home-
ostatic regulation of their arousal level: when the arousal level
is under-stimulated, the organism is motivated to increase the
arousal and to look for novel situations; in contrast, when the
organisms is over-stimulated additional stimuli are evaluated as
negative and associated with an avoidance behavior. While in
the curiosity-drive model the reward is associated with uncer-
tainty reduction, in the optimal arousal model, the induction of
curiosity is directly rewarding. Also this model is not completely
satisfactory, indeed, in this case an optimal arousal state should
be maintained and the reward is directly associated with a feel-
ing of interest, hence the gain of new knowledge could reduce this
feeling and could be considered counter-productive (see Litman,
2005 for a discussion). A combination of these two approaches is
proposed by Litman (2005) with the interest/deprivation model of
curiosity. Here, both the satiation and the activation of curiosity
can be rewarding: the interest-based curiosity is driven by novel
stimuli and opportunity of learning, whereas the deprivation-
based curiosity is driven by the uncertainty and the lack of
knowledge. In Litman (2005) the interest/deprivation model of
curiosity is then related to the neuroscience of the wanting and
liking systems, which are hypothesized to underlie motivation
and affective experience for a wide class of appetites (Berridge,
2003). In the Litman model, wanting is associated with depriva-
tion and need of knowledge, while liking is associated with the
expected pleasure due to learning and knowledge acquisition. In
Table 1 we show the Litman’s classification. Here, in the case of
high level of wanting and liking, curiosity is due to a need of
knowledge and it is sustained by an interest; if wanting is low, but
liking is high, information seeking is motivated by pure interest;
in contrast, if wanting is high and liking is low, the need of knowl-
edge is not associated with the anticipation of a pleasure. Finally,
when wanting and liking are low, also the curiosity drive is inhib-
ited. In this paper, we exploit a model of curiosity that is inspired
by the Litman (2005) interpretation of wanting and liking.

REINFORCEMENT LEARNING FOR ATTENTIONAL SHIFTING
Following the approach by Di Nocera et al. (2012), in this paper
we exploit a RL algorithm to learn the attention allocation strate-
gies introduced in section 2.1. In Di Nocera et al. (2012), a
Q-learning algorithm is used to tune and adapt the frequencies
of sensors sampling, while action selection is obtained as a side
effect of this attentional regulation. In the following, we first recall
the Q-learning algorithm and then we detail its application to the
attentional shifting problem.

Table 1 | Litman’s classification of curiosity states with respect to

high and low levels of liking and wanting (Litman, 2005).

Liking Wanting

Low High

Low LL: Ambivalent disinterest LH: Need for uncertainty
clarification

High HL: Curiosity as a feeling
of “interest”

HH: Curiosity as a feeling
of “deprivation”

General description of the Q-learning algorithm
Q-learning (QL) (Watkins and Dayan, 1992) is a learning algo-
rithm for a Markov Decison Process (MDP). A MDP is defined
by a tuple (S, A, R, Pa) where S is the set of states, A is the set of
actions, R is the reward function R : S× A→ R, with R(s, a) the
immediate reward in s ∈ S after the execution of a ∈ A; Pa is the
transition function Pa : S× A× S→ [0, 1] ∈ R, with Pa(s, a, s′)
probability of s′ ∈ S after the execution of a ∈ A in s ∈ S. A solu-
tion of a MDP is a policy π : S→ A that maps states into actions.
The value function Vπ (s) is the cumulative expected reward from
s ∈ S following π . The q-value Q(s, a) is the expected discounted
sum of future payoffs obtained by executing the action a from
the state s and following an optimal policy π∗, i.e., Q(s, a) =
{Rt+ 1 + γ V∗(st+ 1) | st = s, at = a}, with V∗ associated to π∗.

In QL techniques, the Q-values are estimated through the
agent experience after being initialized to arbitrary numbers. For
each execution of an action at leading from the state st to the state
st+ 1, the agent receives a reward rt+ 1, and the Q-value is updated
as follows:

Q(st, at)← (1− αt) · Q(st, at)+ αt(Rt+ 1

+ γ ·maxat+ 1∈AQ(st+ 1, at+ 1)) (2)

where γ is the discount factor (which determines the importance
of future rewards) and α is the learning rate.

Different exploration policies can be introduced to select the
action to be executed trying to balance exploration and exploita-
tion. Analogously to Di Nocera et al. (2012), in this paper we
consider a Softmax method that selects the action to be executed
through a Boltzmann distribution (Sutton and Barto, 1998):

Pa(a | s, Q) = exp
Q(s,a)

τ∑
b εA(s)

exp
Q(s,b)

τ

(3)

Here, the temperature τ controls the exploration strategy: the
higher the temperature, the closer the strategy is to a random
policy (exploration); the lower the temperature, the closer the
strategy is to Q(s, a) maximization (exploitation). Under suit-
able conditions (see, for example, Watkins and Dayan, 1992), this
algorithm converges to the correct Q-values with probability 1
assuming that every action is executed in every state infinitely
many times and α is decayed appropriately.

Q-learning for attentional regulation
In our setting, the QL algorithm is to be exploited to generate
the attention allocation strategy. For this purpose, we introduce
a suitable space state Sb for each attentional behavior, while the
action space Ab represents a set of possible regulations of the
clocks. Specifically, the action space spans a discretized set of pos-
sible allowed periods Pb = {pb

1, . . . , pb
k} for each behavior b (i.e.,

Ab coincides with Pb). Since the current state sb ∈ Sb should track
both the attentional state (clock period) and the perceptive state,
this can be represented by a pair sb = (pb, σ b), where pb ∈ Pb is
the current clock period and σ b ∈ Xb is for the current percep-
tive status. In particular, we consider the perceptive state of each
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behavior as a discretization of the behavior perceptive domain
using n equidimensional intervals Xb = {σ b

1 , . . . , σ b
n }. Therefore,

the attentional allocation policy πb : Sb → Ab represents a map-
ping between the current state sb and the next attentional period
pb that should be learned by means of the QL algorithm. That
is, given a reward function R for each behavior, the algorithm is
to find the optimal attention allocation policy πb, i.e., for each
state sb ∈ Sb, the activation period pb ∈ Pb that maximizes the
expected reward of that behavior.

The resulting Q-table for a generic attentional behavior in Di
Nocera et al. (2012) can be described by the Table 2.

This approach to adaptive attentional allocation and action
selection has been tested in a robotic setting (Di Nocera et al.,
2012). Starting from this model we will design our model of
Intrinsically Motivated Reinforcement Learning.

MOTIVATED RL FOR ATTENTIONAL SHIFTING
In this section, we extend the RL approach to attention allocation
presented above introducing the effects of the intrinsic motiva-
tion of curiosity. In particular, we rely on a curiosity model which
is inspired by the interest/deprivation model proposed by Litman
(2005) and adapted to the behavior-based setting we consider in
this work. More specifically, analogously to Litman, we associ-
ated the liking mechanism to a direct reward related to novelty,
however, our interpretation of the wanting system is slightly dif-
ferent. Indeed, in the place of the cognitive deprivation model
introduced by Litman, which cannot be easily accounted within
the simple behaviors we are concerned with, we relate the want-
ing mechanism to the need to explore and act. This is represented
by a value that we called the residual energy: the higher the avail-
able energy, the higher is the need to “consume” this surplus in an
exploratory (hence, curious) behavior. More details will be pro-
vided below and in section 4 where we present some concrete
instances of the reward functions used to capture this model of
curiosity.

ACTION SPACE
Analogously to Di Nocera et al. (2012), in our model, for each
behavior b we introduce an Action Space Ab representing the set
of possible periods Pb = {pb

1, . . . , pb
k} for that behavior. That is,

an action ab is a possible assignment of a clock period pb which
regulates the sampling rate and the activation frequency of the

Table 2 | Q-values for a generic behavior, where Sb represents the

state space.

Sb Ab

p1 p2 . . . pk

σ1

p1 Q11,1 Q11,2 . . . Q11,k

. . . . . . . . . . . . . . .

pk Q1k,1 Q1k,2 . . . Q1k,k

. . . . . . . . . . . . . . . . . .

σn

p1 Qn1,1 Qn1,2 . . . Qn1,k

. . . . . . . . . . . . . . .

pk Qnk,1 Qnk,2 . . . Qnk,k

associated behavior. As explained above, the idea is that the sys-
tem does not learn directly the action to execute, instead, it learns
the attentional policies (i.e., clock regulations with respect to its
perceptual and attentional state). In this context, the action selec-
tion is an indirect consequence of the attentional behaviors. In
the curiosity-driven setting, different attentional shifting strate-
gies will be learned depending on the level of curiosity of the
agent.

STATE SPACE
In order to represent the curiosity state into the state space, we
reformulate the State Space Sb of Di Nocera et al. (2012) intro-
ducing a new parameter representing the degree of curiosity of
the agent. In the extended framework, the state sb is determined
by a triple (cb, pb, σ b), where, cb represents the level of curiosity of
the system, pb is for the current clock period, and σ b is the current
perceptive state of a behavior b. In particular, for each behavior,
the attentional monitoring period pb ranges in a predefined set
of possible values Pb. Analogously, the perceptive state σ b is suit-
ably discretized in intervals representing sub-ranges of the input
signal Xb. Finally, the curiosity degree cb ranges in an interval
of the four values [LL, LH, HL, HH] representing four relations
between wanting and liking values (low-low, low-high, high-low,
high-high) which are inspired by the curiosity model definition
introduced in Litman (2005) (see section 2.2). Therefore, the
attentional allocation policy πb : Sb → Ab represents a mapping
between the current state sb and the next action ab correspond-
ing to the suitable period for the attentional monitoring pb, that
is learned by means of the QL algorithm.

REWARD FUNCTION
Given the Q-Learning Actions and States Spaces, we can introduce
the Reward function as a combination of extrinsic component, an
intrinsic component and a dynamic weight between these two.
While the extrinsic reward depends on the direct effect of the
actions with respect to the behavior utility, in our curiosity model,
the second reward is directly related to the pleasure of the nov-
elty, hence to the level of liking. Instead, the wanting level is used
to dynamically balance the relation between extrinsic and liking
reward: the higher the need of information seeking, the higher the
liking associated with the encountered novelty. As stated before,
differently from Litman (2005), our assumption is that the level
of wanting depends on a sort of (global) energy state of the agent
(see section 4 for additional details in the case study). The idea
is that the robotic agent can explore new situations, guided by
curiosity, only when the system is in a wellness state. Instead,
when the system is under a certain wellness threshold, the atten-
tion is focused on priority needs (e.g., to eat and drink) rather
than on secondary ones (information seeking and exploration of
new states). We formalize the overall reward function as follows:

Rb = (1− w) · Rb
e + (w) · Rb

l (4)

where Rb
e is the reward computed considering the observed state,

and Rb
l represents the reward evaluated considering the satisfac-

tion of an observation with respect to a particular curiosity state
(i.e., the reward is related to something that the agent likes just
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because it is novel). The value of Rb
l is thus computed as level

of liking. The w value represents the level of wanting, an inter-
nal unmotivated need to explore something (the drive toward a
specific location/object depends on the liking mechanism).

This relation between liking and extrinsic rewards implies that,
when the situation is critical (i.e., low energy) the Rl reward value
will be neglected with respect to the Re extrinsic reward value,
while Rl will be emphasized as much as the agent will be in
a wellness state. The possible correspondences between the Rl,
Re rewards and the wanting, liking values are illustrated in the
Table 3. Notice that this matrix of wanting and liking relations is
different from the one by Litman (2005), because of the different
interpretation of the wanting system. For example, here low want-
ing and liking levels are associated with the prevalence of extrinsic
rewards, while in Litman (2005) they are directly associated to a
boredom state.

CASE STUDY
In order to test our approach we introduce a Survival Domain,
where a robot must survive for a predefined amount of time
within an environment (see Figure 3) avoiding obstacles (objects,
walls, etc.) and recharging energy by eating and drinking.

We consider simulated environments of 16 m2. Obstacles,
water, and food locations are cubes of size 0.5 m× 0.5 m× 0.5 m,
respectively of black, blue, and green color (see Figure 3). An
experiment ends in a positive way if the robot is able to survive
till the end of the test (max_time), while it fails in the following
three cases: (1) the robot collides with an obstacle or its dis-
tance from an obstacle is under a certain safety distance threshold;
(2) the value representing the robot thirst goes under the min-
imum value; (3) the value representing the hunger goes under
the minimum value. We tested our approach using a simulated
Pioneer3-DX mobile robot (using the Player/Stage tool Gerkey
et al., 2003), endowed with a blob camera and 16 sonar sensors.

Internal needs functions
We assume that the robot is endowed with internal drives. In our
case study, we consider two internal needs: hunger and thirst.
These are modeled by the following functions.

We introduce a Hunger function, to compute the need for food:

Hunger(t) = Hunger(t − 1)+ k · (nb_act)

− (ef · food_consumed) (5)

Here, the hunger increases the need for food at each machine cycle
by a k value, for each active behavior (nb_act), and decreases it

Table 3 | Wanting and liking relations and the associations between

liking and extrinsic rewards.

Liking Wanting

Low High

Low LL: Re >> Rl LH: Re < Rl

High HL: Re > Rl HH: Re << Rl

when a quantity of food is ingested (food_consumed), depending
on the energy power of the food (ef ).

An analogous Thirst function is used to compute the need for
water:

Thirst(t) = Thirst(t − 1)+ k · (nb_act)

− (ew · water_consumed) (6)

ATTENTIONAL BEHAVIOR-BASED ARCHITECTURE
We introduce a Behavior-Based Attentional Architecture (see
Figure 4) where, the attentional control is obtained from the
interaction of a set of three parallel attentional behaviors AVOID,
EAT and DRINK.

For each behavior, the process of changing the rate of sen-
sory readings is interpreted as an increase or decrease of selective
attention toward internal or external saliences. These sources of
salience are generally behavior- and task-dependent; these can
depend on either internal states, such as hunger, thirst, etc., or
external stimuli, such as obstacles, unexpected variations of the
environment, attractiveness of a particular object, etc. The over-
all attentional behavior should emerge from the interrelation of
the attentional mechanisms associated with the different primi-
tive behaviors and learned by means of the motivated RL learning
technique.

In Figure 4 we illustrate the attentional control system
designed for the survival domain. It combines three behaviors:
AVOID, EAT, and DRINK, each endowed with its releaser and

FIGURE 3 | The testing environment is simulated through the

Player/Stage tool for robotics development (Gerkey et al., 2003). We
adopt a simulated Pioneer3-DX mobile robot endowed with a blob camera
and 16 sonar sensors. The black, blue, and green colored cubes (of size
0.5 m× 0.5 m× 0.5 m) within the environment represent respectively
obstacles, water, and food.
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FIGURE 4 | Attentional behavior-based architecture with intrinsic motivations.

adaptive clock. The output of the robotic system is the combi-
nation of the outputs (if they are available).

AVOID
Manages obstacle avoidance. Its input signal σ avoid

t is the mini-
mum distance of the 8 frontal sonar sensors; its motor schema
controls the robot linear and angular velocity (v(t), θ(t)) gener-
ating a movement away from the obstacle. The obstacle avoidance
is obtained as follows: v(t) is proportional to the obstacle proxim-

ity, i.e., v(t) = vmax · σ avoid
t

σ avoid
max

, where vmax and σ avoid
max , are respectively

the maximum velocity and the maximum sonar range; θ(t) is
obtained as weighted sum of the angular velocities generated by
the active sonars, i.e., θ(t) =∑

i∈A(t) θmax · θi, where A(t) is the
set of active sonars detecting an obstacle at time t, θmax is the
maximal rotation, θi is a suitable weight depending on the sonar
position (high values for frontal sonars and low for lateral ones).

EAT
Monitors an internal function Hunger(t) representing the need
of food. At each execution cycle the Hunger function changes as
described in the previous section. Therefore, EAT is active when
σ eat

t = Hunger(t) goes above a suitable threshold σ eat
max. When

enabled, if a green blob (representing the food source) is detected
by the camera, the motor schema generates a movement toward
it, otherwise it starts looking around for the green, generating a
random direction.

DRINK
Monitors a function Thirst(t) that represents the need of water
and considers the height (pixels in the field of view) of a detected
blue object in the environment as an indirect measure of the
distance from the object. The motor schema is enabled whenever
the σ drink

t = Thirst(t) is greater then a suitable threshold σ drink
max .

When enabled, if a blue blob is detected by the camera, the

motor schema generates a movement toward it, otherwise it starts
looking around as for the EAT behavior.

For each behavior, the clock regulation depends on the moni-
toring function that should be learned at run-time.

MOTIVATED ATTENTIONAL FRAMEWORK
Action and state spaces
In order to cast the RL problem in our case study, we have to
define Abs and Sbs. In our attentional allocation problem, for each
behavior, the action space Ab is represented by a set of possible
periods {pb

1, . . . , pb
k} for the adaptive clock of each behavior b. In

the case study, for each behavior (AVOID, EAT and DRINK) we
assume 1 machine cycle as the minimum clock period and the
following set of possible periods: pa, pe, pd = {1, 4, 8, 12}. As for
the state space Sb, we recall that each state is a triple (σ b, pb

i , cb)

composed of a value in the perceptual domain, a period, and a
curiosity value. The perceptive state of each behavior is obtained
as a discretization in six equidimensional intervals of the per-
ceptive domain [σ b

min,σ b
max]. The perceptive domain for AVOID

spans the interval [0, σ avoid
max ], where σ avoid

max is maximum sonar
range for the behavior; the domain of DRINK is [0, σ drink

max ], where
σ drink

max represents the maximum value for the Thirst function; the
EAT domain is in [0, σ eat

max], where σ eat
max is the maximum state

of hunger the robotic system can assume. The curiosity value
ranges in the conceptual interval [LL, LH, HL, HH], where the
combination of the wanting and liking parameters is considered.

Rewards
We assume the reward always positive except for a strong penalty
if the system cannot survive. For the other cases the reward is
computed as follows. For each behavior, the extrinsic reward
has two additive components. The first evaluates the impact of
frequent activations of a specific behavior. The higher is the fre-
quency, the smaller is the obtained reward. This component is
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equal to zero if pb
t = pb

min. The second component depends on
the specific behavior.

In particular, concerning AVOID, each activation is rewarded
directly proportional to the distance from the obstacle.

Ravoid
e (t) =

⎧⎨
⎩

1
2 ·

[(
pavoid

t − pavoid
min

pavoid
max − pavoid

min

)
+

(
σ avoid

t − σ avoid
min

σ avoid
max −σ avoid

min

)]
, if !crash

penalty, otherwise
(7)

As for EAT behavior, for each activation the reward is inversely
proportional to the current hunger value. That is, a system that is
more hungry takes a smaller reward.

Reat
e (t) =

⎧⎨
⎩

1
2 ·

[(
peat

t − peat
min

peat
max − peat

min

)
+

(
1− σ eat

t
σ eat

max

)]
, if !crash

penalty, otherwise
(8)

Analogously, each activation of DRINK is rewarded in inverse
proportion to the current value of thirst:

Rdrink
e (t) =

⎧⎨
⎩

1
2 ·

[(
pdrink

t − pdrink
min

pdrink
max − pdrink

min

)
+

(
1− σ drink

t

σ drink
max

)]
, if !crash

penalty, otherwise
(9)

Following the description of section 3, we subdivide curiosity into
two components dealing respectively with the feeling of wanting
and liking. We associate the first one to the concept of residual
energy for the robot body, while the second one to the level of
novelty in the exploration of the learning states.

In particular, we assume that the Energy of the system is
defined as follows:

E(t) = E(t − 1)− eu − enb · (nb_act)+ ef · (food_consumed)

+ ew · (water_consumed) (10)

where the current value of the energy E(t) is computed start-
ing from the previous level of energy E(t − 1), decremented of
one unit of energy eu, which represents the energy consumed at
each machine cycle. Then, we also consider the energy spent to
activate each behavior enb, where nb_act is the number of cur-
rently active behaviors. On the other hand, we assume increments
of the energy in correspondence of consummatory behaviors
such as EAT or DRINK, where the added quantity ef (ew) of
energy depends on the consumed food or water (this is added
when boolean conditions related to food_consumed consumed
and water_consumed consumed becomes true).

According to the model of curiosity considered in this paper,
we model the level of the wanting component of the curiosity as
the residue of the Energy value (see Figure 5) ranging within the
interval [0,1].

w =
{

E(t)− E_well
E_max− E_well , if E(t) ≥ E_well

0, otherwise
(11)

That is, the robot can show a curious behavior only when the
situation is not critic (i.e., only when the global energy exceeds

FIGURE 5 | E(t) is the current Energy level; E_min: is the minimum

amount of Energy permitting the system to work; E_well: is the level

of Energy corresponding to a wellness state of the system.

the E_well threshold, indicating a sort of wellness state of the sys-
tem). E_well is supposed to be associated with a state of the system
where the regulation of the different behaviors activation periods
is well balanced and leads to a suitable scheduling of the actions
(reach food and water when necessary while avoiding obstacles).
We can interpret this residual value Ec as the Energy that the sys-
tem can spend on activities which are not associated with primary
needs. In this way, the higher the Ec, the more the curiosity can
drive the system to explore new states, the less the attention is
posed on the primary behaviors (such as EAT, DRINK or AVOID).
According to Equations (11, 4), cb ranges only within an interval
of three values [LL−HL, LH, HH]. LL and HL (i.e., both with
low wanting) are considered as equivalent and correspond to the
case of w equal to 0 (e.g., no curiosity).

The second component of the curiosity is the liking, which we
associate with the pleasure due to novel situations. In particular,
the curiosity in our system is interpreted as the exploration within
the learning states space. We can assume that the novelty of a state
is computed as follows:

Rb
l = 1− NV(σ b

t )

NV_tot
(12)

where, NV is for number of visits and NV(σ b
t )

NV_tot represents the num-

ber of times the percept σ b
t has been observed during the previous

NV_tot observations. We, thus, maintain a sort of temporal win-
dow of value NV_tot. In this way, on the one hand, we capture the
novelty of the observation; on the other hand, we simulate a sort
of lapsing mechanism where the novelty of a state is reduced when
it is frequently visited within the time window. The model of the
temporal window can be compared to the Itti’s model of surprise
(Baldi and Itti, 2010), by interpreting the temporal window as
a rough approximation of a statistic on the perceptual history.
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That is, if the system is not observing a percept for NV_tot times,
the stimulus becomes likable again. While, if the system observes
that particular perceptual state σ b

t many times (i.e., NV_tot), the
stimulus associated becomes boring. The Rl values range in the
interval [0,1], so values grater than 0.5 indicates states with high
liking.

The combination of wanting and liking drives model the
curiosity which will affect the learning system explorative
attitude.

Parameters and settings
In Table 4 we summarize the parameters and the settings used for
our experiments.

Here, the perceptual domain (Perceptions) and the possible
periods (PeriodsActions) are analogous to the ones presented in
Di Nocera et al. (2012). Indeed, this partition for the perceptive
domain and the periods have been selected to obtain a satisfactory
setting for the non-curious system. As for curiosity, it is associ-
ated with the residual Energy with respect to a threshold set as
the 2/3 of the maximum energy E_max. The maximum energy
value E_max is set with respect to the max_cycles that estimates
the maximum clock cycles associated with an episode (180 s to
accomplish the survival task). This regulation is a compromise
between scarce energy (that would keep the system in the non-
curious state) and abundant energy (that would keep the system
in the curious state). The minimal energy E_min is set to 300.
Here, for each behavior activation we have an energy consump-
tion of 1 UoE while the recharge is 150 UoE for food and water.
Concerning the liking, we employed a temporal windows of 10
observations to assess the novelty of a perceptive data. As far as
the learning parameters are concerned, we set α = 0.8 for the
learning rate, γ = 0.9 for the discount factor and τ = 1 for the
temperature. These regulations have been defined after a prelim-
inary phase of experimental testing in the non-curious setting
(analogous to the one presented in Di Nocera et al., 2012).

RESULTS
In this section, we present the experimental results of a robot
that must survive for a predefined amount of time within an
environment (see Figure 3) avoiding obstacles (objects, walls,
etc.) and meeting its energy needs by eating and drinking. We

discuss the approach by considering the performance of the
intrinsically motivated RL in learning attentional allocation poli-
cies in this survival domain. In particular, our aim is to evaluate
the effects of the curiosity on the RL process by comparing
the behavior of the curious system (from now on called CR =
CuriousRobot) with respect the one of system that is not endowed
with the curiosity drive (from now on called NCR = Non−
CuriousRobot). Namely, the difference between the CR and NCR
models is that the latter does not consider the rewards due to the
curiosity. Notice that the parameter regulation process described
in the previous section was carried out in order to obtain the
best regulation for the non-curious system. Since these settings
are shared by the curious and non-curious system, we can assess
the added value of the intrinsically motivated framework in the
testing scenario.

In order to evaluate how the curiosity affects the learning pro-
cess, we first compare the survival time percentage of the CR
with respect to the NCR. In Figure 6 we plot the survival time
percentage averaged every 50 episodes.

FIGURE 6 | Comparison between CR and NCR systems with respect to

the survival time percentage per Episode. The survival time is averaged
every 50 episodes.

Table 4 | Table of the parameters experimental setting (UoE, Unit of Energy; UoR, Units of Reward; mc, machine cycles; m, meters; s, seconds;

obs, observations).

Experimental settings

Perceptions Curiosity Episode

σ avoid
max 1.0 m E_max 6000 UoE (4*max_cycles) max_time 180 s

σ avoid
min 0.4 m E_min 300 UoE max_cycles 1500 mc

σ eat
max 1500 UoE E_well (2/3)*E_max penalty −1500 UoR

σ eat
min 300 UoE NV_tot 10 obs Power of Food/Water

σ drink
max 1500 UoE Learning parameters ef 150 UoE

σ drink
min 300 UoE α 0.8 ew 150 UoE

PeriodsActions γ 0.9 eu 1 UoE

pa, pe, pd {1 mc, 4 mc, 8 mc, 12 mc} τ 1 enb 1 UoE
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As we stated before, the robot must survive in the testing envi-
ronment for a predefined amount of time (max_time). The plot in
Figure 6 shows that during the first 250 episodes the NCR system
is more effective in surviving in the environment. In fact, the sur-
vival time percentage starts from a value over 90%. That is, the
NCR system is more effective in action selection than the CR sys-
tem. This could be due to the fact that the curiosity, initially, leads
the system to prefer the exploration of novel spaces rather than
the goal-directed ones. However, after a while, the CR system
starts to rapidly increase its survival time until it over pass the
NCR system and reaches the convergence (100% of the survival
time) around the episode 300, with respect to the NCR system
that does not reach the convergence before 450 episodes. Hence,
in both the cases we observe that the learning converges after at
most 450 episodes, however, in the case of the robot endowed with
curiosity an earlier convergence is obtained.

In Figure 7, we show the cumulative rewards for each behavior
during the learning process. The red lines describe the trend of
the rewards gained by the system endowed with curiosity, while
the blue ones are for the NCR system. As expected, during the
first episodes the curious robot is not able to learn the atten-
tional strategies needed to regulate the activations of the robot
behaviors. The cumulative rewards related to the behavior AVOID
of the CR system show that the performance remains unsatis-
factory approximately until the episode 200. Then, the values of
the cumulative rewards starts to increase and to converge from,
approximately, the episode 300. In contrast, the NCR system
shows a worst trend of the cumulative rewards for the EAT and
DRINK behaviors. This could be explained by the fact that the
robot is not guided by the curiosity to immediately explore the
spaces of the environment where food or water are not observed.
It only learns to eat or drink when the associated need functions
(hunger and thirst) exceed a certain threshold; while the associ-
ated behaviors remains always relaxed. That is, the learned policy

for the NRC DRINK behavior always selects the maximum value
for the period (pdrink = 12) for all the states associated to low
levels of thirst (i.e., from σ1 to σ4). On the contrary, it selects
the shorter period value (pdrink = 1) for the states with a high
level of thirst (σ5 and σ6). In the case of the CR robot, the pro-
cess of learning is affected by the curiosity, which influences the
robot behavior to explore spaces of the environment with food
or water sources since it is immediately attracted by novel stimuli
(including green and blue blob). Hence, the CR system learns to
eat or drink also when this is not strictly required. For example,
the learned policy for the CR DRINK behavior, in the case of low
curiosity, associates the maximum value for pdrink only to fewer
states with low levels of thirst (from σ1 to σ3), and it selects short
period values (pdrink = 1) for all the other states (from σ4 to σ6).
Finally, the learned policy for the CR DRINK behavior, in the
case of high curiosity, always associates pdrink = 1 or pdrink = 2
to all the levels of thirst (from σ1 to σ6). At the end of the exper-
iments NCR EAT and DRINK rewards converge to higher values,
however, the global reward is higher for the CR. The global cumu-
lative rewards are collected in the last plot of Figure 7 (on the
bottom row), which shows the faster convergence of the CR sys-
tem with respect to the NCR one. Finally, the CR learned policies
for EAT and DRINK can always maintain the Energy value above
the wellness threshold (this is also visible in Figure 10).

In Figure 8A, we show, respectively, (A) the trends of the need
functions within a single episode after the convergence of the
learning process, and (B) the trend of the average value of the
maximum value of the need functions among all the episodes. If
we look at their trends, in Figure 8A we observe some periodi-
cal path for the values of each function. We interpret the plots,
in the case of the CR, as an effective learned attentional shifting
policy of the behaviors EAT and DRINK. The robot seems to find
a rhythmic alternation of its needs of eating and drinking (the
decreasing part of the hunger and thirst functions corresponds

FIGURE 7 | Comparison between CR and NCR rewarding values during learning process evaluated for each episode (A) and considering the data

averaged every 100 episodes (B).
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FIGURE 8 | CR and NCR need functions comparison (A) within one run (single episode) and (B) average maximum value of the Hunger/Thirst

function considering the data mediated every 10 episodes.

FIGURE 9 | Safety function comparison.

to the consuming of food or water, respectively). On the con-
trary, the NCR system just waits to become very hungry or very
thirsty before starting to search for sources of food and water. The
behavior of the NCR robot, while on the one hand, driven by
the thirst and the hunger need functions, achieves better results
in terms of the single rewards, on the other hand, this does not
lead to a global better reward for the NCR with respect to the
CR (see Figure 7). This is also visible in Figure 8B where we can
observe that the need to eat or drink for the NCR is, on aver-
age, always greater than the CR needs. Thus, the CR system is
able to find a configuration of the activation periods (i.e., suit-
able attentional monitoring strategies), associated with the EAT
and DRINK behaviors, such that the robot never suffers because
of some internal need, leading to a best homeostatic regulation of
the internal variables.

In order to evaluate the performance of the two robots we
defines a measure of safety as follows:

Safety(t) = σ avoid
t

σ avoid
max
· pavoid

max − pavoid
t

pavoid
max − pavoid

min

(13)

where the level of safety is calculated with respect to the mini-
mum distance between the current position of the robot and an
obstacle. Here, the danger increases when the distance decreases
and the AVOID activation period is relaxed; and, viceversa, the
safety increases when the activation period of the AVOID is suit-
ably balanced with respect to the distance from an obstacle. The
improved performance of the CR system is visible in the evalua-
tion of the safety function (see Figure 9), where we observe more
pleasurable values for the CR robot, and of the energy function
(see Figure 10), where the CR system is able to maintain the levels

FIGURE 10 | Energy function comparison.

of energy EcwithCuriosity not only above the threshold of well-
ness E_well, but also stabilized at a high value. The eighth row of
Table 5 shows the average rewards of AVOID, EAT, and DRINK
behaviors and the averages values of the global reward for the 100
episodes of validation.

All the results of the above plots are summarized in Table 5,
where we evaluate the average values and the standard deviations
on 100 episodes used to validate our system (after the convergence
of the learning process). Regarding the global energy of the sys-
tem, we already noticed that such values stabilized on a specific
interval for the CR (see Figure 10). In Table 5, we can find that
the average of the Energy mean values (= 3720) is a bit smaller
than the NCR case (= 3809) and that its maximum value (= 4488,
which is above the wellness threshold E_well ) is smaller than the
NCR energy maximum value (= 4525). However, we suppose that
the CR average of the energy mean values is smaller because of
the curiosity (residual energy), which is “consumed” for explor-
ing new states during the learning process. Interestingly, such an
exploration of new states does not imply that the robot is less cau-
tious in moving around. Indeed, the safety average value of the
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Table 5 | Maximum, minimum and average values for the need functions (safety, hunger and thirst) and the energy function.

Robot without Curiosity Robot with Curiosity

Max Min Max Min

Energy 4525 ± 247 2683 ± 212 4484 ± 344 2781 ± 115

Safety 0.97 ± 0.09 0.12 ± 0.02 1.00 0.18 ± 0.04

Energy Safety Hunger Thirst Energy Safety Hunger Thirst

Average value 3809 ± 335 0.38 ± 0.02 420 ± 181 363 ± 135 3720 ± 312 0.61 ± 0.03 328 ± 142 311 ± 137

Avoid Eat Drink Global Avoid Eat Drink Global

Reward 66 ± 2 83 ± 6 85 ± 5 235 ± 7 100 ± 9 70 ± 7 78 ± 11 248 ± 15

Activation 109 ± 3 105 ± 7 103 ± 2 260 ± 22 204 ± 19 130 ± 10 156 ± 10 418 ± 22

Average values of the cumulative eat and drink rewards and of number of activations of the behaviors after the learning process.

CR is almost two times greater (= 0.61) than the NCR (= 0.38).
Moreover, the minimum value for the CR safety (= 0.18) is higher
(so, more safer) than the NCR value (= 0.12). Finally, as noted
in the plots (see Figure 8A) the need functions of hunger and
thirst have smaller average values for the CR (hunger = 328 and
thirst= 311), which means that the robot satisfies its needs more
frequently.

Both CR and NCR are effective in spending computational
resources. This can be observed by considering the last row of
Table 5, where we show the average number of the behavior acti-
vations. The CR has a slightly greater number of activations, in
particular for the AVOID behavior. This leads to an emergent
behavior consistent with what discussed above. The CR robot
eats and drinks more frequently and shows a safer behavior with
respect to the NCR. However, 204 activations out of max_cycles
(around 1150 in this specific case) possible activations (machine
cycles of an episode) seems a satisfactory result for a behavior-
based architecture (i.e., there is a reduction of the 83% of the
number of activations).

Moreover, notice that the global value shown at the end of
this row states for how many cycles at least one behavior was
active during the episode. In the case of NCR, this value is equal
to 260. This shows that it is frequent to find more than one
behavior active at the same time. For the CR robot, this value
is equal to 418, meaning that for the most of the time only one
behavior is active and the robot is able to orchestrate the multi-
ple behaviors by opportunely shifting attentional resources, from
time to time, toward the most salient one according to its need
functions.

Finally, another interesting result regards the curiosity influ-
ence on the actual environmental exploration space. Indeed,
while we expected that our intrinsic motivated RL would lead
the learning process to improve the exploration of the inter-
nal learning states, we did not expect that this would also
produce an increased spatial exploration of the environment.
This result can be illustrated by plotting the paths of the two
systems during the overall experimentation (see Figure 11C).
By comparing the two generated paths, we can note that the
system endowed with internal motivation (see Figure 11A) is
more explorative (the cumulative traces of 500 episodes cov-
ered the 50% of the total area) with respect to the non-curious
one (44% of the total area covered as shown in Figure 11B).
The CR path seems smoother with a better coverage of the

space around obstacles, food, and water while keeping the robot
safe.

DISCUSSION
In this paper, we presented an intrinsically motivated RL
approach to attention allocation and shifting in a robotic sys-
tem. The framework has been demonstrated at work in a survival
domain. Differently from classical RL models of action selection,
where actions are chosen according to the operative/perceptive
contexts, in our case the action selection is mediated by the
attentional status of the robotic behaviors. In the literature
we can find intrinsically motivated RL system where simple
attentional control mechanisms are involved (e.g., eye move-
ment in the playground domain in Barto et al., 2004); in this
paper we tackle the attention allocation and shifting problem,
which is novel in this context. Indeed, in our setting, the learn-
ing process is to adapt and modulate the attentional strategies
used to allocate attentional resources of the system. Specifically,
our attentional mechanism regulates the behavioral activation
periods, hence the amount of computational and operation
resources dedicated to monitor and control the associated activ-
ities. Following this approach, the global behavior of the system
is not directly generated by an action selection policy (as in typ-
ical RL approaches to action selection Sutton and Barto, 1998
and intrinsically motivated RL Barto et al., 2004; Singh et al.,
2004), instead, it emerges as the sum of the outputs of mul-
tiple parallel processes, each activated with its own frequency:
the smaller the activation period of a behavior, the higher its
influence on the global emergent behavior. Following the tax-
onomy proposed by Baldassarre and Mirolli (2013), our system
can also be considered as a competence-based system where the
skill to be learned is the attentional allocation policy, however,
this policy has only an indirect effect on the overall expected
reward.

As the main intrinsic motivation, we considered the curiosity
drive which is inspired by the one proposed by Litman (2005).
This model allows us to account for both optimal arousal and
curiosity-driven approaches to curiosity modeling. In particu-
lar, we related the liking and wanting drives of the Litman’s
model to, respectively, the pleasure of the novelty and the resid-
ual energy of the system (the higher the energy value over
the wellness state, the higher the drive toward to the explo-
ration of novel situations and states). While several models for
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FIGURE 11 | Space of the environment explored during the Curious (A—red line) or Non-Curious (B—blue line) Learning Systems execution. The third
graph represents the comparison between the two systems (C).

novelty-based and knowledge-based (Schmidhuber, 1991; Singh
et al., 2004) curiosity have been proposed in the intrinsically
motivated RL literature, the employment of the Litman account
is less explored. Notice that we do not employ knowledge-based
curiosity models (Schmidhuber, 1991; Singh et al., 2004). Indeed,
while in Schmidhuber (1991) and later in Singh et al. (2004) and
Oudeyer and Kaplan (2007) curiosity should lead the agent to
explore areas of the environment where the learning progress is
expected to be high, in our system, the agent is directly attracted
by novel stimuli as sources of saliency. We want to stress here
that the attentional problem addressed in our work is different
from the ones mentioned since we learn attentional allocation
only. In contrast to Schmidhuber (1991), Singh et al. (2004),
and Oudeyer and Kaplan (2007), we can only enhance atten-
tion with respect to the attracting stimuli, but the movement of
the system toward the stimuli is obtained as an indirect effect.
As for the novelty, the lapsing mechanism we defined for the
liking function (the novelty of a state is reduced when it is fre-
quently visited within the time window) can be related to the
Itti’s model of surprise (Baldi and Itti, 2010), but also to the
approach proposed by Oudeyer and Kaplan (2007), where, once
predictions within a given part of the sensorimotor space are
learned, the system gets bored and starts to execute other actions.
As far as attentional allocation and shifting is concerned, RL
models have been mainly proposed for visual attentions and
gaze control (Bandera et al., 1996), a theoretical link between
visual attentional exploration and novelty-based intrinsic moti-
vations is investigated in Schlesinger (2012) where the author
investigates the way in which goal directed, top–down atten-
tional skills can be incrementally learned exploiting complex
novelty detection strategies. Differently from these cases, here we
investigated an intrinsically motivated RL approach to the gen-
eration of attentional strategies that are suitable for the executive
control.

Our approach has been illustrated and tested in a simulated
survival domain, where a robot was engaged in survival tasks
such as finding food or water while avoiding dangerous situa-
tions. In this context, our goal was to show the feasibility and the

effectiveness of the approach in a typical robotic domain where
basic needs satisfaction and intrinsic (curiosity) motivations were
clearly defined. In particular, we compared the performance of
the intrinsically motivated RL with respect to the same set-
ting except for the fact that the influence of the intrinsic drive
was neglected. The parameter tuning was provided in order to
find the best regulation of the non-curious setting to assess the
added value of the curiosity drive. The collected results support-
sthe hypothesis that the curiosity-driven learning system permits
to find satisfactoryregulations of the attention allocation and
shifting policies, providing different attentional policies,and con-
sequently different emergent behaviors, depending on the current
level of curiosity. Moreover, the overall behavior that emerges-
from the execution of the learned attentional policies seems
safer and capable of keeping therobotic system in a higher well-
ness state during the environment exploration. This is related to
thefact that the curiosity drive stimulates the attention toward
opportunitiesof energy recharging (food and water) more fre-
quently than in the non-curious system. Wealso observed that
the curious system provides a more uniform exploration of the
environment when compared with the non-curious behavior.
While the presented tests illustrate the feasibility and effective-
ness of the approach in a typical survival domain, the extension
of this curiosity-driven attentional regulation method to more
complex domains and more structured tasks (e.g., considering
hierarchical skills Barto et al., 2004 and top–down attentional reg-
ulations Schlesinger, 2012) remains to be investigated as future
work.
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