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In this review, we propose that the neural basis for the spontaneous, diversified human tool
use is an area devoted to the execution and observation of tool actions, located in the left
anterior supramarginal gyrus (aSMG).The aSMG activation elicited by observing tool use is
typical of human subjects, as macaques show no similar activation, even after an extensive
training to use tools. The execution of tool actions, as well as their observation, requires
the convergence upon aSMG of inputs from different parts of the dorsal and ventral visual
streams. Non-semantic features of the target object may be provided by the posterior
parietal cortex (PPC) for tool-object interaction, paralleling the well-known PPC input to
anterior intraparietal (AIP) for hand-object interaction. Semantic information regarding tool
identity, and knowledge of the typical manner of handling the tool, could be provided by
inferior and middle regions of the temporal lobe. Somatosensory feedback and technical
reasoning, as well as motor and intentional constraints also play roles during the planning
of tool actions and consequently their signals likewise converge upon aSMG. We further
propose that aSMG may have arisen though duplication of monkey AIP and invasion of the
duplicate area by afferents from PPC providing distinct signals depending on the kinematics
of the manipulative action.This duplication may have occurred when Homo Habilis or Homo
Erectus emerged, generating the Oldowan or Acheulean Industrial complexes respectively.
Hence tool use may have emerged during hominid evolution between bipedalism and
language. We conclude that humans have two parietal systems involved in tool behavior:
a biological circuit for grasping objects, including tools, and an artifactual system devoted
specifically to tool use. Only the latter allows humans to understand the causal relationship
between tool use and obtaining the goal, and is likely to be the basis of all technological
developments.
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INTRODUCTION
The purpose of this short paper is to review the functional mag-
netic resonance imaging (fMRI) evidence related to the presence
in the human brain of a region devoted to tool use lying in the
anterior supramarginal gyrus (aSMG) of the left hemisphere, and
to describe the properties of this area by integrating our findings
with those of other imaging studies. Next, we derive the connec-
tions of this region active during the execution and observation
of tool action and confront the cognitive operations implied by
these results with views of the cognitive processes involved in tool
use derived from neuropsychological studies of apraxia. Finally we
discuss the emergence of tool use during evolution.

THE DIFFERENCE BETWEEN HUMANS AND MONKEYS IN
TOOL USE
Historically, tool use was considered a typically human behav-
ior and the emergence of tool use was considered an important
step in the evolution of primates, even serving to delineate the
appearance of the genus Homo (Ambrose, 2001). It has, how-
ever, become increasingly clear that other animals, particularly
chimpanzees and other old and new world monkeys do employ
tools (for a review, van Schaik et al., 1999; Baber, 2003). Yet, even

if actions using tools are simply compared between humans and
apes, it becomes apparent that humans understand the causal rela-
tionship between the use of the tool and the results obtained,
while this appears not to be the case for chimpanzees (Povinelli
et al., 2000). It seems that in other species tool use can be under-
stood by a combination of the affordances provided by the object,
which can be manipulated in a tool-like fashion, and associative
learning linking the presumptive tool and the result. As pointed
out by Osiurak et al. (2010), the differences between animals and
humans become even clearer if one makes the comparison both
over the lifetime of an individual, in that humans use tools fre-
quently and spontaneously, and at the species level, because all
human societies develop technological devices which evolve and
improve (Osiurak et al., 2010). Accordingly, it has been recently
suggested that the striking differences between human and pri-
mates tool use reflect evolutionary discontinuities in hand-eye
coordination, causal reasoning, function representation, executive
control, social learning, teaching, social intelligence, and lan-
guage (Vaesen, 2012), thus suggesting important differences with
respect to brain structures and functions involved in tool use. The
starting point of this review is that the study of the neural basis
of tool use has made sufficient progress to begin to understand
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why primates such as monkeys can use tools and why the
human tool use is so radically different from that of non-human
primates.

More than 15 years ago, Iriki et al. (1996) observed that the
body scheme could be modified by training macaques to use a
rake to retrieve food that was otherwise out of reach. Bimodal
neurons in the anterior intraparietal sulcus (IPS; presumably
medial bank) having somatosensory receptive field (sRF) and
visual receptive field (vRF) representing the finger tips expanded
their vRF to include the entire tool after extensive tool use. A sim-
ilar extension of the properties of the biological effector to the
tool was observed in monkey ventral premotor cortex (vPMC)
F5. Umiltà et al. (2008) showed that, after extensive training,
hand grasping premotor neurons also become active during grasp-
ing with ordinary pliers and, more interestingly, with reverse
pliers requiring finger extension, rather than flexion, to grasp
the object. Such modifications of the neural apparatus involved
in planning and controlling object manipulation are likely to
underlie the capacity of macaques, and probably apes, to use
simple tools, such as the twigs employed in fishing for termites.
Some evidence has been obtained for similar changes in humans
Maravita and Iriki (2004), and Rushworth et al. (2003) have sug-
gested that such changes may underlie the responses to static
tool images reported in left aSMG. Yet, these adaptations are
unlikely to explain the causal understanding that humans have
of tool use, or the extent of human tool use. In contrast, the
sporadic use of tools in animals could be simply explained by
such changes in the biological grasping circuit brought about by
mere associative learning processes. Typically this animal behav-
ior is based on using objects such as stones or twigs, readily
available in the environment. This use may become conditioned
by repeated success, including the choice of most appropriate
objects. Indeed, in the above mentioned experiment of Umiltà
et al. (2008), the use of complex pliers required an extensive train-
ing (6–8 months) and was actually based on associative learning,
achieved in three subsequent, rewarded, steps: grasping the pliers,
opening/closing the pliers and, finally, operating the pliers to grasp
food.

Peeters et al. (2009) have more recently provided evidence for
a neural substrate involved in tool use that is typically human.
These authors compared observation of biological actions such
as dragging or grasping, with observations of tool action having
similar goals, in both humans and monkeys. They discovered that
when human subjects observed tool actions a region in left aSMG
was differentially active with respect to static controls, while the
same region was not differentially active when subjects simply
observed the biological actions, i.e., the factors tool and action
interacted. This finding was very robust as it was observed in
nearly 50 subjects, and tested with three different tool actions:
using a screwdriver, a rake and pliers, as well as with actions
performed by a robotic arm. Most interesting, when perform-
ing the same testing in monkeys, Peeters et al. (2009) failed to
observe any similar interaction in the monkey inferior parietal
lobule (IPL), even after extensive training when the animals had
become proficient in using the rake and the pliers. These exper-
iments indicated that the activation of left aSMG by tool action
observations was a typically human trait. Since the same aSMG

region has been reported to be activated in humans by pantomim-
ing of tool use and the execution of tool actions (see below for
references), Peeters et al. (2009) proposed that human, but not
monkey cortex includes a region in the left supramarginal gyrus,
devoted to executing and observing tool actions. It should be noted
that these results do not exclude the possibility that in monkeys
a few scattered neurons in the biological action observation cir-
cuit (Nelissen et al., 2011) respond to observation of tool actions.
Even then, the results would still imply that in the human case
the neurons responding to tool action observation are grouped
together and therefore are computationally more powerful than
the isolated neurons in the monkey. Indeed, the grouping of neu-
rons with similar function is an important principle of cortical
processing, as columnar and topographic organizations demon-
strate. The clustering of face selective neurons in the face patches
also illustrates the same principle (Tsao and Livingstone, 2008).
Importantly, these findings of a left aSMG activation by tool
action observation have been replicated in a new group of 12
subjects (Peeters et al., 2013), confirming the robustness of this
finding.

In conclusion these studies allow us to understand how on one
hand monkeys and apes can become efficient tool users, by mod-
ifying their biological manipulative action observation/execution
circuit, and why humans use tools so extensively and so profi-
ciently, by possessing a uniquely human cortical region devoted to
the observation/execution of tool actions.

THE LEFT aSMG REGION DEVOTED TO TOOL USE
In the original experiments of Peeters et al. (2009), the left aSMG
region was defined as the conjunction of all the interactions for
observing the different tool actions and the robot hand actions.
This conjunction yielded 75 voxels (red outlines in Figure 1)
located in the anterior tip of left SMG and centered at Talairach
coordinates −60, −21, 31. These voxels likely underestimate the
region devoted to tool action observation. Indeed, the subsequent
study (Peeters et al., 2013) yielded a similar region of interaction
for observation of all three tool actions (rake, pliers, screwdriver)
combined, but located just to either side of the original 75 voxels
(yellow outlines in Figure 1). Furthermore, testing the interac-
tion in individual subjects yielded a moderate dispersion of the
local maxima, less so in female than in male subjects. Therefore
in Figure 1 we consider the combination of the three components
(red and yellow outlines) showing significant interaction in either
experiment (Peeters et al., 2009, 2013) as a more realistic estimate
of the left aSMG, but these 180+ voxels most likely still remain an
underestimate.

The area is located in the anterior part of the crown of the
SMG (Figure 1), below SI, posterior to gustatory cortex (BA 43),
and dorsal to the parietal opercular areas (Eickhoff et al., 2006).
Thus any further extension of aSMG is likely to occur in the
dorso-caudal direction. Area aSMG largely overlaps with cytoar-
chitectonic area PFt (Caspers et al., 2008; Peeters et al., 2013), a
remarkable match given all the uncertainties of defining each
of these functional and anatomical entities in different groups
of subjects by very different means, and ensuring that they are
properly registered to one another. Using on a tractography-
based parcellation of IPL, Mars et al. (2011) assigned the aSMG
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FIGURE 1 | Location of aSMG on the left inflated brain (A) and flatmap

(B) of left hemisphere using Caret (Van Essen, 2005). Yellow and red
outlines: aSMG (Peeters et al., 2013); ? in red: area involved in technical
reasoning; horizontal white lines : separation between dPMC and vPMC
(Tomassini et al., 2007); BA: Brodmann area; dPMC and vPMC dorsal and

ventral premotor cortex; OP: opercular areas, DIPSA, DIPSM, POIPS, VIPS;
phAIP and phPFG: putative human homologs of AIP and PFG; pMTG:
posterior MTG and MTGt: sematic tool processing in MTG; LOC: lateral
occipital complex; LOCo, LOCa, LOCt parts of LOC devoted to objects,
action observation, and tools.
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region to PFop (Caspers et al., 2008), which they consider dis-
tinct from more posterior SMG regions activated during grasping
movements. The aSMG region exhibits a considerable anatomical
asymmetry with a left hemisphere bias (Van Essen et al., 2012),
and the action observation activation is also completely asymmet-
ric, being restricted to the left hemisphere (Peeters et al., 2009).
Activation of the aSMG region is also strongly asymmetric in
the planning of pantomimes of tool use (Króliczak and Frey,
2009) and its functional connectivity is also asymmetric (Zhang
and Li, 2013). This left lateralization only partially reflects the
leading role of the right dominant hand in tool manipulation,
as these activations have been shown invariant for handedness
(Króliczak and Frey, 2009; but see Lewis et al., 2006; Martin et al.,
2011). Finally it is worth remembering that deficits in tool han-
dling are a hallmark of apraxia, which is generally associated
with left IPL lesions (Goldenberg and Hagmann, 1998). In the
opposite hemisphere the symmetrical region is occupied by the
higher-order parietal motion area devoted to the extraction of
attention-based motion, including long range apparent motion
(Claeys et al., 2003).

The aSMG region was originally discovered using movies show-
ing actions performed with tools and compared with similar
actions performed with the hand, a paradigm which at that time
had never been tested in fMRI. The aSMG overlaps partially with
the left lateralized tAIPS region (Mruczek et al., 2013) defined by
the subtraction viewing static tools vs. viewing static animals. A
long list of imaging studies clearly indicate that the aSMG area
is also activated by the sounds produced by tools when used
(Lewis et al., 2005), as well as by executing tool actions, imag-
ing or pantomiming tool use or making decisions about tool use
(Binkofski et al., 1998; Chao and Martin, 2000; Moll et al., 2000;
Okada et al., 2000; Inoue et al., 2001; Rumiati et al., 2004; Bun-
zeck et al., 2005; Creem-Regehr and Lee, 2005; Johnson-Frey et al.,
2005; Valyear et al., 2007; Jacobs et al., 2009; Króliczak and Frey,
2009; Gallivan et al., 2013). The activation during both observa-
tion and execution of tool actions suggests that the aSMG may
house mirror neurons (Rizzolatti and Craighero, 2004) for tool
actions. Finally, the rostral part of SMG is activated when indi-
viduals make prehistoric tools or observe their production (Stout
and Chaminade, 2007; Stout et al., 2008, 2011). Most of these
imaging studies report the activation of several parietal activa-
tion sites, in addition to the aSMG. With respect to activation by
tool action observation, Peeters et al. (2013) were able to show
the uniqueness of aSMG (Figure 2). This region was the only
parietal region of interest (ROI) out of 11 exhibiting a significant
interaction between the factors action and tool. Indeed the activ-
ity profile indicates that, as in the original Peeters et al. (2009)
study, the differential activation for observing tool actions signifi-
cantly exceeded the differential activation for observing biological
actions.

Peeters et al. (2013) showed that the left aSMG was activated
as much by the observation of rake actions as by the observa-
tion of a human hand dragging an object like a rake. Although
the activation of the aSMG by rake action observation was rel-
atively weak, the same observation was made with two different
groups of subjects. This finding suggests that what is critical is
the observation of tool actions are the kinematics of the action,

which are very different for tools and biological effectors. It fur-
ther suggests an important distinction between the activation of
the putative human homolog of anterior intraparietal (phAIP) and
aSMG during observation of tool actions. Area phAIP is activated
by observing the tool being grasped (Jacobs et al., 2009), just as
for any other object, explaining why phAIP is also activated when
observing biological manipulative actions. On the other hand,
aSMG is activated by observing the tool being moved to achieve
the goal (picking up or dragging the object toward the actor). One
may therefore extrapolate and suggest that during execution phAIP
and aSMG play similar roles, with phAIP planning the grasp of the
tool and aSMG planning the movement of the tool to obtain the
goal.

In conclusion functional imaging provides compelling evidence
that the aSMG region, localized in the anterior tip of left IPL
is specialized for processing of diverse aspects of tool use, using
kinematics as the main visual feature of tool action.

NEURAL NETWORKS FOR TOOL ACTION EXECUTION AND
OBSERVATION
In this section we propose schemes for the afferent and effer-
ent connections of phAIP (bilaterally, but with left dominance
if right-handed subject) and left aSMG, operating in parallel dur-
ing action execution and observation. These schemes will combine
knowledge of connections of monkey cortical regions for which
homology is known or plausible, as well as some human connec-
tivity data, which by nature are indirect and must be considered
with circumspection.

HAND AND TOOL ACTION EXECUTION
The connections of phAIP and aSMG operating when agents plan
for the use of a tool are shown in Figure 3. Left phAIP and left
aSMG act in parallel, possibly exchanging lateral connections, and
send converging signals to vPMC. The parallel nature of this oper-
ation needs qualification as only phAIP is active in planning hand
actions, while both phAIP and aSMG operate during planning of
tool actions. Convergence upon vPMC is supported by the evi-
dence that, in the monkey, the same F5 neurons are active during
the last phase of the grasping, i.e., the closure of the effector,
regardless of whether the action is performed with the hand, with
a tool, or even with a tool requiring an opposite biomechanical
movement (finger opening rather than closing) to grasp the object
(Umiltà et al., 2008). It is noteworthy that the parallel operation
of phAIP and aSMG is a further elaboration of the ventro-dorsal
stream (Rizzolatti and Matelli, 2003) of the dorsal visual path-
way, or its human homolog. This does not imply that planning
tool and hand actions are the only function of the ventro-dorsal
stream, or that the present scheme is the only possible elaboration
of this stream. Our view is related to those of Daprati and Sirigu
(2006) and Binkofski and Buxbaum (2013), who both consider a
role for the ventro-dorsal stream in tool use, but also stress the
role of the dorso-dorsal stream in planning hand actions toward
objects.

The monkey AIP is involved in planning grasping and other
manipulative action using visual signals indicating the shape and
size of objects; more specifically, this region has a visual compo-
nent, located in the posterior sector and housing neurons selective
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FIGURE 2 | Specificity of left aSMG amongst parietal regions for tool

action observation (from Peeters et al., 2013). Activity profiles of the 11
ROIs with locations of these ROIs shown in the middle panel. 10 ROIs were
defined in left parietal cortex: aSMG, phAIP and DIPSA, DIPSM (Peeters et al.,
2009), three tool related ROIs from Johnson-Frey et al. (2005; JF1-3), two
from Valyear et al. (2007; Va1-2) and one from Mahon et al. (2007; Ma). The

eleventh ROI, located in the right parietal cortex (Johnson-Frey et al., 2005) is
drawn on the symmetrical position in the left hemisphere (JF4). The
conditions shown in the activity profiles are tool action observation, static
tool, hand action observation, and static hand. Vertical bars indicate SEM. The
black asterisks indicate the only ROI in which the interaction between tool
and action was significant (p < 0.05 corrected for 11 comparisons): aSMG.

for 3D shape from stereo (Srivastava et al., 2009), and a motor
component, located in the anterior sector and housing visuomo-
tor and motor neurons (Murata et al., 1996, 2000). Like monkey
AIP, its human homolog comprises an anterior sector with motor
and visuomotor properties, phAIP, and a posterior visual sec-
tor, the dorsal IPS anterior (DIPSA) region, probably equivalent
to IPS5 (Mruczek et al., 2013), which, most likely, play similar
roles in grasping various objects, including tools. In the monkey,
AIP receives from caudal IPS (CIP), that itself receives from V3A
(Nakamura et al., 2001). In humans, V7 and its twin area V7A
(Georgieva et al., 2009; Kolster et al., 2011), likely equivalent to
IPS0-1 (Silver et al., 2005), may correspond in the monkey to the
CIP1-2 pair (Arcaro et al., 2011; Janssens et al., 2013). V7 overlaps

heavily with a motion-sensitive area ventral intraparietal sulcus
(VIPS; Sunaert et al., 1999) which is incorporated in the present
scheme. In humans, the region corresponding to the monkey’s
V3A may have expanded and may include the four areas described
in the V3A complex by Georgieva et al. (2009). Hence we indicate
in Figure 3 input to DIPSA from the V3A complex via VIPS. In
the monkey AIP also receives input from the lower bank of supe-
rior temporal sulcus (STS; Borra et al., 2008) which supposedly
provides input concerning object properties. In deference to the
homology between the monkey IT and the human lateral occipital
complex (LOC; Denys et al., 2004), we show an input from a subre-
gion of LOC (LOCo), on the ventral occipito-temporal surface, to
phAIP. LOC receives from the V4 complex in the ventral pathway.
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FIGURE 3 | Connections of phAIP and aSMG during execution of

actions: biological actions (blue) tool actions (blue + red). Dashed
lines: postulated connections; Abbreviations see Figure 1.

With regard to aSMG, it has been demonstrated that this region
is connected with vPMC and posterior middle temporal gyrus
(pMTG; Ramayya et al., 2010). This latter region is presumed to
represent the tool use associated motion (MTGt; Chao et al., 1999;
Devlin et al., 2002; Johnson-Frey et al., 2005; Mruczek et al., 2013),
corresponding to the “law” of the tool, i.e., defining its nature (the
target-movement mapping of the tool; Massen and Prinz, 2007).
It probably provides the main input to aSMG for its planning
function. MTGt itself processes dynamic input (Beauchamp et al.,
2002), and is located close to the MT cluster (Kolster et al., 2010),
from which it may receive input. MTGt also receives input from
the fusiform gyrus representing semantic knowledge about tool
properties (LOCt), a fusiform region also projecting directly to
aSMG (Mahon et al., 2007). Which exact part of LOC devoted
to tools requires further exploration as more lateral regions have
also been implicated (Peelen et al., 2013; but see Mruczek et al.,
2013). The connection between LOCt and aSMG, thus linking
ventral and dorsal streams, is similar in nature to that from
LOCo to phAIP. It is unclear to what extent aSMG needs visual
input from the ventro-dorsal stream. So far we have assumed
that aSMG receives no specific visual input. However, to utilize
the tool, it has to be positioned appropriately with respect to the
target object (consider a screwdriver and the slot in the screw);
in addition once the tool is moving, the target is subject to its
influence and will also be moving (in this instance the screw get-
ting deeper). Both aspects, as they relate to the application of
the law of the tool, may require visual input for proper assess-
ment. Possible sources of such information may be the dorsal
IPS medial (DIPSM) or VIPS (Figure 3). In this way the aSMG
region subserves the tool-object relationship, while phAIP takes
care of the tool-actor relationship (Osiurak et al., 2009). Finally,
aSMG is likely to receive tactile input indicating whether and how
the tool is being held by the hand. These inputs may originate in
neighboring SII and reach aSMG directly or indirectly via phAIP.
Indeed, the anterior part of monkey AIP receives input from SII
(Borra et al., 2008).

HAND TOOL ACTION OBSERVATION
During the observation of tool actions phAIP and aSMG again
operate in parallel and again their outputs converge onto vPMC
(Figure 4). Although the exact homology of vPMC is under inves-
tigation (Orban et al., 2012) it likely includes the homolog of
monkey F5c, an area which contains the mirror neurons. This
convergence is supported by the evidences that, in trained mon-
keys, the observation of tool use triggers activity in hand grasping
mirror neurons (Rochat et al., 2010), even if the firing rate of these
neurons was higher during hand grasping observation. Further-
more, the lack of interaction between tool and action in the studies
of Peeters et al. (2009, 2013), confirmed that vPMC is as differ-
entially active for observing biological actions as for tool actions.
The most plausible reason of this convergence in vPMC is that,
during both hand and tool action observation, the motor cor-
tical areas respond in relation to the goal of the action, which
is the same in both types of action, rather than to the move-
ment executed to accomplish the goal (Järveläinen et al., 2004;
Cattaneo et al., 2009).

In the monkey the visual signals concerned with grasping obser-
vation transit through two parietal stations, AIP and PFG (Nelissen
et al., 2011). The homolog of PFG (tentatively labeled phPFG) is
still unknown but some recent data (Ferri et al., 2013) suggest that
it is located ventrally and slightly caudally from phAIP. The two
parietal regions, AIP and PFG, receive input from monkey STS,
more precisely with middle superior temporal pole (STPm) in the
upper bank feeding into PFG and a region in the rostral lower
bank of STS located near that providing object property informa-
tion, projecting to AIP. We assume the same holds in humans and
given the assumed homology (Jastorff and Orban, 2009; Jastorff
et al., 2012) of STPm with pMTG and of the rostral lower bank of
STS with lateral part of LOC (LOCa; Figure 1) we indicate such
connections in Figure 4. Both regions likely receive input indi-
rectly from the MT cluster, which is very similar in monkeys and
humans (Kolster et al., 2009, 2010). In both species this cluster

FIGURE 4 | Connections of phAIP and aSMG during observations of

actions: biological actions (blue) tool actions (red + blue). Dashed
lines: postulated connections; Abbreviations see Figure 1.
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includes four areas sharing central representations in the center of
the cluster.

While it is relatively clear how visual information about
observed biological actions reach phAIP, it is less clear how visual
signals related to observed tool actions reach aSMG. The most
likely origin is from posterior parietal cortex (PPC). One possibil-
ity is through DIPSM, another motion-sensitive region which is
the homolog of anterior LIP (Durand et al., 2009), also a motion-
sensitive region in monkeys (Freedman and Assad, 2006; Orban
et al., 2006). LIP in the monkey receives from the MT cluster,
and DIPSM likely does the same. The alternative is through VIPS,
which we believe receives input from human V3A, which is also
motion-sensitive (Tootell et al., 1997), unlike it monkey counter-
part (Vanduffel et al.,2001). These routes over the PPC may explain
why more parietal regions are activated by motion stimuli in
humans than in monkeys, whether by 3DSFM motion (Vanduffel
et al., 2002) or translation (Orban et al., 2006).

RELATIONSHIP WITH NEUROPSYCHOLOGICAL AND
COGNITIVE STUDIES
THE RELATIONSHIP BETWEEN TOOL ACTIONS AND AFFORDANCES
A difficulty in studying brain mechanisms involved in tool use
arises in attempting to formalize for scientific purposes the folk
category of tool. In fact, each definition of a tool, attempting to dis-
tinguish between tool use and other behaviors, has proven elusive
and often led to paradoxical conclusions. Hence, many investi-
gations into what would correspond to tool use have generally
concluded that this behavioral category is arbitrarily drawn, and
that any definition of tool use is one of convenience rather than
psychological (Beck, 1980; Preston, 1998; Osiurak et al., 2010).
Part of the problem arises from studies in animals, for which the
distinction between tool use and other purposeful behavior using
natural materials such as branches, e.g., building a nest, is less
clear. These difficulties also reflect the fact that humans, who use
tools proficiently, use many different types of artifacts with diverse
goals, i.e., extending various natural actions, e.g., using a car or
a rifle. The solution might be that a tool is any artifact extend-
ing the class of manipulative actions, with the understanding that
tools will generally be man-made artifacts for humans, but not for
animals. Can a spoon or a knife be considered a tool? The answer
depends very much on the goal (Osiurak et al., 2010): if they are
used to eat, rather than to cook or prepare food, they may not,
strictly speaking, belong to the category of tools, if we define tools
as artificial implements intended to extend human manipulative
capability. The same applies to a toothbrush (Sunderland et al.,
2013), which extends the interaction capabilities with the own
body and not with external objects. Recent evidence (Ferri et al.,
2013) indicates that viewing actions directed to the own body acti-
vates different parietal regions from viewing manipulation. While
the boundaries of what counts as a tool are still fuzzy, a number
of manipulable objects can clearly not be considered tools and we
would emphasize the need for greater care in the selection of the
appropriate stimuli for studying tool use. In contrast, some studies
make the opposite error, considering typical tools such as ham-
mers or saws to be objects (Kalénine et al., 2010), and erroneously
labeling the aSMG as a region involved in action understanding in
general.

A different sort of inappropriate stimuli concerns the use of
static images instead of movies. The dynamical aspects, such as
kinematics, are intrinsic characteristics of the tool actions detected
by aSMG and for this reason static photographs of a gesture (Osiu-
rak et al., 2009; Bach et al., 2010) are not optimal stimuli for
studying this region. Indeed, we used static gestures as control
conditions. Finally, tool use implies a goal to be accomplished
and for this reason one has to take care how pantomime tests
are performed: if they simply imitate tool manipulation without
addressing any goal (Osiurak et al., 2009), they may not actually
fit the definition of a tool action which, by definition, has a goal.
In fact, while little is known about the selectivity of aSMG for the
goal of the action, it is well known that other regions involved in
tool use show dramatic changes in activity between observing an
object-directed tool action and observing the same actions devoid
of any goal, i.e., when the object on which the tool operates is
lacking (Järveläinen et al., 2004; Cattaneo et al., 2009).

The distinction between planning object-directed actions using
the natural effectors and planning actions directed to the same
object but using tools is consistent with the view (Osiurak et al.,
2009) that affordances apply to tools only insofar as they are objects
that can be grasped. Considering only tool affordances to gain
insight into the use of tools may be counterproductive, as these
characteristics fail to consider the relationship between the tool
and the object, or target, of the tool action, e.g., the nail when
using a hammer, or the screw when using a screwdriver (Osiu-
rak et al., 2009). Affordances are egocentric, while we need an
allocentric framework to plan tool use, particularly that of novel
tools (Osiurak, 2013). Hence, it is highly unlikely that only the
affordance of tools, even very familiar ones, can explain the repe-
tition suppression effects observed by Valyear et al. (2012) during
tool observation. Indeed the suppression effects were induced by
repeated visual presentation of a tool, and not by repeating the tool
action. Hence these effects are unlikely to track the existence of spe-
cialized neuronal mechanisms for the use of these familiar tools,
the more that repetition suppression is known to overestimate
selectivity (Sawamura et al., 2006).

The relationship between tool use and affordances can be clar-
ified using Figure 3. It indicates that the tool action planning
network is more complex, as two parietal regions are involved in
planning tool use: phAIP to grasp the tool and aSMG to move it
according to its nature. Considering the final goal to be reached by
the tool action, affordances apply only to the phAIP component
of the planning, which is indeed the component common to both
objects and tools (Figure 5). However, this does not exclude the
possibility that aSMG send some biasing signal to phAIP to favor
the selection of the affordance that best suits the proper use of the
tool. The phAIP affordance component uses the visual analysis
of size and shape to plan the appropriate grip aperture, a func-
tion commonly associated with the canonical neurons described
in monkey AIP and F5, i.e., with the ventro-dorsal stream, unlike
what is proposed by Osiurak (2013). That visual analysis generally
yields several affordances, one of which has to be selected accord-
ing to the goal of the action and the agent’s intentions, a function
in which prefrontal cortex (PFC) afferents to AIP may play a role.
As far as tool grasping is concerned, aSMG is the primary candi-
date region for signaling the most appropriate affordance to phAIP.
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FIGURE 5 | Relationship of wiring diagram of phAIP and aSMG (execution) to cognitive processes indicated as yellow boxes with green outlines:

affordances, technical reasoning, and sematic knowledge.

This view is supported by the finding that patients with ideomotor
apraxia perform more poorly in grasping tools correctly than in
grasping abstract objects (Sunderland et al., 2013), thus suggesting
that the selection of the more appropriate grip of a tool depends
on both phAIP coding multiple affordances and aSMG providing
knowledge of the law of the tool.

APRAXIA AND MECHANICAL PROBLEM SOLVING IN TOOL USE
The left lateralization of the planning of tool use is consis-
tent the observation made repeatedly, that tool use is defi-
cient in apraxia due to left parietal lesions (Goldenberg and
Hagmann, 1998). The difficulty has been in appreciating that
the various symptoms included in apraxia, typically deficits
in imitation of meaningless gestures and in tool use, need
not to be necessarily related. Attempts have been made to
link these two deficits and find a common underlying fac-
tor such as the analysis of spatial relationships (Goldenberg,
2009), but recent studies have challenged this view show-
ing that apraxic patients perform more poorly in tool-related
actions than in hand actions, even if the demands of these
tasks on postural or spatial representation are identical (Sun-
derland et al., 2013). The common association of deficits in
reproducing meaningless gestures and tool use may simply indi-
cate that the neural mechanisms of these two activities while
distinct, occupy neighboring IPL regions. This juxtaposition
could explain their common involvement in lesions which are
generally due to stroke and typically involve large areas of
cortex. More fundamental and productive was the realization
that the use of familiar tools which is generally impaired in

apraxia may in fact be dependent on two distinct mechanisms
(Goldenberg and Spatt, 2009). One concerns semantic knowledge
of the conventional use of familiar tools and the other the infer-
ence of function from structure (Goldenberg and Hagmann, 1998;
Daprati and Sirigu, 2006), also referred to as mechanical prob-
lem solving (Goldenberg and Spatt, 2009) or technical reasoning
(Osiurak et al., 2010).

The present review provides clear indications regarding the
neural pathways that may underlie semantic knowledge of the
conventional use of familiar tools, a circuit which relies on the
LOCt and MTGt, two areas providing input to the aSMG. Thus
aSMG indeed constitutes the entry point of semantic informa-
tion into the dorsal pathway, extending what was already known
about AIP/phAIP. In contrast, the present review has provided
no additional information with regard to the other component
of tools use, mechanical problem solving, which can be applied
to new tools as well as to non-conventional uses of familiar
tools. This type of reasoning refers to the ability to contem-
plate the abstract principles and mechanics involved in tool
use, and is based on mental simulations (Hegarty, 2004) relying
on high-level allocentric spatial representations (Osiurak, 2013)
and analog processes involved in rule-based reasoning. Impor-
tantly, technical reasoning does not require semantic knowledge
(Osiurak et al., 2010). Indeed, a decision that the tip of a screw-
driver is appropriate for the groove in a particular screw is
relatively independent of our semantic knowledge about screw-
drivers, in that the relevant information for turning screws is
the fit of the tip of one object, whatever its’ nature (a screw-
driver, a knife, or a coin), into the slot of the other object.
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That aspect suggests some interesting parallelism with affordances,
which also do not require explicit knowledge of object identity,
the main difference being that during tool use the hand-object
relationship, typical of affordances, is replaced by the relation-
ship between the tool and its receiver object (Osiurak et al.,
2010).

There is now mounting evidence from apraxia studies that
mechanical problem solving/technical reasoning must be local-
ized in the left IPL (Goldenberg, 2009; Osiurak et al., 2010). One
possibility is that the region located caudal to aSMG, between
aSMG and phAIP, extending toward the angular gyrus, is involved
in this function (? in Figure 1). A possible indication is pro-
vided by the original Peeters et al. (2009). In this study, one of the
tools, the screwdriver, was used in an unconventional way, to pick
up an object. The activation for observing this action extended
much further posterior that that evoked by observing the rake
or the pliers being used conventionally (compare Figure 2B with
Figures 2C,D in Peeters et al., 2009). The mechanical problem-
solving function was probably also active in the subjects of Stout
et al. (2011), who observed Acheulean tool making, compared to
Oldowan tool making. Again, the activation common to all type
of subjects (novices, trained, experts) extended further caudally
(LM −50, −36, 42) compared to the aSMG as defined in Peeters
et al. (2009, 2013). Thus the aSMG (Figure 5) would be the entry-
point for not only semantic information into the dorsal stream,
but also for the output of technical reasoning, hence the locus of
the dialectic as described by Osiurak et al. (2010).

THE ORIGIN OF aSMG DURING THE EVOLUTION
As mentioned earlier the chimpanzee tool use differs fundamen-
tally from that of humans (Osiurak et al., 2010; Vaesen, 2012),
depending primarily on a modification of the biological grasp-
ing circuit centered on AIP. This is supported by recent evidence
that chimpanzees differ as much from humans as macaques do
with respect to action observation (Hecht et al., 2013). Hence the
question arises as to when tool use based on left aSMG arose dur-
ing evolution. The first ancestors equipped with this new neural
apparatus were most likely Homo Habilis, associated with the
Oldowan industrial complex or Homo Erectus, associated with
the Acheulean industrial complex. The former dates back 2.5 mil-
lion years, the second to 1.7 million years before present (Asfaw
et al., 1992; Susman, 1994; Roche et al., 1999). Either choice would
place the development of tool use, between the emergence of the
two other main human traits, bipedalism and language. Bipedal-
ism can be traced back to the Australopithecus, a species much
older than Homo Ergaster or Erectus, that emerged about 4 mil-
lion years ago (Wood and Baker, 2011). However, Homo erectus
was probably the first fully fledged biped (Ruff, 2009). Language
on the other hand is a much more recent acquisition and may be
as recent as 600 thousand years, or less, following the emergence
of the premodern homo (Coqueugniot et al., 2004), who was a
maker of composite tools.

This timing suggests that these three developments may to some
degree be interdependent. Indeed bipedalism frees the hands for
manipulative purposes, and must have been an important step
toward tool use, insofar as tools are obviously manipulated by the
hand. One possibility is that a region such as AIP was duplicated

by a prolongation of the cell cycle and this region gradually came
to be controlled by afferents carrying tool use related signals. On
the other hand, if tool use did indeed precede the emergence of
language, it may help understand the typical left lateralization of
language. Indeed tool use may in fact have triggered the develop-
ment of technical reasoning in left IPL, which in turn may have
favored a development of language in the left hemisphere. The
link between the emergence of tool making and language dur-
ing evolution has been postulated previously (Stout et al., 2008;
Stout and Chaminade, 2012). This view receives support from the
involvement of certain IPL regions neighboring those involved in
technical reasoning in literacy (Carreiras et al., 2009), the under-
standing of words, and probably also the planning of speech
(Wernicke area or Spt, Hickok and Poeppel, 2007). An evolu-
tionary link is also supported by the modest asymmetry favoring
the left hemisphere which has been observed in non-human pri-
mates (Joly et al., 2012). It has been argued that the left asymmetry
of language is much clearer for execution than for understanding
(Hickok and Poeppel, 2007). Execution includes the planning of
speech and thus a parietal component, and we may consider Wer-
nicke’s area as a region of sensori-motor transformation (Cogan
et al., 2014), just as most other PPC regions.

CONCLUSION
A large body of imaging studies implicates the left aSMG region as
an area involved in the execution and observation of tool actions.
The present review has attempted to make the implications of these
findings explicit, particularly with respect to pathways centered on
the anterior parietal sulcus regions: phAIP and aSMG, the latter
appearing to be a specialization of phAIP for manipulating com-
plex tools. Switching from hand to tool action requires, besides the
visual input regarding features of the target object provided by the
IPS to phAIP and aSMG (for hand-object and tool-object inter-
action, respectively), additional information specific to tool use
and presumably converging upon aSMG. These afferents include
semantic information, which is particularly relevant when using
familiar tools, technical reasoning, more crucial during the use of
uncommon or new tools, and somatosensory feedback. It follows
that the affordances of a tool cannot, by themselves, account for
tool use. Furthermore, postural and intentional constraints also
play a role during the planning of tool actions and consequently
are probably provided by inputs to aSMG, which were not dis-
cussed. This connectivity model is clearly more elaborated than
the two substreams of the dorsal visual pathway. At present it dis-
plays a partial convergence with recent neuropsychological views
in so far as the semantic input required for familiar tool use has
been identified with some degree of confidence, while the cortical
localization of technical reasoning can only be conjectured. These
views also provide new support for the link between tool-making
and language emergence during evolution.
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