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People can be taught to manipulate symbols according to formal mathematical and
logical rules. Cognitive scientists have traditionally viewed this capacity—the capacity for
symbolic reasoning—as grounded in the ability to internally represent numbers, logical
relationships, and mathematical rules in an abstract, amodal fashion. We present an
alternative view, portraying symbolic reasoning as a special kind of embodied reasoning
in which arithmetic and logical formulae, externally represented as notations, serve as
targets for powerful perceptual and sensorimotor systems. Although symbolic reasoning
often conforms to abstract mathematical principles, it is typically implemented by
perceptual and sensorimotor engagement with concrete environmental structures.
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INTRODUCTION
How do people reason arithmetically, algebraically, and logically?
One well-known answer to this question holds that the human
mind trades in inner symbols that amodally represent abstract
arithmetic, algebraic, and logical propositions, and manipulates
these symbols according to internally represented mathematical
and logical rules. On this traditional view, the “inner” takes prece-
dence over the “outer”: notations on paper, computer screens, and
classroom blackboards are involved in mathematical problem-
solving only insofar as they are “translated” into corresponding
mental structures and processes.

Suppose you hold such a traditional view, but then learn that
stray marks and subtle changes in spacing can lead otherwise
competent students of algebra to “forget” a basic rule such as
operator precedence. Several recent experiments have demon-
strated just this sort of influence of visual structure on algebraic
performance. One example comes from Landy and Goldstone
(2007a), who gave college undergraduates simple algebraic forms,
such as “a + b ∗ c + d = c + d ∗ a + b,” and asked them to decide
whether or not the given symbols described a valid equation
(see Figure 1). Because the expressions contained both addi-
tions and multiplications, determining their validity required
respecting the order of operations, which stipulates that multi-
plications precede additions. By creating artificial visual groups
(e.g., by manipulating the physical spacing of equations, or by
introducing shapes into the surrounding context as depicted in
Figure 1), participants’ performance could be predictably manip-
ulated: validity-judgments were more likely to be correct if visual
groupings were in line with valid operator precedence. Nor is
this pattern restricted to algebraic validity. Related research has
indicated that spatial layout impacts application of the order of

operations rules when calculating (Kirshner, 1989; Landy and
Goldstone, 2010), when creating story problems (Jiang et al.,
in press), and when working in programming languages such as
Python (Hansen et al., unpublished manuscript).

How might you interpret this sort of behavioral pattern? You
could chalk failure to respect operator precedence, for exam-
ple, up to performance error, and remain committed to the
thesis that the underlying mathematical competence is largely
independent of the way notational structures are perceived and
physically manipulated. Alternatively, you could wonder whether
competence with operator precedence depends non-trivially on
the perceptual and sensorimotor mechanisms that target those
external notations. To what extent might these mechanisms be
responsible not just for our mathematical mistakes, but also for
our successes?

The ability to follow operator-precedence rules is just one
manifestation of the capacity for symbolic reasoning: the capac-
ity to manipulate arbitrary symbolic tokens according to abstract
mathematical and logical rules. In what follows, we propose
an account of symbolic reasoning according to which percep-
tion, manipulation, and perceptual imagination lie at the heart
of mathematical and logical competence. Rather than rely on
amodally represented rules, symbolic reasoners make their math-
ematical judgments using perceptual processes that have no obvi-
ous link to the following of formal mathematical rules. Instead,
we identify the capacity for symbolic reasoning with the ability
to perceptually group, detect symmetry in, and otherwise per-
ceptually organize symbolic notations as they are experienced
in the environment. On this view, the kinds of behavioral pat-
terns described above are typical: not only does written format
impact the legibility of symbols, it also impacts the application
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FIGURE 1 | Some of the formats employed by Landy and Goldstone

(2007a). Visual cues such as added spacing, lines, and circles influence the
application of perceptual grouping mechanisms, influencing the capacity for
symbolic reasoning.

of well-known rules. When notational expressions afford active
manipulation, symbolic reasoning is often accomplished by
physically interacting with those notations. In contrast, when
notations do not afford physical manipulation or perceptual pro-
cessing, symbolic reasoning may involve processes of visual, aural,
and even tactile imagination. Although symbolic reasoning can
therefore become “internalized,” it remains rooted in mechanisms
close to the sensorimotor periphery.

Although we will emphasize the kinds of algebra, arithmetic,
and logic that are typically learned in high school, our view also
potentially explains the activities of advanced mathematicians—
especially those that involve representational structures like
graphs and diagrams. Our major goal, therefore, is to provide
a novel and unified account of both successful and unsuccessful
episodes of symbolic reasoning, with an eye toward providing an
account of mathematical reasoning in general. Before turning to
our own account, however, we begin with a brief outline of some
more traditional views.

EXTANT ACCOUNTS OF SYMBOLIC REASONING
COMPUTATIONALISM AND SEMANTIC PROCESSING: TRANSLATIONAL
ACCOUNTS OF SYMBOLIC REASONING
Two prominent accounts of symbolic reasoning can be intro-
duced via an analogy from the classroom. Consider the different
ways in which students might be taught to think about the
following syllogism:

All dogs are mammals;
All mammals are animals;
Therefore, all dogs are animals.

On one hand, students can think about such problems syntacti-
cally, as a specific instance of the more general logical form “All Xs
are Ys; All Ys are Zs; Therefore, all Xs are Zs.” On the other hand,
they might think about them semantically—as relations between
subsets, for example. In an analogous fashion, two prominent

scientific attempts to explain how students are able to solve sym-
bolic reasoning problems can be distinguished according to their
emphasis on syntactic or semantic properties.

Analogous to the syntactic approach above, computationalism
holds that the capacity for symbolic reasoning is carried out by
mental processes of syntactic rule-based symbol-manipulation. In
its canonical form, these processes take place in a general-purpose
“central reasoning system” that is functionally encapsulated from
dedicated and modality-specific sensorimotor “modules” (Fodor,
1983; Sloman, 1996; Pylyshyn, 1999; Anderson, 2007). Although
other versions of computationalism do not posit a strict distinc-
tion between central and sensorimotor processing, they do gener-
ally assume that sensorimotor processing can be safely “abstracted
away” (e.g., Kemp et al., 2008; Perfors et al., 2011). On all com-
putationalist accounts, when an individual is confronted with a
symbolic reasoning task such as a natural-language “word prob-
lem” or a formal reasoning problem expressed in the notational
formalisms of algebra, calculus, and logic, the perception of nota-
tions in the environment causes a tokening of equivalent symbols
and expressions of “Mentalese” (Fodor, 1975). These mental sym-
bols and expressions are then operated on by syntactic rules
that instantiate mathematical and logical principles, and that are
typically assumed to take the form of productions, laws, or proba-
bilistic causal structures (Newell and Simon, 1976; Sloman, 1996;
Anderson, 2007). Once a solution is computed, it is converted
back into a publicly observable (i.e., written or spoken) linguistic
or notational formalism.

An influential alternative to computationalism is analogous to
the semantic approach to the syllogism above: the heterogeneous
family of semantic processing accounts, according to which sym-
bolic reasoning is carried out by systems that interpret and rep-
resent meaningful mathematical and logical relations. Accounts
of this type differ according to the particular representational
formats they posit, ranging from amodal or generically spatial
“mental models” (Johnson-Laird et al., 1992), to rich percep-
tual and sensorimotor “simulations” of specific objects and scenes
(Barsalou, 1999), and even to indirect “conceptual metaphors”
that drive people’s intuitions and conclusions about a specific
mathematical problem (Lakoff and Nuñez, 2000). What distin-
guishes these accounts from computationalism is the idea that
symbolic reasoning occurs not on the basis of syntactic rules,
but on the basis of meaningful interpretations of a particular
mathematical or logical task domain. For example, Lakoff and
Nuñez argue that real-number concepts are derived from expe-
riences with physical lengths, and that the capacity for simple
arithmetic arises from an innate ability to estimate and com-
pare such lengths. On Johnson-Laird’s “mental models” account,
symbolic reasoning problems are solved by “inspecting” a mental
model of the problem: the validity of “a & b ∴ b” can be deter-
mined by recognizing that “b” is a component of the model for
“a & b.” In much the same way, Barsalou’s “perceptual symbol
systems” account suggests that logical expressions are interpreted
by mentally simulating concrete scenarios to which the expres-
sion applies: a scene that includes both an apple and an orange
includes an orange.

Despite their differences, computationalist, and semantic
processing accounts share the assumption that processes of
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perception and action play a relatively limited role in the pro-
cess of symbolic reasoning. Although both accounts acknowledge
that the perception of notations is important for the construc-
tion of internal representations, they also assume that once such
representations have been constructed, the physical notations that
express the original mathematical or logical problem may be
ignored or altogether discarded until a solution is communicated.
Notably, this even applies to accounts which, like Barsalou’s, posit
a special role for sensorimotor representations in general, yet
attribute a curiously limited role to sensorimotor representations
of the notations that are actually perceived while a symbolic rea-
soning task is being performed. In general, computationalist and
sematic processing accounts are alike in being essentially trans-
lational: they suppose that processes of perception and action
do little other than mediate between notational structures in the
external environment and the internal structures and processes in
which symbolic reasoning really occurs.

It is worth elaborating on this translational aspect. The capac-
ity for symbolic reasoning is expressed behaviorally by converting
an input representation of a mathematics or logic problem into an
output representation of a corresponding solution. Initially, the
problem is represented in a public language, either as a natural-
language “word problem”, or in the special notational systems
designed for algebra, calculus, and logic. Eventually, this problem
representation is converted into a written or spoken solution. But
exactly how does this conversion occur? Like many other kinds of
problem solving, the process of symbolic reasoning can be seen as
a chain of transformations that links input and output representa-
tions, each of which changes its format and/or semantic structure.
Some transformations, such “a and b” to “a & b,” involve a
change in format without a change in semantic structure. In con-
trast, transformations such as “∼(∼a ∨ ∼b) ∴ b” to “a & b ∴ b”
involve changes in format and semantic structure: the resulting
representation is a simplification of the original problem.

Computationalist and semantic processing accounts of sym-
bolic reasoning are equally translational because they both
assume that problem representations are passed from a percep-
tual apparatus to an internal processing system in a form that
is no simpler than the external (notational or linguistic) prob-
lem representation. That is, they assume that all transformations
that involve changes in semantic structure take place “inter-
nally,” over Mentalese expressions, mental models, metaphors
or simulations, and that sensorimotor interactions with physical
notations involve (at most) a change in representational for-
mat. On these accounts, when a subject is asked to evaluate a
formal expression such as “∼(∼a ∨ ∼b) ∴ b,” a mental repre-
sentation of that expression must be constructed before it can
be simplified to “a&b ∴ b.” Similarly, notational variants of one-
and-the-same proposition—e.g., “All Fs are Gs,” “(x)(Fx → Gx),”
and “∀x[Fx ⊃ Gx]” will be converted into one-and-the-same
Mentalese expression, mental model, metaphor or simulation.
In general, therefore, computationalist and semantic processing
accounts of symbolic reasoning rely equally on the assumption
that the principal role of sensorimotor processes—the processes
that govern the perception of and physical interaction with pub-
lic symbols and expressions—is simply to provide inputs to and
carry outputs from those internal structures and processes that

are ultimately responsible for performing all substantial steps in a
mathematical or logical problem solving chain.

TOWARD A CONSTITUTIVE ACCOUNT: THE CYBORG VIEW
Translational accounts of symbolic reasoning can be distin-
guished from constitutive accounts, in which sensorimotor mech-
anisms are not merely part of the causal chain that links external
notations to internal representations, but are crucially involved in
transforming the problem representation into one that has a sim-
plified semantic structure. Recall that on the translationist view,
mental resources can be divided into those that “translate” the
outer situation into a generally isomorphic inner representation,
and those that act on that representation to solve the problem. On
a constitutive account, sensorimotor mechanisms not only trans-
late the problem, they are involved in the transformations that
substantively solve it. One prominent view that can be associated
with such a constitutive approach might, to borrow Andy Clark’s
terminology, be called the cyborg view of symbolic reasoning
(Clark, 2003). Grounded on recent work in the area of “situated
cognition,” the cyborg view holds that notations constitute exter-
nal technological artifacts that “scaffold” the biological processes
involved in symbolic reasoning (Clark, 1997, 1998, 2006; Menary,
2007; Sutton, 2010). This “scaffolding” is typically achieved by
notations that permit the extraneural storing, inspection, deletion
and manipulation of information in a way that facilitates the exe-
cution of symbolic reasoning tasks, and has positive effects on the
speed and accuracy with which these tasks can be performed as
well as their potential complexity. To cite a well-known example,
“carrying” a digit during a complex multiplication task by writing
it on a piece of paper, adding it to the result and then crossing it
out obviates the need to store and manipulate that digit in bio-
logical memory, thereby freeing up valuable cognitive resources,
minimizing possible error from misremembering, and permitting
the multiplication of extremely large values. One way of explain-
ing the cognitive benefit of such “scaffolding” is to view notations
as constitutive parts of integrated, boundary-crossing symbolic
reasoning systems: When computing “123 × 89”, “carrying” the
tens digit of the temporary product “3 × 9” and adding it to the
units digit of “2 × 9” transforms the original complex multiplica-
tion problem into a series of simpler multiplication and addition
problems that can easily be done in the head. Thus, the active
manipulation of physical notations plays the role of “guiding” the
human biological machinery through an abstract mathematical
problem space—one that may far exceed the space of otherwise
solvable problems.

While emphasizing the ways in which notations are acted
upon, however, proponents of the cyborg view rarely consider
how such notations are perceived. Sometimes, this neglect is
intentional, as when the utility of cognitive artifacts is explained
by stating that they become assimilated into a “body schema” in
which “sensorimotor capacities function without. . . the neces-
sity of perceptual monitoring” (Gallagher, 2005, p. 25). At other
times, this neglect seems to be unintended, however, and sub-
ject to corrective elaboration. For example, although Andy Clark
(1998, p. 168) argues that the human ability to deploy and
manipulate notations in symbolic reasoning tasks “involves the
use of the same old (essentially pattern-completing) resources
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to model the special kinds of behavior observed in the public
[notational] world,” it remains unclear exactly which pattern-
completing resources are in play, and what kinds of patterns
they complete. In general, therefore, although cyborg theorists
have shown quite successfully that notations can be constitutively
involved in symbolic reasoning, and have made great strides in
cataloguing the kinds of bodily interactions that lead to cognitive
success, few specific details have emerged regarding the relevant
perceptual processes that facilitate these interactions, as well as the
physical characteristics that determine when and why a particular
notation is cognitively beneficial.

Consider how such details might explain the influence of visual
structure on algorithmic reasoning discussed earlier. Order of
operations behavior need not be implemented in a set of high-
level productions or in a collection of explicit memorized rules,
but also need not be determined by active manipulations of phys-
ical notations. Instead, such behavior might largely depend on
visual processes that segment the scene into parts, wholes, and
groups. One possibility is that because the algebraic system tends
to align spatial structure and precedence rules, perceptual group-
ing processes acquire biases compatible with those rules (Kirshner
and Awtry, 2004); another is that because proofs tend to maintain
tightly bound structures, leading to increased statistical regularity
in high precedence operations, experience with algebraic deriva-
tions modifies perceptual organization. Other regular cultural
cues have long been known to impact grouping (Wertheimer,
1923/1938). By extending the cyborg view’s emphasis on environ-
mental interaction with a detailed understanding of perceptual
processing, a theoretical framework might be developed that
accounts for the effect of aligning visual grouping and syntactic
binding discussed earlier (see Figure 1), but that may also explain
many other episodes of formally correct and incorrect symbolic
reasoning.

In what follows, we articulate a constitutive account of sym-
bolic reasoning, Perceptual Manipulations Theory, that seeks to
elaborate on the cyborg view in exactly this way. While accom-
modating the cyborg view’s emphasis on the active manipulation
of physical notations, Perceptual Manipulations Theory addition-
ally emphasizes the perceptual processes that facilitate and govern
such manipulations, as well as the physical characteristics of
particularly successful (and unsuccessful) notational formalisms.
On our view, the way in which physical notations are perceived
is at least as important as the way in which they are actively
manipulated.

PERCEPTUAL MANIPULATIONS THEORY
THE THEORY
Perceptual Manipulations Theory (PMT) goes further than the
cyborg account in emphasizing the perceptual nature of symbolic
reasoning. External symbolic notations need not be translated
into internal representational structures, but neither does all
mathematical reasoning occur by manipulating perceived nota-
tions on paper. Rather, complex visual and auditory processes
such as affordance learning, perceptual pattern-matching and
perceptual grouping of notational structures produce simplified
representations of the mathematical problem, simplifying the task
faced by the rest of the symbolic reasoning system. Perceptual

processes exploit the typically well-designed features of physical
notations to automatically reduce and simplify difficult, rou-
tine formal chores, and so are themselves constitutively involved
in the capacity for symbolic reasoning. Moreover, if a particu-
lar symbolic reasoning problem cannot be solved by perceptual
processing and active manipulation of physical notations alone,
subjects often invoke detail-rich sensorimotor representations
that closely resemble the physical notations in which that prob-
lem was originally encountered. On our view, therefore, much of
the capacity for symbolic reasoning is implemented as the percep-
tion, manipulation and modal and cross-modal representation of
externally perceived notations.

The neural processes that PMT takes to be involved in sym-
bolic reasoning almost never have as their primary function
the implementation of amodally represented rules or models.
Instead, they include sensorimotor systems for visual grouping
and perceptual organization, object recognition, object track-
ing and symmetry detection, among others. Although skills such
as object-recognition may appear quintessentially “cognitive” to
some, we treat them as sensorimotor capacities to highlight the
fact that, rather than apply to abstract mathematical or log-
ical entities, they apply directly to the physical properties of
notations in the environment such as shape, relative spacing
and position. Indeed, insofar as most mathematical and logi-
cal notations are well-designed, these properties are frequently
suggestive of how they ought to be manipulated, thus promot-
ing formally valid “symbol-pushing”. For example, the fact that
the multiplicands in “xy + z” are closer to one another than
to the additive term can be understood as a manifestation of
the order-of-operations rule that multiplication is to be per-
formed before addition—a manifestation that is immediately
recognized by mechanisms of perceptual grouping (see section
Evidence for Perceptual Manipulations Theory). Notably, such
sensorimotor competences are often more robust than the for-
mal systems to which they are applied: while a formula such as
“(((P→((Q&R)” would be rejected by a machine following strict
well-formedness rules, even beginning logic students interpret it
as a conditional, and must be explicitly trained by pedagogues
with ulterior motives to focus on a narrower set of structural
elements. As we discuss in greater detail below, a wide range of
(correct and incorrect) mathematical behavior can be attributed
to the way the perceived details of formal notations “interlock”
with domain-general sensorimotor capacities.

Perceptual Manipulations Theory suggests that most symbolic
reasoning emerges from the ways in which notational formalisms
are perceived and manipulated. Nevertheless, direct sensorimo-
tor processing of physical stimuli is augmented by the capacity
to imagine and manipulate mental representations of notational
markings. Faculties of spatial reasoning, mental transformation,
referential symbolism and a rich set of capacities for acquiring
and imagining physical behaviors such as walking, pointing, writ-
ing, and erasing can all be used to internally reproduce the actual
perceived details of physical notations and to mentally manipu-
late them in ways that resemble physical actions. Insofar as our
account emphasizes perceptual representations of formal nota-
tions and imagined notation-manipulations, it can be contrasted
with Barsalou’s perceptual symbol systems account, in which
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“people often construct non-formal simulations to solve formal
problems” (Barsalou, 1999, 606). Moreover, our emphasis differs
from standard “conceptual metaphor” accounts, which suggest
that formal reasoners rely on a “semantic backdrop” of embod-
ied experiences and sensorimotor capacities to interpret abstract
mathematical concepts. Our account is probably closest to one
articulated by Dörfler (2002), who like us emphasizes the impor-
tance of treating elements of notational systems as physical objects
rather than as meaning-carrying symbols.

Although there are clear differences between PMT and other
accounts of symbolic reasoning, our view incorporates elements
from many of them—albeit with a greater emphasis on percep-
tion. For illustration, consider a student already competent in
logic now learning set theory. The perceivable physical similari-
ties of ∩ and ∪ to ∧ and ∨, including the up-down symmetry
between each pair, serve as a perceptual, rather than conceptual,
metaphor. To see how this metaphor may be applied, consider the
duality principle that

A ∪ B = Ā ∩ B̄

which bears a striking visual similarity to De Morgan’s law,

P ∨ Q ≡ P ∧ Q

This visual similarity is partially a result of common symbol-
ogy, including the use of capital letters for elements, the use of
horizontal lines for equality, the use of bars for negation, and
the above-mentioned use of similar shapes for basic operations.
Partially, though, the similarity results from the arrangement of
these parts—if one is written in prefix notation, for instance, the
similarity is markedly decreased (it is beyond the scope of this
work to attempt a general definition of similarity; for a review, see
Goldstone and Son, 2005). For a student learning a new formal
system, these notational similarities ground the transformations
typical to set theory by mapping them onto the more familiar
domain of logic, facilitating the application of similar princi-
ples and ideas, and licensing particular manipulations, sometimes
even prior to obtaining a rich understanding of the conceptual
issues involved. To the degree that these inferences are licensed,
learning may be facilitated. Although the relevant perceptual and
sensorimotor processes are modality-specific, when mathematical
notations are well-designed, human mathematical competence
can be incredibly flexible: radically different mathematical and
logical propositions can be treated in similar formal ways because
of similarities in the way in which they are physically manifested
as notations. Of course, it is not always or often the case that
capturing visual and semantic regularities across domains is the
explicit goal of mathematicians introducing notation (though see
Smaill, 2012, for one apparent case). We predict, however, that
when there are significant visual similarities in notations used
across domains, people will tend to import assumptions from a
well-understood domain into a novel one.

Perceptual Manipulations Theory also posits a novel psy-
chological role for much-discussed magnitude- and quantity-
detection systems. Visual quantity (e.g., the number of blocks,
dots, or sheep presented in a drawing or on a computer screen)

is often thought to be directly represented by an evolved “number
system” dedicated to amodal magnitude representation (Gelman
and Gallistel, 1978; Barth et al., 2003; Dehaene et al., 2004;
Machery, 2007). It has been argued that such quantity-sensitive
mechanisms provide the basic representational vehicles over
which formal mathematical reasoning occurs (Gallistel et al.,
2005; Spelke, 2005; Carey, 2009), but PMT holds a more tex-
tured view. Quantity-sensitive mechanisms certainly sometimes
represent numbers. In symbolic reasoning tasks, however, a pri-
mary function of magnitude and quantity-detection systems is
to enable reasoners to track magnitude and quantity properties
of notational formalisms. For example, when dealing with large
numbers such as “ 3,000,000,” magnitude-detection plays a role
in keeping track of the number of digits (Hinrichs et al., 1982).
Similarly, when teaching a rule such as the product rule captured
by “a5a3 = a8,” a teacher may write something like “ (aaaaa) ×
(aaa) = (aaaaaaaa)” and let magnitude-detection (and explicit
counting) systems do the rest. Thus, a significant portion of the
verification process may be implemented by perceptual and sen-
sorimotor skills and quantity-detection systems that process the
notational formalism itself, without necessarily interpreting the
notation’s meaning.

The emphasis that PMT places on domain-general systems for
perceptual processing and bodily interaction with physical sys-
tems of notations underscores the importance of the historical
development of a common set of well-designed mathematical
notations. Although historically the development of visual com-
monalities across notations may have been largely accidental, this
development has served mathematics well, providing visual cues
that allow the human perceptual and motor systems to effec-
tively operate over them. One prediction of PMT is that when
notations align perceptual and structural similarities, learning
will be facilitated. Of course, when they misalign, as they some-
times do, learning is predicted to be impaired (Marquis, 1988
discusses several such cases). Still, better notation systems could
yet be constructed in all branches of formal reasoning to take full
advantage of visual cues that automatically “steer” the reasoner in
the direction of formally valid solutions. In this way, the human
capacity for symbolic reasoning winds up being ordinary, bodily
situatedness in novel, artifactual sensorimotor space: the space of
(well-designed!) notations.

EVIDENCE FOR PERCEPTUAL MANIPULATIONS THEORY
Most of the existing literature on symbolic reasoning has been
developed using an implicitly or explicitly translational per-
spective. Although we do not believe that the current evi-
dence is enough to completely dislodge this perspective, it does
show that sensorimotor processing influences the capacity for
symbolic reasoning in a number of interesting and surpris-
ing ways. The translational view easily accounts for cases in
which individual symbols are more readily perceived based on
external format. For example, blurring symbols will make them
harder to perceive. Perceptual Manipulations Theory also pre-
dicts this sort of impact, but further predicts that perceived
structures will affect the application of rules—since rules are
presumed to be implemented via systems involved in perceiving
that structure. In this section, we will review several empirical
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sources of evidence for the impact of visual structure on the
implementation of formal rules. Although translational accounts
may eventually be elaborated to accommodate this evidence,
it is far more easily and naturally accommodated by accounts
which, like PMT, attribute a constitutive role to perceptual
processing.

Perceptual Manipulations Theory holds that skill with symbol
systems is implemented in alignments between elements of exter-
nal notations and perceptual and motor systems. Therefore, it
predicts that the physical appearance of notations should strongly
influence formal behavior. For example, it should be difficult
to differentially respond to two similar-looking notational forms
even if they are conceptually dissimilar. Substantial evidence sug-
gests that this prediction holds. For example, Kirshner and Awtry
(2004) show that the common mistake of confusing the valid
rule regarding multiplication of two like terms by adding their
exponents (an ∗ am = an + m) with the visually similar but invalid
rule regarding added terms (an + am = an + m) can be avoided
by teaching students a linguistic notation in which these equa-
tions no longer resemble one another. In the same way, common
mistakes such as

a

x
+ b

y
= a + b

x + y

can be prevented just by changing the notational format in which
they are learned (see Marquis, 1988 for several examples of visual
patterns in algebra). The frequency of these mistakes—as well
as the fact that they can be prevented by switching notational
formats—are hard to explain from a translational perspective in
which perceived problems are converted into inner propositions
or models, and in which formal dissimilarity ought to trump
visual similarity. In contrast, they are quite easily explained from
a perspective that attributes a constitutive role to perceptual pro-
cessing. What appears to be happening is that students apply a
very general maxim of perceptual pattern learning: if two things
look similar, similar things can probably be done with them, and
if they look different, they require different actions. Although
this is not a formally valid way of reasoning over symbol sys-
tems (and indeed, often leads to the mistakes reported above),
this general strategy may lead to correct solutions whenever visual
similarity does mirror formal similarity (see also Cohen Kadosh,
2009). Indeed, such mirroring is widespread, and appears to
be regularly exploited by reasoners. Consider the way algebraic
notation aligns formal structure with perceptual grouping in the
expression

a + b

a + bc
.

Here, formal structure is mirrored in the visual grouping struc-
ture created both by the spacing (b and c are multiplied, then
added to a) and by the physical demarcation of the horizontal
line. Instead of applying abstract mathematical rules to pro-
cess such expressions, Landy and Goldstone (2007a,b see also
Kirshner, 1989) propose that reasoners leverage visual grouping
strategies to directly segment such equations into multi-symbol
visual chunks. To test this hypothesis, they investigated the way

manipulations of visual groups affect participants’ application of
operator precedence rules. Maruyama et al. (2012) argue on the
basis of fMRI and MEG evidence that mathematical expressions
like these are parsed quickly by visual cortex, using mecha-
nisms that are shared with non-mathematical spatial perception
tasks.

Interestingly, perceptual processes play a role not only in the
way notations are perceived, but also in the way they are cre-
ated. By studying beginning logic students’ physical arrangement
of logical formulae in an online natural deduction tutoring sys-
tem (Allen and Menzel, 2007), Landy and Goldstone (2007b)
found statistically significant patterns of space-insertion con-
sistent with the hypothesis that spaces are used to aid visual
grouping within logical formulae. That is, reasoners not only
exploit visual groups that are already present in the physical
representation of a symbolic reasoning task, but also actively
and endogenously reproduce such groups when they make it
easier to find a solution. But why do reasoners insert such for-
mally irrelevant features to their written notational formalisms?
From a translational perspective, this question is difficult to
answer: once a solution to a symbolic reasoning problem is
computed, it merely needs to be translated into a public lan-
guage, one in which the observed space-insertion patterns are
formally irrelevant. From the perspective of PMT, however, it
seems likely that such patterns either derive from the possi-
bility that mathematical and logical equations are internally
encoded in a perceptually-rich format in which details about
spacing is retained, or from the utility of such patterns in com-
puting intermediate solutions on paper by applying the same
visual object-segmentation systems that were initially used to
interpret the problem. Supporting the possibility that spatial
structure plays a crucial role in the process of interpretation
of equations, Jiang et al. (in press) report that subjects invent-
ing story problems match the physical structure of provided
equations.

The visual system is well-known to be particularly respon-
sive to dynamic stimuli such as motion. This is reflected in the
apparent relevance of motion and transformation in algebraic
understanding of proofs. Nogueira de Lima and Tall (2007) docu-
mented that schoolchildren learning algebra often treat transfor-
mations such as

x + b = y − m

x = y − m − b

not as the repeated application of formal Euclidean axioms, but
as “magic motion,” in which a term moves to the other side of the
equation and “flips” sign. Landy and Goldstone (2009) suggest
that this reference to motion is no mere metaphor. Subjects with
significant training in calculus found it easier to solve problems
of this form when an irrelevant field of background dots moved
in the same direction as the variables, than when the dots moved
in the contrary direction.

One suggestion of PMT is that mathematical concepts may
be encoded using multiple strategies, and that perceptual-motor
strategies may emerge over the process of using a symbol
system. As an example, Varma and Schwartz (2011) examine
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the case of negative number acquisition, and in particular the
acquisition of processes allowing the comparison of positive
and negative numbers. Initially, learners are faster at compar-
ing numbers that are close together when one is positive and
the other negative—a reversal of the usual distance effect that
holds with positive numbers (Moyer and Landauer, 1967)—
but one that is consistent with a rule-based strategy involv-
ing comparing signs. More expert learners show a typical
size effect, so that numbers that are ‘far apart’ are discrimi-
nated more quickly. The authors suggest that negative numbers
are initially processed by children using rules, but that “sym-
bolic manipulation can transform an existing magnitude rep-
resentation so that it incorporates additional perceptual-motor
structure.”

In summary, PMT suggests that learning how to perceptu-
ally and physically engage notations is critical to the capacity for
reasoning in accordance with their mathematical meanings. To
be successful, learners must discover which aspects of a nota-
tion are relevant and meaningfully aligned with mathematical
rules and concepts, and must then acquire an appropriately
“rigged up” sensorimotor system (see also: Goldstone et al., 2010).
Although the sensorimotor skillset required for sophisticated
symbolic reasoning is likely to be highly developed and avail-
able to learners only after some struggle (Piaget, 1953; Bednarz
et al., 1996), Kellman et al. (2008) have already found that
training students to recognize algebraic expressions using stan-
dard perceptual learning techniques leads to lasting gains both
in equation reading and comprehension, as well as in alge-
braic problem-solving. Indeed, substantial evidence indicates that
notation systems that align with computationally useful pro-
cesses are relatively easy to acquire across a variety of domains
including arithmetic and algebra (Kirshner and Awtry, 2004;
Landy and Goldstone, 2007c), electric circuit design (Cheng,
1999), and sequence and grammar learning (Pothos et al., 2006;
Endress et al., 2007). Our account expects such results because
appropriate alignment between the formal and the perceptual
significantly simplifies the search for correct solutions. Although
we will not speculate extensively about possible implications for
mathematics education, results such as these also suggest that
the PMT approach can be a productive way to think about new
pedagogical approaches to designing and reasoning with formal
notations. In particular, it seems likely that the most effective
and easily-learned notations and rule-systems are the ones that
have greatest alignment with preexisting or easily learned per-
ceptual and sensorimotor routines. On our view, one principal
virtue of well-structured notation systems is that they lever-
age automatic sensorimotor operations by making their prod-
ucts formally useful, and the better the alignment between the
formal and the sensorimotor, the more useful those products
will be.

THEORETICAL IMPLICATIONS
IS THERE A “FUNDAMENTAL” MATHEMATICAL REASONING SYSTEM?
A contribution of PMT is that it provides a novel account of
how to bring mathematical and logical reasoning into the fold of
embodied cognition more generally. Although PMT accommo-
dates the cyborg view and its emphasis of the environment, it adds

a detailed conception of the constitutive role of perceptual pro-
cessing in symbolic reasoning: perception is at least as important
as physical manipulation. One consequence of this view is that
mathematical and logical reasoning need not be rooted in sin-
gle, special-purpose cognitive mechanisms. Although we do not
deny the existence of amodal numerosity or magnitude detection
systems, our account does not assign those systems a uniquely
fundamental role in the development of mathematical reason-
ing capacities. Instead, on our view symbolic reasoning is carried
out by a wide variety of perceptual and motor skills, including
fast numerosity and magnitude evaluation; repeatable actions like
pointing, counting, and stacking; object segmentation and group-
ing; motion detection and visualization; writing and reading; and
many other sensorimotor skills. Additionally, it seems reason-
able to assume that the same sensorimotor skillset may also play
a pivotal role in other mathematical domains such as geome-
try and category theory, the elementary portions of which both
of which rely considerably on diagrams and other iconic nota-
tions. More controversially perhaps, since all areas of mathematics
and symbolic reasoning involve—at some point—the learning of
rules and abstract principles via notational systems, it may even
be the case that the same perceptual and motor processes that
implement the capacity for symbolic reasoning also play differ-
ent but equally fundamental roles in implementing various kinds
of abstract reasoning in mathematics and beyond. Whether this
leaves any significant role for amodal systems remains to be seen,
but see Dove (in press) for an argument for representational
pluralism.

A corollary of the claim that symbolic and other forms of
mathematical and logical reasoning are grounded in a wide vari-
ety of sensorimotor skills is that symbolic reasoning is likely
to be both idiosyncratic and context-specific. For one, different
individuals may rely on different embodied strategies, depend-
ing on their particular history of experience and engagement
with particular notational systems. For another, even a single
individual may rely on different strategies in different situa-
tions, depending on the particular notations being employed
at the time. Some of the relevant strategies may cross modali-
ties, and be applicable in various mathematical domains; others
may exist only within a single modality and within a limited
formal context. For example, consider the fact that there is sig-
nificant potential for error when a successful strategy in one
domain is exported to another domain—as, for example, when
beginning logic students make the mistake of distributing a nega-
tion across a conjunction, going from ∼(X & Y) to (∼X & ∼Y),
because they perceive a similarity to the algebraically legal manip-
ulation of −(x + y) to (−x + y). Although in this particular
case such cross-domain mapping leads to a formal error, it need
not always be mistaken—as when understanding that “∼∼X” is
equivalent to “X,” just as “−−x” is equal to “x.” In some con-
texts, such perceptual strategies lead to mathematical success. In
other contexts, however, the same strategies lead to mathematical
failure.

If the capacity for symbolic reasoning is in fact idiosyn-
cratic and context-dependent in the way suggested here, what
are the implications for scientific psychology? PMT implies that
the “deep” facts about human mathematical, algebraic, logical,
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and other mathematical abilities are unlikely to be facts about
inner computations and models, but are instead facts about how
humans manage to exploit perceptual and sensorimotor strate-
gies in appropriate, context-specific ways—and about how they
fall prey to these strategies when applying them inappropriately.
The reason that mathematicians have the intuition that people
who are merely “pushing symbols” are failing to grasp funda-
mental mathematical meanings is that they are indeed failing
to do so—though this failure may be more widespread, and
indeed more powerful, than mathematicians and psychologists
have previously assumed. Being more specific than this, how-
ever, seems difficult. Therefore, the key to understanding the
human capacity for symbolic reasoning in general will be to char-
acterize typical sensorimotor strategies, and to understand the
particular conditions in which those strategies are successful or
unsuccessful.

WHAT IS MATHEMATICAL RULE-FOLLOWING AND WHO IS THE
MATHEMATICAL RULE-FOLLOWER?
Perceptual Manipulations Theory claims that symbolic reason-
ing is implemented over interactions between perceptual and
motor processes with real or imagined notational environ-
ments. Since symbolic reasoning involves manipulating symbols
and expressions according to mathematical and logical rules,
this view implies that the human ability to follow abstract
mathematical and logical rules is carried out by sensorimo-
tor processes that apply to concrete—i.e., readily perceivable
and physically manipulatable—notations. But how is it that
“primitive” sensorimotor processes can give rise to some of the
most sophisticated mathematical behaviors? Unlike many tradi-
tional accounts, PMT does not presuppose that mathematical
and logical rules must be internally represented in order to be
followed. Rather, overt rule-following emerges from the fine-
tuned interactions between the perceptual and sensorimotor
systems with well-designed physical notations—symbolic rea-
soning is a form of sophisticated “symbol pushing” that hap-
pens to adhere to the formal rules of mathematics and logic,
due to a lengthy process of cultural adaptation and pedagogical
scaffolding.

Like interlocking puzzle pieces that together form a larger
image, sensorimotor mechanisms and physical notations “inter-
lock” to produce sophisticated mathematical behaviors. Insofar
as mathematical rule-following emerges from active engagement
with physical notations, the mathematical rule-follower is a dis-
tributed system that spans the boundaries between brain, body,
and environment. For this interlocking to promote mathemati-
cally appropriate behavior, however, the relevant perceptual and
sensorimotor mechanisms must be just as well-trained as the
physical notations must be well-designed. Thus, on one hand,
the development of symbolic reasoning abilities in an individual
subject will depend on the development of a sophisticated sen-
sorimotor skillset in the way outlined above. On the other hand,
the development of symbolic reasoning abilities within a society
will depend on the availability of notational formalisms that pro-
mote formally valid “symbol-pushing.” Indeed, the development
of mathematical expertise is often historically cotemporaneous
with the development of powerful, efficient, and easily learned

systems of formal mathematical and logical notation (Dantzig,
1954; Stedall, 2007).

CONCLUSION
We have described an approach to symbolic reasoning which
closely ties it to the perceptual and sensorimotor mechanisms
that engage physical notations. We argued for this approach on
the basis of empirical evidence that shows algebraic and mathe-
matical knowledge to be surprisingly fragile in the face of minor
perceivable differences, and on the basis of evidence that suggests
that competent symbolic reasoners typically rely on semantically
irrelevant properties of notational formulae in order to quickly
and accurately—but also sometimes inaccurately—solve sym-
bolic reasoning problems. With respect to this evidence, PMT
compares favorably to traditional “translational” accounts of
symbolic reasoning.

Nevertheless, there is probably no uniquely correct answer to
the question of how people do mathematics. Indeed, it is impor-
tant to consider the relative merits of all competing accounts
and to incorporate the best elements of each. Just as the par-
ticular sensorimotor strategies being invoked are likely to differ
across individuals and situations, it is also likely that different
episodes of symbolic reasoning require different explanations—
be they in terms of comparisons based on conceptual metaphors,
situated interactions with notations, or even conscious appli-
cations of formal rules. Although we believe that most of our
mathematical abilities are rooted in our past experience and
engagement with notations, we do not depend on these notations
at all times. Moreover, even when we do engage with physical
notations, there is a place for semantic metaphors and conscious
mathematical rule following. Therefore, although it seems likely
that abstract mathematical ability relies heavily on personal his-
tories of active engagement with notational formalisms, this is
unlikely to be the story as a whole. It is also why non-human
animals, despite in some cases having similar perceptual systems,
fail to develop significant mathematical competence even when
immersed in a human symbolic environment. Although some
animals have been taught to order a small subset of the numer-
als (less than 10) and carry out simple numerosity tasks within
that range, they fail to generalize the patterns required for the
indefinite counting that children are capable of mastering, albeit
with much time and effort. If we consider the working mem-
ory requirements for noticing that the pattern ___-ty one, ___-ty
two, ___-ty three, etc. repeats after “twen-,” “thir-,” “for-,” and
so on, then it may not seem so unlikely that only a species with
a rather large brain could even notice let alone generalize the
pattern. And without that basis for understanding the domain
and range of symbols to which arithmetical operations can be
applied, there is no basis for further development of mathematical
competence.

Although we have not accounted for forms of mathemati-
cal reasoning beyond symbolic reasoning except in passing, the
account of mathematical rule-following suggested here points
toward the possibility that processes of perception, visualiza-
tion, and interaction may play a crucial constitutive role in
mathematical and logical reasoning in general. Unlike more
established views, many of which acknowledge the utility of

Frontiers in Psychology | Cognitive Science April 2014 | Volume 5 | Article 275 | 8

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Landy et al. Perceptual account of symbolic reasoning

mathematical notations as concise representations of abstract
mathematical meanings but then go on to downplay their impor-
tance for symbolic reasoning proper, PMT suggests that nota-
tions and the sensorimotor processes that engage them are
often at the very heart of high-level mathematical and logical
cognition. In this vein, since many forms of advanced math-
ematical reasoning rely on graphical representations and geo-
metric principles, it would be surprising to find that perceptual
and sensorimotor processes are not involved in a constitutive
way. Therefore, by accounting for symbolic reasoning—perhaps
the most abstract of all forms of mathematical reasoning—in
perceptual and sensorimotor terms, we have attempted to lay
the groundwork for an account of mathematical and logical
reasoning more generally. The potential for a satisfying uni-
fication of the successes and failures of human symbolic and
other forms of mathematical reasoning under a common set of
mechanisms provides us with the confidence to claim that this
is a topic worthy of further investigation, both empirical and
philosophical.
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