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Conventionally, multilevel analysis of covariance (ML-ANCOVA) has been the
recommended approach for analyzing treatment effects in quasi-experimental multilevel
designs with treatment application at the cluster-level. In this paper, we introduce the
generalized ML-ANCOVA with linear effect functions that identifies average and conditional
treatment effects in the presence of treatment-covariate interactions. We show how the
generalized ML-ANCOVA model can be estimated with multigroup multilevel structural
equation models that offer considerable advantages compared to traditional ML-ANCOVA.
The proposed model takes into account measurement error in the covariates, sampling
error in contextual covariates, treatment-covariate interactions, and stochastic predictors.
We illustrate the implementation of ML-ANCOVA with an example from educational
effectiveness research where we estimate average and conditional effects of early
transition to secondary schooling on reading comprehension.
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1. INTRODUCTION
In the social sciences, analysis of covariance (ANCOVA) is one
of the most important statistical techniques. It is used to analyze
effects of an independent variable on an outcome variable con-
trolling for a vector of covariates. In this article, we focus on the
application of ANCOVA-like techniques in quasi-experimental
multilevel designs with treatment implementation at the level
of clusters. Multilevel structural equation models (Rabe-Hesketh
et al., 2004; Mehta and Neale, 2005; Marsh et al., 2009; Lüdtke
et al., 2011) are used to extend traditional ANCOVA to account
for the clustered structure in multilevel designs. In order to esti-
mate causal effects in such designs, it is important to control
for all relevant covariates, including covariates at the individual-
level (e.g., student characteristics, intelligence, socio-economic
status), contextual covariates (e.g., neighborhood-average socio-
economic status, school-average achievement) and true cluster-
level covariates (characteristics of the cluster, e.g., school
resources, location). For extended discussions of causal effects
in multilevel quasi-experiments, see Gitelman (2005), Hong and
Raudenbush (2006), Sobel (2006), Hong and Raudenbush (2008),
VanderWeele (2008), and Nagengast (2009).

We propose a multigroup multilevel structural equation mod-
eling approach (MG-ML-SEM approach; see Muthén, 2002) that
extends conventional multilevel ANCOVA in several ways. The
particular strengths of the MG-ML-SEM approach are: (1) It
allows for latent covariates at the individual-level and at the
cluster-level to control for measurement error; (2) it takes into
account sampling error in the aggregation of covariates to the
cluster-level; (3) it naturally includes interactions between the
cluster-level treatment variable and (latent) covariates at both

levels and (4) all predictor variables are treated as stochastic
rather than fixed predictors. The MG-ML-SEM approach is illus-
trated by an application from educational research in Germany
(ELEMENT study, Lehmann and Lenkeit, 2008), where we esti-
mate average and conditional effects of early transition to sec-
ondary schooling on reading achievement.

The paper is structured as follows: First, we introduce conven-
tional multilevel ANCOVA for the analyses of quasi-experimental
designs with treatment application at the cluster-level. Then, we
discuss the shortcomings of this conventional approach. Next, we
illustrate how the MG-ML-SEM approach can be used to over-
come these shortcomings for estimating average and conditional
treatment effects and compare several models of the MG-ML-
SEM approach. In the discussion, we point out the assumptions
required to estimate causal effects and discuss further research
directions.

2. MULTILEVEL DESIGNS WITH TREATMENT APPLICATION
AT THE CLUSTER-LEVEL

Multilevel designs with two or more treatment groups are
typically differentiated along the dimensions of (a) the level
of treatment application (at the individual- or the cluster-
level) and (b) the treatment assignment process (randomized
or non-randomized assignment) (e.g., Plewis and Hurry, 1998;
Ukoumunne et al., 1999). In the remainder, we will focus on a
class of multilevel designs that are of particular importance for
educational research: Designs in which whole clusters are treated
and there are systematic differences between clusters. Such quasi-
experimental designs are particularly relevant when randomized
assignment to conditions is not possible, for example when the
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effects of differential learning environments or school types are
studied.

As in all quasi-experimental designs, observed group differ-
ences do not reflect unbiased treatment effects in multilevel
designs with non-random assignment at the cluster-level, because
confounding variables can bias the estimates of treatment effects.
Therefore it is crucial to measure and statistically control such
confounders (e.g., Rosenbaum, 2002; Shadish et al., 2002). In the
remainder, we call a potential confounder a covariate.

Conventionally, multilevel ANCOVA has been the recom-
mended approach for analyzing quasi-experimental multilevel
designs with treatment application at the cluster-level (e.g., Plewis
and Hurry, 1998; Seltzer, 2004). Multilevel ANCOVA for a design
with two conditions includes an indicator for the treatment con-
dition X and controls for k covariates Z1, . . . , Zk. A typical
implementation of an hierarchical two-level ANCOVA, for exam-
ple given in Raudenbush and Bryk (2002), p. 26, Equation (2.16)
is as follows:

Y = γ00 + γ10 · X + γ20 · Z1 + . . . + γk0 · Zk + u + r︸ ︷︷ ︸
ε

. (1)

If this model is appropriately specified, i.e., if all covariates are
included and there are no unmodeled non-linear effects or treat-
ment covariate interactions, γ10 is an estimate of the average
treatment effect AVE (e.g., Aiken and West, 1996). In order to
obtain correct standard errors, the model should be implemented
as a hierarchical linear model to take the clustered structure of
the design into account (e.g., Murray, 1998, 2001; Seltzer, 2004),
i.e., the residual variable ε can be decomposed into a cluster-
level component u, that reflects the residual variation between
classrooms and an individual level-component r, that reflects
variability of individual students around the values predicted by
the covariates and their cluster. The model can be easily extended
by including cluster-level covariates W to control for selection
effects that operate at the cluster-level.

3. LIMITATIONS OF CONVENTIONAL MULTILEVEL ANCOVA
The conventional multilevel ANCOVA presented in Equation (1),
however, has several drawbacks that limit its potential for the
analyses of quasi-experimental multilevel designs with treatment
application at the cluster-level.

3.1. MEASUREMENT ERROR
Conventional multilevel ANCOVA implemented in the hierarchi-
cal linear model does not take measurement error into account,
leading to potentially biased estimates of treatment effects (Cook
et al., 2009; Culpepper and Aguinis, 2011; Lockwood and
McCaffrey, 2014). It is well known that unreliably measured
covariates can yield biased results in regression analysis (Degracie
and Fuller, 1972; Carroll et al., 2010). This problem is exac-
erbated in multilevel designs in educational and psychological
research, where many covariates can only be measured unreliably
and latent covariates can appear at several levels. The emergence
of multilevel structural equation models (Rabe-Hesketh et al.,
2004; Mehta and Neale, 2005; Marsh et al., 2009; Lüdtke et al.,
2011) allows for controlling measurement error in covariates

(and outcomes) by including multiple indicators both at the
individual- and cluster-level. Multilevel structural equation mod-
els also allow for analyzing the factorial structure of latent vari-
ables and tests of measurement invariance across levels (Mehta
and Neale, 2005; Jak et al., 2013)—two assumptions of conven-
tional multilevel ANCOVA that are not routinely tested (see also
Schweig, 2013).

3.2. CONTEXTUAL EFFECTS AND SAMPLING ERROR
In quasi-experimental designs with treatment application at
the cluster-level, contextual covariates are especially important.
Contextual covariates (sometimes also referred to as composi-
tional variables, e.g., Harker and Tymms, 2004; Hutchison, 2007)
reflect the composition of cluster-level units, for example the
average achievement level in a classroom or the average socio-
economic status in a neighborhood. Contextual covariates are
particularly important covariates because it is very likely that they
are associated with selection processes at the cluster-level.

Formally, contextual covariates are conditional expectations of
a unit-level covariate Z given the cluster variable C. Every unit-
level covariate Z can be decomposed into a contextual covariate
or between-cluster component Zb and a residual or within-cluster
component Zw:

Z = E (Z | C) + Zw (2)

= Zb + Zw,

where Zw = Z − E(Z | C) (Lüdtke et al., 2008; Snijders and
Bosker, 2012). This decomposition shows that a contextual
covariate Zb is the regression of the individual-level covariate Z
on the cluster-variable C. As such, all properties of a regression
residual hold for the within-cluster component Zw. Notably, its
expected value is equal to zero and it is regressively indepen-
dent of the cluster variable C as well as of all functions of the
cluster-variable such as other covariates at the cluster-level.

The notion of “contextual effects”—the differential effects
of the within-cluster and between-cluster components on the
outcome variable—has long been discussed (Raudenbush and
Willms, 1995). It is important to take account of such differential
effects when controlling for cluster-level differences in multilevel
models and it is critical to the unbiased estimation of treatment
effects when selection into different treatments occurs at the clus-
ter level. The conventional multilevel ANCOVA of Equation (1)
does not make this distinction. The coefficient γk0 represents
the total effect of the covariate Zk that is a blend of the effects
of Zkb and Zkw. The value of γk0 depends on the intraclass-
correlation-coefficient of the covariate Zk (Raudenbush and Bryk,
2002; Snijders and Bosker, 2012). If only Zk is included as covari-
ate in an ANCOVA, but selection into treatment conditions varies
as a function of Zkb, the adjusted effects will be biased (Nagengast,
2009).

In applications another difficulty arises: The values of con-
textual covariates Zb are often estimated by the manifest sam-
ple mean in each cluster, assuming perfect reliability of cluster
means. This assumption is unrealistic if there is only a sample
of individuals taken from each cluster or if the individual-level
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ratings measure a cluster-level construct such as classroom cli-
mate (Marsh et al., 2012). Recently, new approaches have been
developed that take the unreliability of cluster means into account
(Croon and van Veldhoven, 2007; Lüdtke et al., 2008; Shin and
Raudenbush, 2010; Grilli and Rampichini, 2011). Marsh et al.
(2009) and Lüdtke et al. (2011) introduced doubly-latent mod-
els that further extend these approaches by allowing for latent
aggregation of latent variables measured by multiple indicators.
They also demonstrated that the contextual effect, i.e., the effect
of the contextual variable Zb after controlling for the effects of
the unit-level covariate Z, will be biased when sampling error is
not controlled. This bias, that is similar to the bias due to mea-
surement error, will also affect the estimation of treatment effects
when a contextual covariate is included in the model.

3.3. TREATMENT-COVARIATE INTERACTIONS
The literature on ANCOVA for multilevel designs with treatment
application at the cluster-level has been surprisingly sparse on the
issue of including interactions between the treatment and vari-
ous covariates at the unit- and the cluster-level (see, Plewis and
Hurry, 1998; Pituch, 2001; Seltzer, 2004, for notable exceptions).
Such interactions indicate that the effect of the treatment is not
constant across all units and clusters, but depends on the values
of individual- and cluster-level covariates. Interactions contain
important information about the differential effectiveness of the
treatment for subgroups of units or clusters. In the presence
of interactions, researchers may consider conditional treatment
effects (i.e., treatment effects given particular values of the covari-
ate(s) and/or the treatment), or the average treatment effect (i.e.,
the treatment effect obtained by averaging the conditional treat-
ment effects over the unconditional distribution of covariates).
In models ignoring important interactions, the regression coef-
ficient for the treatment effect is an aggregate of the conditional
treatment effects, but is not equal to the average treatment effect
(see, Rogosa, 1980, for a detailed explanation in the context of
single-level models). Using an example with a single covariate,
Rogosa (1980) showed that the treatment effect obtained from
traditional ANCOVA (misspecified by ignoring the interaction) is
an estimate of the (Z = zca)-conditional treatment effect, where
zca denotes the center of accuracy. The center of accuracy is the
point, where the conditional variance of the effect function is
minimal and it is not necessarily equal to the average of Z.

3.4. STOCHASTIC REGRESSORS
The conventional hierarchical linear model explicitly assumes
that the predictors within a sample are fixed quantities that do not
vary from sample to sample (see e.g., Pinheiro and Bates, 2000;
Raudenbush and Bryk, 2002; Snijders and Bosker, 2012). Hence,
all inferences are conditional on the values of the set of observed
covariates in the sample (Senn et al., 2007). While this assumption
simplifies the implementation of the statistical estimation proce-
dure, the case has been made that it is not appropriate for the
analysis of quasi-experimental designs and observational stud-
ies (Crager, 1987; Chen, 2006; Nagengast, 2006; Kröhne, 2009)
when unconditional inferences to the true distribution (and not
to the sample distribution) of covariates are desired. In these
designs, it is unlikely that the distribution of covariates in a

sample would be identical in a replication of the study and treat-
ing the covariates as fixed predictors is not appropriate. Kröhne
(2009) showed analytically and in simulation studies that stan-
dard errors of average effects obtained from the conventional
general linear model assuming fixed predictors will be biased in
the presence of treatment-covariate interactions if the covariate
is, in fact, a stochastic predictor (see also Sampson, 1974). While
the problem of stochastic predictors and unconditional inference
has received some attention in experimental design (Gatsonis and
Sampson, 1989), correlation analysis (Shieh, 2006) and power
analysis (Steiger and Fouladi, 1992) for the general linear model,
the topic has not been studied widely for hierarchical linear
models.

4. GENERALIZED ANCOVA
Before we discuss the MG-ML-SEM framework in more detail, we
first introduce generalized ANCOVA (Steyer and Partchev, 2008)
that was developed to overcome some of the issues of conven-
tional ANCOVA in single-level designs. For a binary treatment
indicator X and a multivariate covariate Z = (Z1, . . . , Zk), the
regression of Y on X and Z can always be written as

E (Y | X, Z) = g0(Z) + g1(Z) · X. (3)

In this representation of the regression, the intercept function
g0(Z) describes the conditional regressive dependency of the
outcome Y and the covariates in the control group (i.e., for
X = 0). The values of the effect function g1(Z) are the conditional
treatment effects given particular values z of the covariate Z.

In order to estimate treatment effects, one has to choose a
parameterization for both g0(Z) and g1(Z). Often, linear param-
eterizations are chosen for the intercept and the effect functions
(e.g., Aiken and West, 1996) although other parameterizations,
e.g., non-linear functions are also possible. Using only a single
covariate Z and assuming linear functions for g0(Z) and g1(Z)
yields

E (Y | X, Z) = (γ00 + γ10 · Z) + (γ01 + γ11 · Z) · X. (4)

Equation (4) extends conventional ANCOVA by including the
interaction term γ11. If there is an interaction effect, i.e., if
γ11 �= 0, treatment effects are not constant, but vary as a linear
function of the covariate Z.

Based on Equation (4), one can also obtain the average effect
of the treatment (AVE) by taking the expectation of the effect
function g1(Z):

AVE = E (γ01 + γ11 · Z) (5)

= γ01 + γ11 · E(Z).

Hence, in the presence of interaction effects, the AVE is no longer
represented by a single parameter as in conventional ANCOVA,
but is identified by a non-linear function of regression coefficients
and the expected value of the covariate. If the expected value of
the covariate E(Z) were included as a model parameter, e.g., in a
multigroup structural equation model (Kröhne, 2009; Nagengast,
2009), the estimation of the AVE using Equation (5) could
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take into account the uncertainty associated with the covariate
means that is introduced when covariates are stochastic predic-
tors (Sampson, 1974; Gatsonis and Sampson, 1989; Steiger and
Fouladi, 1992; Chen, 2006; Shieh, 2006). In contrast, the more
common approach of mean centering the covariate(s) to obtain
average effects (Aiken and West, 1996) ignores this uncertainty.
Based on Equation (4), one can also obtain conditional treatment
effects CTE = g1(z) given particular values z of Z:

g1(z) = γ01 + γ11 · z, (6)

which are also identified by non-linear functions of regression
coefficients and a value z of Z. While generalized ANCOVA and
its implementation into multigroup SEM solves some of the prob-
lems of ANCOVA without interaction, further steps are necessary
in order to account for contextual covariates and measurement
error in quasi-experimental multilevel designs.

5. MG-ML-SEM IMPLEMENTATION OF GENERALIZED
ML-ANCOVA

In the remainder of this paper, we introduce the MG-ML-SEM
implementation of generalized ML-ANCOVA as an alternative
to the conventional implementation of ML-ANCOVA models in
hierarchical linear models. The MG-ML-SEM approach naturally
overcomes the limitations of the conventional approach men-
tioned above: (1) It controls for measurement error by including
measurement models for multiple indicators of covariates and
outcomes. (2) It easily allows the inclusion of contextual effects
with the appropriate controls for sampling error by the latent
aggregation approach. (3) It includes treatment-covariate inter-
actions as a default as it is based on a multiple-group multilevel
SEM model. (4) All predictors are treated as stochastic rather than
fixed quantities. In addition, the MG-ML-SEM approach allows
for group-specific variances of the dependent variable Y given
covariates Z.

5.1. MG-ML-SEM
The implementation of generalized ML-ANCOVA is based on
the multilevel structural equation model of Muthén (1989, 1994)
and its extension to multigroup multilevel structural equation
models (Muthén et al., 1997). Note that it is also possible to
present and implement the model in the GLLAMM-framework
(Rabe-Hesketh et al., 2004; Skrondal and Rabe-Hesketh, 2004).
Rabe-Hesketh et al. (2012) provide a discussion of the advan-
tages of different frameworks for multilevel structural equation
modeling.

The MG-ML-SEM decomposes the vector of manifest vari-
ables (Y, Z, Wb) into the cluster-level variables (Y∗

b, Z∗
b, Wb) and

individual-specific variables (Y∗
w, Z∗

w, 0) (see Equation 2). The
elements of these vectors can be modeled in two ways—either
using group-mean centering of unit-level variables and the
corresponding group means as additional predictors (Kreft et al.,
1995; Raudenbush and Bryk, 2002; Enders and Tofighi, 2007)
or using a full-information latent aggregation approach (Lüdtke
et al., 2008). Similar to the correction of the between-cluster
variance of the outcome variable in conventional multilevel
models (e.g., Snijders and Bosker, 2012), the latter approach

accounts for the fact that the observed between-cluster variances
and covariances of the predictors are biased estimators of the
true between-cluster variances and covariances. It corrects the
effects of the between-cluster covariance matrix for the effects of
the within-cluster variances and covariances. Throughout this
article, we will denote the latent aggregation approach with a
superscript of an asterisk1. This decomposition is given by:

⎛
⎝ Y

Z
Wb

⎞
⎠ =

⎛
⎝ Y∗

b
Z∗

b
Wb

⎞
⎠ +

⎛
⎝Y∗

w

Z∗
w

0

⎞
⎠ , (7)

where Y is the vector of manifest indicators of latent variables,
Z is the vector of manifest covariates measured at the unit-level,
and Wb is the vector of true cluster-level covariates. The vec-
tor (Y∗

b, Z∗
b, Wb) contains the latent between-cluster components

of the variables and the vector (Y∗
w, Z∗

w, 0) contains the latent
within-cluster components of the corresponding variables on the
unit-level2.

The MG-ML-SEM consists of (1) the group-specific within-
cluster measurement model, (2) the group-specific between-
cluster measurement model, (3) the group-specific within-cluster
structural model, and (4) the group-specific between-cluster
structural model:

(
Y∗

w

Z∗
w

)
= �wx η∗

w + εw within-cluster measurement

model for X = x⎛
⎝ Y∗

b
Z∗

b
Wb

⎞
⎠ = νx + �bx η∗

b + εb between-cluster measurement

model for X = x
η∗

w = Ax η∗
w + ζ w within-cluster structural

model for X = x
η∗

b = βx0 + Bx η∗
b + ζ b between-cluster structural

model for X = x

See Muthén (2004) for details on the implementation of the MG-
ML-SEM as a sampling model.

Considering only one individual-specific covariate
Z = Z∗

b + Z∗
w, the structural model of the MG-ML-SEM is used

to estimate the group-specific regressions EX = x(Y | Z∗
b , Z∗

w):

EX = x (
Y | Z∗

b , Z∗
w

) = EX = x (
Y∗

b | Z∗
b , Z∗

w

)
(8)

+ EX = x (
Y∗

w | Z∗
b , Z∗

w

)
= EX = x (

Y∗
b | Z∗

b

) + EX = x (
Y∗

w | Z∗
w

)
= βx0 + βx1 · Z∗

b + αx1 · Z∗
w,

1For the presentation of the MG-ML-SEM and generalized ML-ANCOVA, we
use notation for the latent aggregation approach. The corresponding equa-
tions for the manifest aggregation approach are identical except for the lack of
the asterisk.
2True cluster-level covariates like school-funding do not have a within-cluster
component.
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where Y∗
b , Z∗

b are (possibly latent) variables in η∗
b , Y∗

w, Z∗
w are

(possibly latent) variables in η∗
w, αx1 is a within-cluster regression

coefficient in Ax, βx0 is a between-cluster intercept in βx0, and βx1

is a between-cluster regression coefficient in Bx.

5.2. GENERALIZED ML-ANCOVA
The generalized ML-ANCOVA combines aspects of conventional
ML-ANCOVA (by considering the nested structure and within-
and between-cluster components of variables) and aspects of
generalized single-level ANCOVA (by considering interactions
between the treatment variable and covariates).

The generalized ML-ANCOVA for a single covariate Z = Z∗
b +

Z∗
w and a dichotomous treatment variable X with values 0 and 1

is given by:

E
(
Y | X, Z∗

b , Z∗
w

) = g0
(
Z∗

b , Z∗
w

) + g1
(
Z∗

b , Z∗
w

) · X. (9)

Since we want to analyze average and conditional treatment
effects, our main interest lies in the effect function g1(Z∗

b , Z∗
w).

In the multi-group setting, the effect function can be com-
puted as the difference between the two group-specific regressions
EX = x(Y | Z∗

b , Z∗
w):

g1
(
Z∗

b , Z∗
w

) = EX = 1
(
Y | Z∗

b , Z∗
w

) − EX = 0
(
Y | Z∗

b , Z∗
w

)
. (10)

Inserting Equation (8) into (10) yields the effect function of gen-
eralized ML-ANCOVA based on parameters of the MG-ML-SEM:

g1
(
Z∗

b , Z∗
w

) = EX = 1 (
Y | Z∗

b , Z∗
w

) − EX = 0 (
Y | Z∗

b , Z∗
w

)
(11)

= (β10 − β00) + (β11 − β01) · Z∗
b + (α11 − α01) · Z∗

w

= γ10 + γ11 · Z∗
b + γ12 · Z∗

w.

This effect function can be used to compute average and condi-
tional effects. In order to compute the average treatment effect, we
first need to compute the unconditional expectations of covari-
ates. The MG-ML-SEM only contains parameters for the condi-
tional expectations of covariates given treatment group x, but the
unconditional expectation can be computed by:

E(Z) = E [E(Z | C)] = E(Zb) = E [E(Z | X)]

= μ01 · P (X = 0) + μ11 · P (X = 1) , (12)

where μ01, μ11 are between-cluster “intercepts” of exogenous
covariates in βx0, i.e., μ01,μ11 are the group-specific true means
μ01 = E(Z | X = 0) and μ11 = E(Z | X = 1). Then, the average
effect is AVE = E[g1(Z∗

b , Z∗
w)] = γ10 + γ11 · E(Z).

Generalized ML-ANCOVA can easily be extended to j + 1
treatment groups and to include more covariates at the within-
and at the between-cluster level, as well as pure cluster level
covariates:

E
(
Y | X, Z∗

b , Z∗
w, W

) = g0
(
Z∗

b , Z∗
w, W

) + g1
(
Z∗

b , Z∗
w, W

) ·
IX = 1 + . . . + gj

(
Z∗

b , Z∗
w, W

) · IX = j,

(13)

where IX = j is an indicator for treatment condition j, and Z∗
b , Z∗

w,
W are multivariate random variables. Based on Equation (13),
we can consider average treatment effects E[gj(Z∗

b , Z∗
w, W)] and

conditional treatment effects E[gj(Z∗
b , Z∗

w, W) | f (Z∗
b , Z∗

w, W, X)]
given any function f (Z∗

b , Z∗
w, W, X).

Next, we illustrate the MG-ML-SEM approach to general-
ized ML-ANCOVA with a model from educational effectiveness
research. Using a single dataset, we present the increasingly
complex MG-ML-SEM models that show the features and the
versatility of the approach.

6. ILLUSTRATIVE EXAMPLE
6.1. PARTICIPANTS AND PROCEDURE
To illustrate the MG-ML-SEM, we use data from the ELEMENT
study in Berlin, Germany (Lehmann and Lenkeit, 2008).
ELEMENT is a three wave longitudinal study aimed at examining
effects of early transition to secondary school (after 4th grade) on
students’ reading and mathematics proficiency. From 2002/2003
to 2004/2005, a total of N = 4926 students were measured in
4th grade, 5th grade, and 6th grade with several ability tests.
N = 3169 students attended elementary school until the end of
6th grade, whereas N = 1757 decided to make the transition to
secondary school after 4th grade.

In this article, we do not present a comprehensive analysis of
the ELEMENT study. Instead, the primary goal of our paper is
to illustrate the MG-ML-SEM approach as a means to estimate
conditional and average effects in educational research. For didac-
tic purposes, we restrict ourselves to reading comprehension as
outcome, to a limited set of covariates (prior reading achieve-
ment and interest in reading), to two occasions of measurement
(4th grade and 6th grade), and to only one of the five data
sets with imputed missing values provided by the Research Data
Centre at the Institute for Educational Quality Improvement.
A complete causal analysis would most likely require the inclu-
sion of more covariates and/or propensity scores (see causal
inference section in the discussion for details), and careful con-
sideration of the sampling design and the missing data struc-
ture (e.g., Baumert et al., 2009; Lehmann, 2010; Becker et al.,
2014).

6.2. MEASURES
6.2.1. Reading comprehension
The reading test used in the ELEMENT study was based on the
theoretical framework of the IEA and OECD reading assessments.
It contained items from PIRLS (Mullis et al., 2006) and from the
LAU Study (Lehmann et al., 1997, 1999). Students’ reading abil-
ities were obtained as weighted likelihood estimates based on an
IRT model. In order to obtain comparable scores across time, an
anchor items design was used. In our analyses, we used test scores
from 4th grade as covariate Z in order to control for pre-existing
differences in reading, and we used test scores from 6th grade as
outcome variable Y .

6.2.2. Interest in reading
The scale “interest in reading” consisted of five items. For our
analyses including a latent covariate η, we used the following three
positively worded items as indicators of a common latent variable:
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V1 (Item Asf0902): I like talking to others about books.
V2 (Item Asf0903): I am pleased with a book received as a

gift.
V3 (Item Asf0905): I like reading.

The response format was a four-point Likert scale with cate-
gories “1 = strongly agree,” “2 = agree,” “3 = disagree,” and
“4 = strongly disagree.” The three items were recoded so that
higher values represent higher interest in reading. For the anal-
yses including only manifest variables, we computed a scale V for
“interest in reading” by taking the mean of the three recoded items
for each student.

6.2.3. Other variables
Our treatment variable X is type of school at 6th grade with val-
ues X = 0 (elementary school) and X = 1 (secondary school).
We used class ID in 6th grade as cluster variable C. For some
of the analyses ignoring latent aggregation, we created between-
cluster components of all covariates by computing the empirical
class means. We also created the within-cluster components by
computing the difference between the corresponding variable and
their empirical class means. This decomposition was done for
reading comprehension at 4th grade Z, each of the three indica-
tors of “interest in reading” V1, V2, V3, and the scale for “interest
in reading” V = (V1 + V2 + V3)/3.

7. MODELS
We analyzed the data with six multigroup multilevel models in
order to illustrate the different effect estimates and highlight the
strengths of the MG-ML-SEM approach. In the simplest model
M1, we did not control for any covariates; in M2, we con-
trolled for manifest covariates without distinguishing within and
between components (as in a traditional multilevel ANCOVA
model); in M3, we controlled for within and between components
of manifest covariates using manifest aggregation; in M4, we con-
trolled for within and between components of manifest covariates
using latent aggregation; in M5, we controlled for within and
between components of a latent and a manifest covariate using
manifest aggregation; and finally in M6, we specified the full
doubly latent model controlling for within and between compo-
nents of a latent and a manifest covariate using latent aggregation.
See Table 1 for an overview of models and their characteristics.
We chose to present all six models in order to show differences
in point estimates and standard errors between models in the
context of our illustrative example. These analyses show con-
siderable differences between models and demonstrate the need

Table 1 | Overview of six multigroup multilevel structural equation

models and their characteristics.

M1 M2 M3 M4 M5 M6

Covariates � � � � �
Contextual covariates � � � �
Latent covariates � �
Latent aggregation � �

for a careful examination of treatment effects while meeting the
requirements of complex multilevel designs.

7.1. M1: MG-ML-SEM WITHOUT COVARIATES
The first MG-ML-SEM is a way of estimating the (unadjusted)
means of reading comprehension from 6th grade Y in elementary
school (X = 0) and secondary school (X = 1). The parameters in
this model are the group-specific within and between variances
of Y , and the group-specific means of Y . The within and between
structural model for both treatment groups (X = 0 and X = 1)
are given by:

Y∗
w = 0 + ζw within structural model X = 0

Y∗
w = 0 + ζw within structural model X = 1

Y∗
b = β00 + ζb between structural model X = 0

Y∗
b = β10 + ζb between structural model X = 1

where Y∗
w is the within-cluster component of Y and Y∗

b is the
between-cluster component of Y . The asterisk indicates that Y∗

w
and Y∗

b are latent variables obtained by latent aggregation. In this
model without covariates, the structural intercepts β00 and β10 are
the group-specific means of Y , ζw is a residual at the within level,
and ζb is a residual at the between level.

Based on the parameters of this model, we can compute the
effect function (see Equation 11), which is identical with the
average treatment effect in this model, because there are no
covariates:

AVE = β10 − β00

Obviously, in the ELEMENT study as in other observational stud-
ies, the AVE obtained from M1 does not reflect an unbiased
estimate of the average causal effect of school type on reading
comprehension from 6th grade. It is only in randomized con-
trolled trials, that we can estimate the causal effect without bias
using a model such as M1, i.e., without controlling for covariates.

7.2. M2: MG-ML-SEM MANIFEST COVARIATES/WITHOUT
CONTEXTUAL COVARIATES

In the second MG-ML-SEM, we implemented the conventional
multilevel ANCOVA by adding two covariates to the model,
namely reading comprehension from 4th grade Z and the scale
score of interest in reading V , and consider the group-specific
regressions EX = x(Y | Z, V) in the following MG-ML-SEM:

Y∗
w = 0 + α01 · Zw + α02 · Vw + ζw

within structural model X = 0

Y∗
w = 0 + α11 · Zw + α12 · Vw + ζw

within structural model X = 1⎛
⎝Y∗

b
Zb

Vb

⎞
⎠ =

⎛
⎝β00

μ01

μ02

⎞
⎠ +

⎛
⎝β01

0
0

⎞
⎠ Zb +

⎛
⎝β02

0
0

⎞
⎠ Vb +

⎛
⎝ζ1b

ζ2b

ζ3b

⎞
⎠

between structural model X = 0
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⎛
⎝Y∗

b
Zb

Vb

⎞
⎠ =

⎛
⎝β10

μ11

μ12

⎞
⎠ +

⎛
⎝β11

0
0

⎞
⎠ Zb +

⎛
⎝β12

0
0

⎞
⎠ Vb +

⎛
⎝ζ1b

ζ2b

ζ3b

⎞
⎠

between structural model X = 1

In this model we demonstrate the consequences of disregarding
the decomposition of (V, Z) into within and between com-
ponents. This decomposition was ignored by constraining the
corresponding regression coefficients to be equal across levels, i.e.,
α01 = β01, α02 = β02, α11 = β11, α12 = β12.

Based on the parameters of this model, we can compute the
effect function g1(Z, V) and the average effect AVE as follows (see
Equations 11, 12 for details):

g1(Z, V) = EX=1(Y | Z, V) − EX = 0(Y | Z, V)

= (β10 − β00) + (β11 − β01) · Z + (β12 − β02) · V

= γ10 + γ11 · Z + γ12 · V

AVE = (β10 − β00) + (β11 − β01) · E(Z) + (β12 − β02) · E(V).

The average treatment effect of school type on reading compre-
hension from 6th grade obtained from this model can be causally
interpreted only under strong assumptions (see causal inference
section in the discussion). If there are other confounders not
included in the model or if there are contextual effects, the AVE
from M2 must not be causally interpreted.

7.3. M3: MG-ML-SEM MANIFEST COVARIATES/MANIFEST
AGGREGATION

In the third MG-ML-SEM, we add contextual covariates to
the model, i.e., we decompose the manifest covariates (Z, V)
into between-cluster components (Zb, Vb) and within-cluster
components (Zw, Vw). For this decomposition, we follow
the group-mean centering approach assuming perfect relia-
bility of manifest cluster means of covariates. In the ter-
minology of Marsh et al. (2009), M3 is called a “Doubly-
Manifest Model.” We computed the values of the between-
cluster variables (Zb, Vb) and the within-cluster variables
(Zw, Vw) before fitting the model. We consider the group-
specific regressions EX = x(Y | Zb, Vb, Zw, Vw) in the following
MG-ML-SEM:

Y∗
w = 0 + α01 · Zw + α02 · Vw + ζw

within structural model X = 0

Y∗
w = 0 + α11 · Zw + α12 · Vw + ζw

within structural model X = 1⎛
⎝Y∗

b
Zb

Vb

⎞
⎠ =

⎛
⎝β00

μ01

μ02

⎞
⎠ +

⎛
⎝β01

0
0

⎞
⎠ Zb +

⎛
⎝β02

0
0

⎞
⎠ Vb +

⎛
⎝ζ1b

ζ2b

ζ3b

⎞
⎠

between structural model X = 0

⎛
⎝Y∗

b
Zb

Vb

⎞
⎠ =

⎛
⎝β10

μ11

μ12

⎞
⎠ +

⎛
⎝β11

0
0

⎞
⎠ Zb +

⎛
⎝β12

0
0

⎞
⎠ Vb +

⎛
⎝ζ1b

ζ2b

ζ3b

⎞
⎠

between structural model X = 1

Again, based on the parameters of M3, we can compute the effect
function g1(Zb, Vb, Zw, Vw) and the average treatment effect as
follows (see Equations 11, 12):

g1(Zb, Vb, Zw, Vw) = (β10 − β00) + (β11 − β01) · Zb

+ (β12 − β02) · Vb + (α11 − α01) · Zw

+ (α12 − α02) · Vw

= γ10 + γ11 · Zb + γ12 · Vb + γ13 · Zw

+ γ14 · Vw

AVE = (β10 − β00) + (β11 − β01) · E(Z)

+ (β12 − β02) · E(V)

The treatment effects in this model depend on the values of the
within-cluster components and the between-cluster components
of covariates. Note that the equation for computing the AVE sim-
plifies considerably, because the expectation of the within-cluster
components of the covariates are zero, i.e., E(Zw) = E(Vw) = 0
(see section 3.2). The unconditional expectations of covariates
are computed as shown in Equation (12). M3 is less restrictive
compared to M2. It requires causal unbiasedness of the regres-
sion E(Y | X, Zb, Vb, Zw, Vw), which means that there must not
be any omitted confounders.

7.4. M4: MG-ML-SEM MANIFEST COVARIATES/LATENT AGGREGATION
Our fourth MG-ML-SEM is very similar to M3, with the only
exception that contextual covariates are treated as latent vari-
ables using the full-information latent aggregation approach
(Lüdtke et al., 2008) as indicated by the superscript of an asterisk
(Z∗

w, Z∗
b , V∗

w, V∗
b ) in the model equations for the fourth MG-ML-

SEM. This model was first presented in Nagengast (2009):

Y∗
w = 0 + α01 · Z∗

w + α02 · V∗
w + ζw

within structural model X = 0

Y∗
w = 0 + α11 · Z∗

w + α12 · V∗
w + ζw

within structural model X = 1⎛
⎝Y∗

b
Z∗

b
V∗

b

⎞
⎠ =

⎛
⎝β00

μ01

μ02

⎞
⎠ +

⎛
⎝β01

0
0

⎞
⎠ Z∗

b +
⎛
⎝β02

0
0

⎞
⎠ V∗

b +
⎛
⎝ζ1b

ζ2b

ζ3b

⎞
⎠

between structural model X = 0⎛
⎝Y∗

b
Z∗

b
V∗

b

⎞
⎠ =

⎛
⎝β10

μ11

μ12

⎞
⎠ +

⎛
⎝β11

0
0

⎞
⎠ Z∗

b +
⎛
⎝β12

0
0

⎞
⎠ V∗

b +
⎛
⎝ζ1b

ζ2b

ζ3b

⎞
⎠

between structural model X = 1
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Marsh et al. (2009) termed this model a “Manifest-Latent Model.”
The computations of the g1(Z∗

b , V∗
b , Z∗

w, V∗
w) and the average

treatment effect mimic the corresponding computations shown
for M3 (see Equations 11, 12):

g1(Z∗
b , V∗

b , Z∗
w, V∗

w) = (β10 − β00) + (β11 − β01) · Z∗
b

+ (β12 − β02) · V∗
b + (α11 − α01) · Z∗

w

+ (α12 − α02) · V∗
w

= γ10 + γ11 · Z∗
b + γ12 · V∗

b + γ13 · Z∗
w

+ γ14 · V∗
w

AVE = (β10 − β00) + (β11 − β01) · E(Z)

+ (β12 − β02) · E(V)

7.5. M5: MG-ML-SEM LATENT COVARIATES/MANIFEST AGGREGATION
In our fifth MG-ML-SEM, we take one step back and again apply
manifest aggregation for covariates. Unlike previous models, we
include a measurement model for the latent covariate “interest
in reading,” i.e., the three positively worded items V1, V2, V3 are
indicators of a latent construct η. The three indicators are decom-
posed into their within- and between-cluster components using
manifest aggregation. In the terminology of Marsh et al. (2009),
M5 is called a “Latent-Manifest Model.” Particular advantages
of explicitly including a latent covariate are: (1) one can appro-
priately account for measurement error in the covariate, (2) the
option to test measurement invariance across groups and across
levels, and (3) the availability of fit indices to examine model fit.
Adding a latent variable in the MG-ML-SEM approach requires
the specification of a within-cluster measurement model and a
between-cluster measurement model for both treatment groups.
We assume measurement invariance across levels (Mehta and
Neale, 2005; Jak et al., 2013) and across groups (Meredith, 1993).
In the model equations, we show the common within-cluster and
the common between-cluster measurement models:

⎛
⎝V1w

V2w

V3w

⎞
⎠ =

⎛
⎝ 1

λ2

λ3

⎞
⎠ ηw +

⎛
⎝ε1w

ε2w

ε3w

⎞
⎠

within measurement model⎛
⎝V1b

V2b

V3b

⎞
⎠ =

⎛
⎝ 0

ν2

ν3

⎞
⎠ +

⎛
⎝ 1

λ2

λ3

⎞
⎠ ηb +

⎛
⎝ε1b

ε2b

ε3b

⎞
⎠

between measurement model

Y∗
w = 0 + α01 · Zw + α02 · ηw + ζw

within structural model X = 0

Y∗
w = 0 + α11 · Zw + α12 · ηw + ζw

within structural model X = 1⎛
⎝Y∗

b
Zb

ηb

⎞
⎠ =

⎛
⎝β00

μ01

μ02

⎞
⎠ +

⎛
⎝β01

0
0

⎞
⎠ Zb +

⎛
⎝β02

0
0

⎞
⎠ ηb +

⎛
⎝ζ1b

ζ2b

ζ3b

⎞
⎠

between structural model X = 0

⎛
⎝Y∗

b
Zb

ηb

⎞
⎠ =

⎛
⎝β10

μ11

μ12

⎞
⎠ +

⎛
⎝β11

0
0

⎞
⎠ Zb +

⎛
⎝β12

0
0

⎞
⎠ ηb +

⎛
⎝ζ1b

ζ2b

ζ3b

⎞
⎠

between structural model X = 1

Average and conditional effects are computed as in the previous
models. Note that we use the unconditional expectation of the
latent covariate η to compute the average treatment effect. E(η)
will depend on the chosen scale: In a τ -congeneric measurement
model as used in this example, η is uniquely defined up to positive
linear transformations. We fixed the scale of η by fixing the first
measurement intercept to ν1 = 0 and the first loading to λ1 = 1
in both treatment groups3. Given a group-invariant measurement
model, E(η) can be computed:

E(η) = μ02 · P(X = 0) + μ12 · P(X = 1).

The effect function and the AVE from M5 are then (see
Equations 11, 12):

g1(Zb, ηb, Zw, ηw) = (β10 − β00) + (β11 − β01) · Zb

+ (β12 − β02) · ηb + (α11 − α01) · Zw

+ (α12 − α02) · ηw

= γ10 + γ11 · Zb + γ12 · ηb + γ13 · Zw

+ γ14 · ηw

AVE = (β10 − β00) + (β11 − β01) · E(Z)

+ (β12 − β02) · E(η)

7.6. M6: MG-ML-SEM LATENT COVARIATES/LATENT AGGREGATION
The sixth and final model is the full doubly latent MG-ML-SEM
including latent covariates and latent aggregation. The only dif-
ference compared to M5 is that the aggregation of pre-treatment
reading comprehension Z and the three indicators of interest in
reading is latent as indicated by the superscript of an asterisk. M6
is specified by the following equations:

⎛
⎝V∗

1w

V∗
2w

V∗
3w

⎞
⎠ =

⎛
⎝ 1

λ2

λ3

⎞
⎠ η∗

w +
⎛
⎝ε1w

ε2w

ε3w

⎞
⎠

within measurement model

3In principle, other ways of fixing the scale of η, such as fixing the latent mean
and variance, are possible as well. However, we recommend this approach in
the context of multigroup multilevel SEM for analyzing average and condi-
tional effects. Using the latent variance for setting the scale would complicate
specification, because the variance needs to be specified appropriately in the
multigroup-multilevel setting, which requires constraints across groups and
across levels. Also, we do not want to fix the mean of latent variables in
each of the groups, because this would lead to biased estimates of treatment
effects.
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⎛
⎝V∗

1b
V∗

2b
V∗

3b

⎞
⎠ =

⎛
⎝ 0

ν2

ν3

⎞
⎠ +

⎛
⎝ 1

λ2

λ3

⎞
⎠ η∗

b +
⎛
⎝ε1b

ε2b

ε3b

⎞
⎠

between measurement model

Y∗
w = 0 + α01 · Z∗

w + α02 · η∗
w + ζw

within structural model X = 0

Y∗
w = 0 + α11 · Z∗

w + α12 · η∗
w + ζw

within structural model X = 1⎛
⎝Y∗

b
Z∗

b
η∗

b

⎞
⎠ =

⎛
⎝β00

μ01

μ02

⎞
⎠ +

⎛
⎝β01

0
0

⎞
⎠ Z∗

b +
⎛
⎝β02

0
0

⎞
⎠ η∗

b +
⎛
⎝ζ1b

ζ2b

ζ3b

⎞
⎠

between structural model X = 0⎛
⎝Y∗

b
Z∗

b
η∗

b

⎞
⎠ =

⎛
⎝β10

μ11

μ12

⎞
⎠ +

⎛
⎝β11

0
0

⎞
⎠ Z∗

b +
⎛
⎝β12

0
0

⎞
⎠ η∗

b +
⎛
⎝ζ1b

ζ2b

ζ3b

⎞
⎠

between structural model X = 1

Figure 1 illustrates M6. The upper path diagram of Figure 1 refers
to treatment group X = 0 and the lower path diagram refers
to X = 1. Each of the group-specific path diagrams is divided
into three parts: the gray-shaded middle part shows the observed
variables that are decomposed into contextual variables (upper
part L2) and unit-level residuals (lower part L1). Based on the
parameters of the doubly latent model shown in the model equa-
tions above and displayed in Figure 1, we can compute the effect
function and its expectation by (see Equations 11, 12):

g1(Z∗
b , η∗

b , Z∗
w, η∗

w) = (β10 − β00) + (β11 − β01) · Z∗
b

+ (β12 − β02) · η∗
b + (α11 − α01) · Z∗

w

+ (α12 − α02) · η∗
w

= γ10 + γ11 · Z∗
b + γ12 · η∗

b + γ13 · Z∗
w

+ γ14 · η∗
w

AVE = (β10 − β00) + (β11 − β01) · E(Z)

+ (β12 − β02) · E(η)

Mplus syntax for M6 is given in the Supplementary Material.

8. RESULTS
The aim of our illustrative example is twofold: First, we demon-
strate the consequences of estimating average effects with dif-
ferent models. Second, we show how to use the MG-ML-SEM
approach to estimate conditional effects and average effects of the
treated and the untreated. We begin our presentation with the
descriptive statistics of the central variables in our analyses.

8.1. DESCRIPTIVE STATISTICS
Table 2 shows means, standard deviations, and intra-class corre-
lation coefficients for all manifest variables used in our analyses.
The left-hand columns depicts descriptive statistics for those
students that stayed in elementary school until the end of 6th

FIGURE 1 | Path diagram for the full doubly latent multigroup

multilevel structural equation model.

grade (the control group X = 0), whereas the right-hand columns
depicts descriptive statistics for those students that made the early
transition to secondary school after 4th grade (the treatment
group, X = 1). Descriptively, the distributions of pre-treatment
covariates are quite different between the two groups, which
is expected in quasi-experimental designs like the ELEMENT
study.

8.2. COMPARISON OF MODELS
The first aim of our illustrative example was to examine whether
model choice is important for assessing the effects of early transi-
tion to secondary school on reading comprehension. To examine
the differences between the models, we analyzed the data from
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Table 2 | Means, standard deviations, and intra-class correlation

coefficients for all manifest variables used in the analyses.

Elementary school Secondary school

Variable M SD ICC M SD ICC

Y 109.60 12.71 0.24 123.40 10.61 0.10

Z 97.33 15.12 0.21 113.84 11.27 0.09

V 2.98 0.78 0.04 3.37 0.58 0.04

V1 2.31 1.07 0.02 2.72 0.97 0.02

V2 3.37 0.90 0.02 3.65 0.64 0.02

V3 3.27 0.99 0.03 3.71 0.63 0.02

Y: Reading comprehension 6th grade; Z: Reading comprehension 4th grade; V :

Manifest scale interest in reading; V1, V2, V3: Three positively worded items of

scale interest in reading.

the ELEMENT study with the six MG-ML-SEMs presented in the
last section. All models were implemented using Mplus 7 (Muthén
and Muthén, 2012). Table 3 shows the average treatment effect
together with standard errors and effect sizes, the parameters of
the conditional effect functions g1(Z), and group-specific contex-
tual effects of covariates for all models. Effect sizes (ES) for the
average effects were computed by dividing AVE by the standard
deviation of Y given X = 0. The substantive conclusions drawn
from the models are quite different, as will be discussed in detail
in the following paragraphs.

There was a strong and significant average treatment effect
obtained from M1 (AVE = 13.59, 95% CI [12.10, 15.08], ES =
1.07). In a randomized experiment, an applied researcher might
conclude that, on average, early transition to secondary school
was beneficial for students’ reading comprehension. However,
in the present quasi-experimental setting, the observed differ-
ence in outcome means between treatment groups may be due
to pre-existing differences. In fact, as shown in Table 2, those stu-
dents who chose to make the early transition to secondary school
already have higher values on reading comprehension in 4th grade
and higher interest in reading on average. Therefore, we need
to control for these pre-existing differences by conditioning on
relevant covariates.

In M2, we controlled for the manifest covariates “reading com-
prehension in 4th grade” Z and “interest in reading” V without
distinguishing within and between components of these covari-
ates. The average treatment effect obtained from M2 (AVE =
5.23, 95% CI [3.90, 6.47], ES = 0.43) was considerably lower
compared to the AVE from M1 but is still significant. If there
were no contextual effects and no other covariates introducing
bias, one would conclude that early transition to secondary school
positively affects students’ reading comprehension on average.

M3 is the first model in our sequence of models that separated
the within-cluster and between-cluster components of covari-
ates and estimates contextual effects. In our illustrative example,
there was a significant contextual effect for reading comprehen-
sion at 4th grade for those students that stayed in primary schools
(CEZY;X = 0 = 0.27, 95% CI [0.19, 0.35]), but no significant con-
textual effect of reading comprehension at 4th grade for students
that moved to secondary schools and no contextual effects for

interest in reading in both groups (see Table 3). Substantively, the
contextual effect showed that students with equal initial achieve-
ment levels and equal interest in reading (i.e., given Z = z and
V = v) profited from being schooled together with high achiev-
ing students (i.e., high values on Zb and Vb) in primary school,
but not if they made an early transition to secondary school. In
M3, where we took account of contextual covariates in the com-
putation of the average treatment effect, the AVE was no longer
significant (AVE = 1.76, 95% CI [−0.20, 3.72], ES = 0.14).

All subsequent models (M4–M6) revealed a similar pattern of
results: The AVE is not significant and there was a contextual
effect of initial reading comprehension for students that stayed
in primary school. The estimates from models M3–M6 ranged
from AVE = 1.76 (95% CI [−0.20, 3.72], ES = 0.14; M3) to 0.14
(95% CI [−2.57, 2.85], ES = 0.01; M4). Descriptively, the mod-
els using latent aggregation of covariates (M4 and M6) show the
lowest AVE. When the effect estimates were standardized using
the standard deviation of the outcome in primary school, the
results were very similar (see row ES in Table 3). With regard to
standard errors, we find that the models including latent aggre-
gation (M4 and M6) had the highest standard errors, followed
by the models using manifest aggregation and contextual covari-
ates (M3 and M5), and the model ignoring contextual covariates
(M2) had the lowest standard error. M6 had the highest standard
error, because it accounts for uncertainty in the aggregation of
covariates and also includes latent covariates.

In summary, the average total effects obtained from models
M3–M6 were pretty similar, but they were substantially different
from the apparent effects obtained from M1 and M2. The com-
parison of models clearly shows that it is necessary to control for
contextual covariates, if there are contextual effects.

8.3. DOUBLY-LATENT MODEL M6
In order to further illustrate the advantages of the MG-ML-SEM
approach, we present a more detailed analysis of conditional and
average effects based on the doubly-latent model M6. Although
there were only minor differences between M3 and M6 in our
illustrative example, we generally prefer M6, because it overcomes
all of the limitations of conventional ANCOVA mentioned in the
introduction. We note, however, that there might be situations
in which partial correction models may be more appropriate for
substantive or statistical reasons (Lüdtke et al., 2008, 2011; Marsh
et al., 2012).

Detailed results for all parameters of the doubly-latent model
M6 and model fit information are given in Table 4. The
effect function g1(Z), the average treatment effect AVE, con-
textual effects, and all conditional effects considered in sub-
sequent paragraphs, were based on these parameters. Figure 1
shows a path diagram of the full model. Next, we demon-
strate how the MG-ML-SEM approach could be used to
answer substantive research questions using our preferred
model (M6) as case example. In particular, we show how the
MG-ML-SEM approach can be used to examine average effects
as well as conditional treatment effects given certain values of
covariates.

In our illustrative example, the average effect is not the only
interesting quantity from a substantive point of view. When
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Table 3 | Average and conditional effects obtained from six multigroup multilevel structural equation models.

Parameter M1 M2 M3 M4 M5 M6

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

PARAMETERS OF CONDITIONAL EFFECT FUNCTIONS (g1(Z )) AND AVERAGE EFFECTS

γ10 13.59 0.76 16.43 3.36 22.17 9.77 11.67 15.82 11.99 11.28 10.14 15.75

γ11 −0.12 0.03 −0.21 0.12 −0.13 0.16 −0.15 0.12 −0.14 0.21

γ12 0.40 0.50 0.44 2.78 0.55 5.11 1.88 3.48 1.60 9.27

γ13 −0.12 0.03 −0.10 0.03 −0.10 0.03 −0.10 0.03 −0.09 0.03

γ14 0.40 0.50 0.36 0.52 0.27 0.52 0.44 0.92 0.34 0.90

AVE 13.59 0.76 5.23 0.63 1.76 1.00 0.14 1.38 1.33 1.12 0.15 1.41

ES 1.07 0.43 0.14 0.01 0.10 0.01

GROUP-SPECIFIC CONTEXTUAL EFFECTS OF COVARIATES

CEZY ;X=0 0.27 0.04 0.31 0.04 0.28 0.03 0.31 0.04

CEZY ;X=1 0.16 0.13 0.28 0.17 0.23 0.12 0.27 0.22

CEVY ;X=0 1.09 1.09 1.46 2.26 −0.79 1.42 0.77 3.11

CEVY ;X=1 1.17 2.66 1.73 4.70 0.64 3.20 2.03 8.74

The effect function is given by g1(Z ) = γ10 + γ11 Zb + γ12 Vb + γ13 Zw + γ14 Vw (in models with latent variables, V is replaced by η; in models using latent aggregation

of covariates, a superscript of an asterisk is added to covariates). The values of the effect function are the (Z = z)-conditional effects of early transition to secondary

school. The average treatment effect is AVE = E[g1(Z )]. ES denotes the effect size for the average effect obtained by dividing AVE by the standard deviation of Y

given X = 0. Contextual effects are the differential effects of the within-cluster and between-cluster components of the covariate on the outcome variable. Contextual

effects are calculated by subtracting the within-coefficient from the between-coefficient given X = x, i.e., CEZY ;X=x = βx1 − αx1 and CEVY ;X=x = βx2 − αx2. In M1

and M2, there are no contextual effects.

evaluating an intervention it is not only of interest if there is
an average effect, but also for whom the intervention is ben-
eficial or even harmful. Early transition to secondary school
might not have a significant average effect, but could still affect
specific students, e.g., students with high or low values of pre-
treatment covariates. For example, high achieving students might
particularly benefit from an early transition to secondary school-
ing, whereas the early transition might negatively impact stu-
dents with low initial achievement. The MG-ML-SEM approach
can be used to study such conditional effects. In addition,
it is also possible to study average treatment effects for cer-
tain sub-populations. From a policy perspective, it might be
interesting to study the effect of the early transition on the
group of students actually choosing early transition to sec-
ondary school (this effect has also be termed the “effect on
the treated”). Or one might be interested in whether early
transition to secondary school would have a beneficial effect
for those who did not take this opportunity (“effect on the
untreated”).

Prior to estimating M6 for computing average and conditional
effects, we tested for measurement invariance of “interest in read-
ing” by comparing a model with invariance across groups and
across levels (χ2 = 81.57, df = 14, p < 0.001; BIC = 28192.23;
RMSEA = 0.05; CFI = 0.97; TLI = 0.98) with a model where
invariance was not assumed (χ2 = 1.69, df = 6, p = 0.95; BIC =
28198.01; RMSEA = 0.00; CFI = 1.00; TLI = 1.00)4. While the
χ2-test of model fit was significant for the model with invariance,

4Note that the fit indices differ from the ones reported in Table 4, because
to test measurement invariance, we just specified the measurement model

the other fit measures indicated a good fitting model, and the
BIC was lower for the model with invariance. We concluded that
the more parsimonious model with measurement invariance is
adequate.

Based on M6, we first tested the null hypothesis that all condi-
tional effects were equal using a Wald test, i.e., H0 : γ11 = γ12 =
γ13 = γ14 = 0, where γ11 to γ14 are regression coefficients in the
effect function (cf. Table 3). Average effects on the treated and
the untreated will differ from the average treatment effect only if
the conditional effects are not constant. It is one of the particular
strengths of the MG-ML-SEM approach that it allows tests of the
treatment-covariate interactions and does not presume that con-
ditional treatment effects are constant. Based on the Wald test, we
rejected the null hypothesis (χ2 = 14.25, df = 4, p = 0.0065) of
constant treatment effects.

Next, we considered conditional treatment effects, such
as the conditional effect of early transition to secondary
school on the treated (CTET). The CTET is the condi-
tional expectation of the effect function given X = 1, i.e.,
CTET=E[g1(Z∗

b , Z∗
w, η∗

b , η∗
w) | X = 1]. It can be computed based

on the parameters of the model (see Table 4):

E[g1(Z∗
b , Z∗

w, η∗
b , η∗

w) | X = 1] = γ10 + γ11 · E(Z∗
b | X = 1)

+ γ12 · E(η∗
b | X = 1)

= (β10 − β00) + (β11 − β01) · μ11

+ (β12 − β02) · μ12

for reading interest and omitted the single-item reading comprehension
measures.
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Table 4 | Results obtained from the full doubly latent multigroup

multilevel structural equation model.

Model parameters

X = 0 X = 1

Within Between Within Between

MEASUREMENT MODEL

ν1 – 0.00∗ – 0.00∗

ν2 – 0.81 (0.10) – 0.81 (0.10)

ν3 – 0.09 (0.15) – 0.09 (0.15)

λ1 1.00∗ 1.00∗ 1.00∗ 1.00∗

λ2 1.07 (0.04) 1.07 (0.04) 1.07 (0.04) 1.07 (0.04)

λ3 1.36 (0.06) 1.36 (0.06) 1.36 (0.06) 1.36 (0.06)

Var (ε1) 0.86 0.00∗ 0.76 0.00∗

Var (ε2) 0.44 0.00∗ 0.22 0.00∗

Var (ε3) 0.37 0.00∗ 0.12 0.00∗

STRUCTURAL MODEL

αx1 0.52 (0.01) – 0.42 (0.02) –

αx2 2.31 (0.41) – 2.65 (0.79) –

βx0 – 21.62 (6.47) – 31.76 (14.34)

βx1 – 0.83 (0.04) – 0.70 (0.21)

βx2 – 3.08 (2.98) – 4.68 (8.75)

μx1 – 97.40 (0.65) – 113.64 (0.52)

μx2 – 2.34 (0.02) – 2.67 (0.03)

Var (ζ ) 69.54 2.58 77.44 5.11

MODEL FIT

χ2 (30) = 175.60

RMSEA = 0.04

SRMR (within) = 0.04

SRMR (between) = 0.10

Parameters with a superscript of an asterisk are fixed parameters. ν1 to ν3 are

invariant intercepts; λ1 to λ3 are invariant loadings; Var (ε1) − Var (ε3) denote vari-

ances of measurement error variables; αx1-αx2 are regression coefficients at the

within-cluster level; βx1-βx2 are regression coefficients at the between-cluster

level; μx1 and μx2 are group-specific means of covariates; Var (ζ ) denotes the

variance of the regression residuals.

using the fact that the conditional expectations of within-cluster
components Z∗

w and η∗
w given X = x is zero 5. In our illustra-

tive example, the CTET was not significant (CTET = −0.92,
95% CI [−3.00, 1.16]). This implies that the early transition to
secondary schooling was not beneficial for the group of students
that actually underwent this transition. If this effect was causally
interpretable (which would require controlling a larger set of
covariates), it would imply that there were no beneficial effects of
the supposedly enriched learning environment of the secondary
school for the group of students that went there. These students
would have obtained similar reading outcomes in the 6th grade
after attending primary schools.

5E(Z∗
w | X = x) = E(η∗

w | X = x) = 0, because Z∗
w and η∗

w are defined as
residuals with respect to the regressor C (see section about contextual effects
and sampling error). Therefore, E[Z∗

w | f (C)] = E[η∗
w | f (C)] = 0 for any

function f (C) of C and the treatment variable X is such a function of C in
designs with treatment application at the cluster-level considered in this paper.

Similarly, the conditional treatment effect on the untreated
(CTEUT) is the effect that early transition to secondary school
would have on students who stay in elementary school until
the end of sixth grade. The CTEUT can be computed as the
conditional expectation of the effect function given X = 0:

E[g1(Z∗
b , Z∗

w, η∗
b , η∗

w) | X = 0] = γ10 + γ11 · E(Z∗
b | X = 0)

+ γ12 · E(η∗
b | X = 0)

= (β10 − β00) + (β11 − β01) · μ01

+ (β12 − β02) · μ02 .

In our analyses, the CTEUT is also not significant (CTEUT =
0.74, 95% CI [−3.28, 4.76]). Again, under the assumption that
all relevant covariates had been controlled, this would imply that
students who stayed in primary school longer would not have
profited from an earlier transition to secondary schooling with
respect to their reading proficiency.

Furthermore, we can consider conditional effects for spe-
cific values of covariates. For example, we might be interested
in the conditional effect for an average elementary school stu-
dent (Z = 97.40, η = 2.34) in an average secondary school class
(Z∗

b = 113.64, η∗
b = 2.67), i.e., with Z∗

w = Z − Z∗
b = −16.24 and

η∗
w = η − η∗

b = −0.33:

g1(z) = γ10 + γ11 · 113.64 + γ12 · 2.67 + γ13 · ( − 16.24)

+ γ14 · ( − 0.33),

which yields CTE = 0.49 (95% CI [−1.96, 2.94]). Or we might
be interested in the conditional effect for an average secondary
school student (Z = 113.64, η = 2.67) in an average elementary
school class (Z∗

b = 97.40, η∗
b = 2.34), i.e., with Z∗

w = Z − Z∗
b =

16.24 and η∗
w = η − η∗

b = 0.33:

g1(z) = γ10 + γ11 · 97.40 + γ12 · 2.34 + γ13 · 16.24 + γ14 · 0.33,

which yields CTE = −0.66 (95% CI [−4.95, 3.63]). Both of these
conditional effects are not significant.

9. DISCUSSION
In this paper, we presented the MG-ML-SEM implementation of
generalized ML-ANCOVA for the analysis of quasi-experimental
multilevel designs with non-randomized assignment at the
cluster-level. We demonstrated the flexibility of this approach
and its potential for the analyses of average and conditional
treatment effects using data from a German educational study
focusing on early transitions to secondary schooling. The MG-
ML-SEM approach overcomes the limitations of conventional
multilevel ANCOVA by (1) accounting for measurement error,
(2) systematically including contextual covariates with appropri-
ate control for sampling error, (3) naturally including treatment-
covariate interactions as a default and (4) treating predictors as
stochastic rather than fixed. We now discuss some limitations of
our example and focus on the conditions for interpreting average
and conditional effect estimates obtained from generalized mul-
tilevel ANCOVA as causal effects.
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9.1. CAUSAL INFERENCE
Causal effects are crucial in theories in the social sciences. Almost
all theories include statements that can be formalized as state-
ments about causal effects of a variable X on a variable Y . Many
researchers have the idea that a causal treatment effect is what is
estimated by a mean difference (between treatment and control)
in a randomized experiment. Although it turns out that this idea
is not wrong, it does not help much in situations in which it is not
possible or desirable to randomly assign persons/clusters to treat-
ments. How and under which conditions can we estimate a causal
effect? The general conclusion is that specific techniques of causal
modeling are indispensable, whenever we are beyond total effects
in a randomized experiment.

Approaches to causality include Rubin’s causal model (Rubin,
1974), Pearl’s graphical approach (Pearl, 2009), the stochastic the-
ory of causal effects (Steyer et al., 2014), or Dawid’s approach
(Dawid, 2011). These theories of causality provide definitions of
causal effects and point out the assumptions required to estimate
average and conditional causal effects from empirically estimable
conditional expectations in experimental and quasi-experimental
designs.

A requirement of a causal analysis is a temporal structure, i.e.,
the focused cause has to be prior to the outcome, and the covari-
ates have to be prior or simultaneous to the cause, so that the
covariates can not be affected by the cause. This distinguishes
covariates from potential mediators. The temporal structure of
random variables can either be described by a directed acyclic
graph (DAG; Pearl, 2009) or using a filtration (Steyer et al.,
2014). In the ELEMENT study, the longitudinal aspect of the
study makes such a time order plausible: The covariates “interest
in reading” and “pre-test reading comprehension” are measured
at 4th grade, prior to the focused cause “early transition to
secondary school,” and the outcome “post-test reading compre-
hension” is measured at 6th grade which is posterior to early
transition.

One strategy for identifying causal effects is to control for all
confounders. In informal terms, a confounder is a covariate that
will bias the effects of the focused cause on the outcome, if we do
not control for it appropriately (see Steyer et al., 2014, for a def-
inition of unbiasedness). Applied researchers are encouraged to
test whether a covariate is a confounder or not: In Pearl’s theory,
the (conditional) independence statements implied by the DAG
can be tested. Based on a correctly specified DAG, the researcher
can then read off the covariates that need to be controlled in a
causal analysis using the backdoor criterion (Pearl, 1993). In the
stochastic theory of causal effects, there are several testable causal-
ity conditions that imply unbiasedness (Steyer et al., 2000, 2014).
For example, the independent cause condition is defined as con-
ditional independence of the cause and all covariates given the
selected covariates in the model (see CC1Z in Steyer et al., 2014).
The regressively independent outcome condition (see CC2Z in
Steyer et al., 2014) is defined as conditional regressive indepen-
dence of the outcome variable from all covariates given the cause
and the selected covariates in the model. Both of these causal-
ity conditions imply conditional unbiasedness and are testable
in the sense that the corresponding conditional independence
statements can be falsified in empirical studies.

Once we have identified all relevant confounders, i.e., once we
have selected the covariates such that one of the causality condi-
tions holds, we have to control for these covariates in order to esti-
mate causal effects and not just mere associations. Based on the
theories of causality mentioned above and work by others (e.g.,
Rosenbaum and Rubin, 1983; Robins, 1999; Shadish et al., 2002),
several techniques have been developed to control for poten-
tial confounders, e.g., ANCOVA adjustment, propensity scores,
weighting techniques, matching, subclassification, marginal
structural models and many more (see Schafer and Kang, 2008,
for an overview). In this article, we suggested an approach to ana-
lyze data from the ELEMENT study that extends ANCOVA tech-
niques in several ways. Some of the other techniques could also
be applied for analyzing data in quasi-experimental multilevel
designs (see Baumert et al., 2009; Becker et al., 2014 for appli-
cations of propensity score matching to the ELEMENT data).

As mentioned previously, the primary goal of our paper was to
illustrate the MG-ML-SEM approach as a means to estimate aver-
age and conditional (total) effects in educational research. The
effects obtained from models M1–M6 presented in this article
can only be causally interpreted if the corresponding regressions
are unbiased. For example, the average effect in M1 requires
unbiasedness of the conditional expectations E(Y | X=x), which
is very unlikely to hold in the ELEMENT study. It would
only be plausible in a randomized experiment. M2 requires
unbiasedness of the group-specific regressions EX = x(Y | Z, V),
and M3 requires unbiasedness of the group-specific regressions
EX = x(Y | Zb, Vb, Zw, Vw). Similar arguments apply to the other
three models presented in this paper. A careful causal analysis
would require including more potential confounders and testing
the causality conditions.

9.2. LIMITATIONS AND DIRECTIONS FOR FURTHER RESEARCH
As we only compared our models on an example dataset, there
was no way to pick the correct model from the set of models
presented. Obviously M6, the full doubly-latent model, controls
for shortcomings of conventional multilevel ANCOVA, but other
models could also be defended on substantive and statistical
grounds. For example, M5 that does not use latent aggregation
could also be appropriate as the data in the ELEMENT study
has been obtained from complete samples of the students within
classrooms in Grade 4. In this case, there is only a small pro-
portion of sampling error in the aggregation of covariates to the
classroom level (Lüdtke et al., 2008; Marsh et al., 2012), e.g., due
to students missing the assessment date. Similarly, M4 and M5
might be more efficient in estimating the average treatment effect
as the full doubly-latent model M6 has been shown to yield very
variable estimates (Lüdtke et al., 2011). However, as illustrated in
the empirical examples, controlling for sampling error (and mea-
surement error) only had minor effects on the estimated effects.
It was the separation into within- and between-components of
the covariates that mattered most. This separation, in turn, was
justified by the presence of contextual effects of achievement in
the control group. In applications, bigger differences between
the models are expected when sampling and measurement error
increase or when contextual effects are more pronounced. In these
cases, the bias of the contextual effect will be relatively larger
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in M3 compared to the full doubly-latent model (Lüdtke et al.,
2011).

Further research on the MG-ML-SEM implementation of
the generalized ML-ANCOVA should study more carefully the
required sample size at both the within- and the between-level.
Simulation studies suggest that there are circumstances where a
sample size of at least 10 students within a class are required
for reliably estimating contextual and average effects with M4
(Lüdtke et al., 2008; Nagengast, 2009) and large sample sizes at
the class-level might be required for the doubly-latent model to
be sufficiently accurate (Lüdtke et al., 2011). Further simulation
work is needed to extend these findings to the MG-ML-SEM case
and clarify what sample sizes are required for reliable inferences
about average and conditional effects in this framework.

Further developments of the MG-ML-SEM framework
will likely yield additional options for the application and
development of generalized multilevel ANCOVA. In particular,
accounting for cross-classified multilevel structures in multilevel
structural equation models would be a major step forward. By
cross-classified structure, we refer to a multilevel structure, which
is not strictly hierarchical, but can be more complex (for details
and two examples of a cross-classified structure, see Raudenbush,
1993). Properly accounting for the cross-classified structure by
considering different clustering structures for the covariates and
the outcomes would be particularly useful for studies such as
ELEMENT were students move from one school type to another.
In addition, the further development of multilevel structural
equation models with latent interactions (e.g., Leite and Zuo,
2011; Nagengast et al., 2013; Schermelleh-Engel et al., 2014) could
allow to include covariate-covariate interactions and other non-
linear effects of latent covariates in the effect functions. Similarly,
the development of three-level multilevel structural equation
models will yield further opportunities for extending the mod-
els presented and allow researchers to address the complexities of
multilevel quasi-experimental designs more comprehensively.

In this article, we provided applied researchers with a com-
prehensive toolbox to analyze average and conditional effects in
non-randomized multilevel designs. We hope that this presenta-
tion encourages researchers to apply these advanced techniques to
address issues of measurement error, sampling error, contextual
effects, treatment-covariate interactions and ultimately causal
effects in the analyses of multilevel quasi-experimental designs.
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