
METHODS ARTICLE
published: 17 April 2014

doi: 10.3389/fpsyg.2014.00311

A longitudinal multilevel CFA-MTMM model for
interchangeable and structurally different methods
Tobias Koch1*, Martin Schultze1, Michael Eid1 and Christian Geiser2

1 Department of Educational Science and Psychology, Freie Universität Berlin, Berlin, Germany
2 Psychology Department, Utah State University, Logan, UT, USA

Edited by:

Holmes Finch, Ball State University,
USA

Reviewed by:

Thorsten Meiser, University of
Mannheim, Germany
Evgueni Borokhovski, Concordia
University, Canada

*Correspondence:

Tobias Koch, Department of
Educational Science and
Psychology, Freie Universität Berlin,
Room J 26/24, Habelschwerdter
Allee 45, 14195 Berlin, Germany
e-mail: tkoch@zedat.fu-berlin.de

One of the key interests in the social sciences is the investigation of change and stability
of a given attribute. Although numerous models have been proposed in the past for
analyzing longitudinal data including multilevel and/or latent variable modeling approaches,
only few modeling approaches have been developed for studying the construct validity
in longitudinal multitrait-multimethod (MTMM) measurement designs. The aim of the
present study was to extend the spectrum of current longitudinal modeling approaches
for MTMM analysis. Specifically, a new longitudinal multilevel CFA-MTMM model for
measurement designs with structurally different and interchangeable methods (called
Latent-State-Combination-Of-Methods model, LS-COM) is presented. Interchangeable
methods are methods that are randomly sampled from a set of equivalent methods (e.g.,
multiple student ratings for teaching quality), whereas structurally different methods are
methods that cannot be easily replaced by one another (e.g., teacher, self-ratings, principle
ratings). Results of a simulation study indicate that the parameters and standard errors in
the LS-COM model are well recovered even in conditions with only five observations per
estimated model parameter. The advantages and limitations of the LS-COM model relative
to other longitudinal MTMM modeling approaches are discussed.
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1. INTRODUCTION
An increasing body of research is devoted to longitudinal data
analysis examining the change and stability of a given attribute
across time (see Singer and Willett, 2003; Khoo et al., 2006). The
prominence of longitudinal studies may be explained by the fact
that longitudinal measurement designs bear many advantages.
Longitudinal measurement designs are more informative than
cross-sectional studies, allowing researchers to (1) investigate
change and/or variability processes, (2) test the degree of mea-
surement invariance as well as indicator-specific effects, and (3)
examine potential causal relationships (see Steyer, 1988, 2005).
Over the last decades, many statistical models have been proposed
for analyzing longitudinal data including multilevel as well as
latent variable modeling approaches (c.f. Little et al., 2000; Singer
and Willett, 2003; Rabe-Hesketh and Skrondal, 2004; Steele et al.,
2008; Heck et al., 2013). On the other hand, only few attempts
have been made to develop appropriate models for longitudinal
multitrait-multimethod (MTMM) data (e.g., Kenny and Zautra,
2001; Burns and Haynes, 2006; Courvoisier et al., 2008; Grimm
et al., 2009; Geiser et al., 2010; Koch, 2013).

Originally, multitrait-multimethod (MTMM) analysis was
developed for scrutinizing the construct validity of social
science measures (Campbell and Fiske, 1959). According to
Campbell and Fiske (1959) at least two traits (e.g., empa-
thy and aggression) and two methods (e.g., student reports
and teacher reports) are required for investigating the degree

of convergent and discriminant validity among different mea-
sures. Convergent validity refers to the associations (correlations)
between two methods measuring the same trait (e.g., the correla-
tion between empathy measured via student and teacher reports).
Discriminant validity refers to the question of whether and to
which extent methods are able to differentiate between differ-
ent traits (e.g., the correlation between self-reported empathy and
self-reported aggression).

Combining the advantages of longitudinal modeling
approaches and MTMM modeling approaches can be fruit-
ful. For example, longitudinal MTMM models allow researchers
to investigate the construct validity of different measures across
time by combining the information provided by multiple
methods or reporters in a single model. This is useful because
a researcher would otherwise have to estimate separate longi-
tudinal models for each reporter and no information as to the
relationship between reporters could be obtained. Moreover,
longitudinal MTMM models allow modeling method effects,
examining the stability and change of these method effects across
time, and scrutinizing potential causes of method effects by
including other (manifest of latent) variables in the model.

The purpose of the present work is to extend the range of lon-
gitudinal models for the analysis of complex longitudinal MTMM
data by presenting a comprehensive modeling framework for dif-
ferent types of methods. Specifically, we present a new multilevel
structural equation model for the analysis of longitudinal MTMM
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data featuring interchangeable and structurally different meth-
ods. The model is called Latent-State-Combination-Of-Methods
model (LS-COM) model. The LS-COM model combines the
advantages of four modeling approaches, that is, structural equa-
tion modeling, multilevel modeling, longitudinal modeling, and
MTMM modeling with interchangeable and structurally differ-
ent methods. In particular, the LS-COM allows researchers to
(1) explicitly model measurement error, (2) specify method fac-
tors on different measurement levels, (3) analyze the convergent
and discriminant validity across multiple occasions, (4) investi-
gate change and stability of construct and methods effects across
time, and (5) test important assumptions in longitudinal data
analysis such as the degree of measurement invariance. The LS-
COM model is formulated based on the principles of stochastic
measurement theory (Zimmerman, 1975; Steyer and Eid, 2001),
which has the advantage that all latent variables in the model are
psychometrically well-defined as random variables with a clear
meaning.

The article is structured as follows: First, we review con-
ventional (single-method) models of longitudinal confirmatory
factor analysis with a special focus on latent state (LS) mod-
els (Steyer et al., 1992). Second, we discuss current extensions
of LS-modeling approaches to MTMM designs with structurally
different methods. In this regard, we review the correlated state-
correlated method minus one [CS-C(M-1)] model by Geiser
et al. (2010). Furthermore, we explain the differences between
measurement designs with structurally different methods, inter-
changeable methods, or a combination of both methods. We show
that the CS-C(M-1) model is useful for modeling data obtained
from longitudinal MTMM measurement designs with struc-
turally different methods, but that this model is not suitable for
measurement designs with a combination of structurally different
and interchangeable methods. Third, we present the new LS-
COM model for longitudinal MTMM designs with structurally
different and interchangeable methods. The new LS-COM model
fills a gap in the literature, as previous approaches to longitudi-
nal MTMM analysis focused exclusively on structurally different
methods. Fourth, we report the results of a Monte Carlo simula-
tions study in which we examined the statistical performance of
the LS-COM model. Finally, we discuss the advantages and lim-
itations of the LS-COM model compared to other longitudinal
MTMM modeling approaches.

2. LONGITUDINAL CONFIRMATORY FACTOR ANALYSIS
The versatility and flexibility of the CFA framework have inspired
the development of different CFA models for longitudinal mea-
surement designs, for example, autoregressive models (Hertzog
and Nesselroade, 1987; Jöreskog, 1979a,b; Marsh, 1993; Eid and
Hoffmann, 1998), latent state models (Steyer et al., 1992), latent
change (difference score) models (Steyer et al., 1997, 2000;
McArdle, 1988), latent state-trait models (Steyer et al., 1992,
1999), and latent growth curve models (McArdle and Epstein,
1987; Meredith and Tisak, 1990; Hancock et al., 2001; Bollen
and Curran, 2006; Duncan et al., 2006). Most previous longitu-
dinal models have been designed for single method measurement
designs (e.g., self-reports) only. Presumably, the simplest CFA
model for longitudinal data is the latent state (LS) model, which

represents an extension of classical test theory to longitudinal
measurement designs (see Steyer et al., 1992; Marsh, 1993; Tisak
and Tisak, 2000; Geiser, 2009). The LS model is often used as a
baseline model, given that it implies no restrictions with regard
to the structural part of the model (see Figure 1). Hence, the LS
model is often used for testing the measurement model (e.g., the
validity of the assumed factor structure, measurement invariance
restrictions, correlations of error variables, unidimensionality of
the scales on an occasion of measurement). According to latent
state theory (see Steyer et al., 1992), each observed variable Yi l

can be decomposed into a latent state (Si l, occasion-specific true
score) variable and a measurement error variable εi l, where i
is the indicator (item or parcel) and l denotes the occasion of
measurement:

Yi l = Si l + εi l. (1)

The latent state variable Si l represents the individual state scores
at a particular occasion of measurement, whereas the measure-
ment error variables reflect unsystematic influences due to mea-
surement error. It can be shown that the additive decomposition
of the observed variables Yi l into a latent state variable Si l and
a latent measurement error variable εi l follow directly, if both
latent variables are defined in terms of conditional expectations
(see Steyer, 1988, 1989; Steyer et al., 1992). In order to estimate
a latent state model, it is assumed that (1) the latent state vari-
ables belonging to the same occasion of measurement are linear
functions of each other (i.e., congenerity assumption):

Si l = αii′l + λii′lSi′l, (2)

and that (2) the measurement error variables [i.e., Cov(εi l, εi l)
for (i, l) �= (i′, l′)] are uncorrelated with each other. Equation (2)
states that the latent state variables are linear functions of each
other and only differ by an additive constant αii′l and multiplica-
tive constant λii′l. With respect to this assumption, it is possible to
show that Equation (2) is equivalent to Si l = αi l + λi lSl. Hence,
the general measurement equation of a latent state model with
common latent state factors can be written as follows:

Yi l = αi l + λi lSl + εi l. (3)

αi l is the intercept and λi l is the factor loading parameter pertain-
ing to the latent state factors. As a consequence of the assumptions
explained above, the total variance of the observed variables can
be decomposed as follows:

Var(Yi l) = λ2
i lVar(Sl) + Var(εi l). (4)

The reliability of each observed variable is then given by:

Rel(Yi l) = λ2
i lVar(Sl)

Var(Yi l)
. (5)

Figure 1 shows a path diagram of the latent state model for three
indicators and three occasions.

The correlations between the latent state factors Sl characterize
the stability of interindividual differences on the given attribute
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FIGURE 1 | A latent state (LS) model with three indicators (i = 3) and

three occasions of measurement (l = 3), where Sl: latent state factors,

λil: latent state factor loadings, εil: measurement error variables.

Intercepts (αi l ) are not depicted in the figure.

(see Figure 1). High correlations reflect that individual differ-
ences with regard to a particular attribute (construct) are rather
stable over time. Researchers may also investigate mean change of
a given construct across time. For meaningful interpretations of
latent mean change, we recommend that measurement invariance
(MI) should be tested and that researchers should at least estab-
lish strong MI (e.g., Meredith, 1993; Widaman and Reise, 1997;
Millsap, 2012).

Strong MI can be established by imposing the following
restrictions:

1. The intercepts of the observed variables αi l have to be set equal
across time (i.e., αi l = αi l′ = αi).

2. The factor loading parameters λi l have to be set equal across
time (i.e., λi l = λi l′ = λi) and one factor loading parameter
on each occasion of measurement has to be fixed to the same
value (e.g., λ1 = 1).

3. The mean of the first latent state factor has to set to be zero
[i.e., E(S1) = 0].

4. The mean of the remaining latent state factors can be freely
estimated [i.e., E(Sl) �= 0].

Strong MI is a prerequisite for studying true mean change
(Steyer et al., 1997, 2000)1. Restrictions 3 and 4 allow

1For more details on partial (MI) see Byrne et al. (1989) and on approximate
measurement invariance see Van De Schoot et al. (2013).

examining mean change relative to the first measurement
occasion2. Although the LS model (as well as other longitudinal
CFA models) offers many advantages such as analyzing change
and stability of an attribute apart from measurement error influ-
ences and testing the degree of measurement invariance, the LS
model is limited in terms of incorporating data from multiple
raters or methods, because the model does not contain method
factors. In order to study the convergent and discriminant valid-
ity in longitudinal MTMM designs, more sophisticated models
are needed.

3. LONGITUDINAL CFA-MTMM MODELS
According to Eid and Diener (2006) multimethod measure-
ment designs overcome many limitations of single method
measurement designs and should therefore be preferred when-
ever possible. With respect to longitudinal CFA-MTMM models
it is possible to (1) investigate the convergent and discriminant
validity at each occasion of measurement and across different
occasions of measurement, (2) study change and stability of con-
struct and method effects across time, (3) model measurement
error, (4) investigate the generalizability of method effects, and
(5) test important assumptions such as measurement invariance
and/or indicator-specific effects.

Today, MTMM measurement designs are commonly analyzed
using confirmatory factor analysis (CFA-MTMM models) with
multiple indicators in each trait-method unit (e.g., Widaman,
1985; Marsh and Hocevar, 1988; Marsh, 1989; Wothke, 1995;
Dumenci, 2000; Eid, 2000; Eid et al., 2003, 2006). Up to now,
only few CFA-MTMM models have been proposed for the analy-
sis of longitudinal data (e.g., Kenny and Zautra, 2001; Burns and
Haynes, 2006; Courvoisier et al., 2008; Grimm et al., 2009; Geiser
et al., 2010; Koch, 2013).

One exception is the study by Grimm et al. (2009) who recently
proposed a longitudinal CFA-MTMM model combining the cor-
related trait-correlated method (CT-CM) approach (Widaman,
1985; Marsh and Grayson, 1995) and the latent growth curve
modeling approach (e.g., McArdle and Epstein, 1987; Meredith
and Tisak, 1990). However, results of previous studies have shown
that the CT-CM modeling approach is associated with various
theoretical and empirical problems (e.g., Marsh, 1989; Kenny
and Kashy, 1992; Marsh and Grayson, 1994; Steyer, 1995; Eid,
2000; Geiser et al., in press). In addition, the CFA-MTMM model
by Grimm et al. (2009) is limited to single-indicator measure-
ment designs and does not allow specifying trait-specific method
factors.

Geiser et al. (2010) developed a longitudinal CFA-MTMM
model [called correlated state-correlated method minus one, CS-
C(M-1) model] that combines LS theory with the correlated
trait-correlated method minus one [CT-C(M-1)] approach (Eid,
2000; Eid et al., 2003, see Figure 2). In this model, one method
has to be chosen as reference method which all other meth-
ods are compared to. The common latent state factor is the
state factor of the reference method. Each observed variable of a

2Another possibility is to set the intercept of a reference indicator (e.g., first
indicator) to zero on all occasions of measurement and estimate the latent
means of the latent state factor on each occasion of measurement.
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FIGURE 2 | A latent correlated state correlated method minus one

[CS-(M − 1)] model with three indicators (i = 3), one construct (j = 1),

two methods (k = 2) and three occasions of measurement (l = 3),

where Yijkl: observed variables, Sjkl: latent state factors, λSijkl: state

factor loadings, Mjkl: latent method factors, λMijkl: method factor

loadings, εijkl: measurement error variables. Intercepts (αijkl ) are not
depicted in the figure.

non-reference method is decomposed into three parts: (1) a part
that is predictable by the common state factor, (2) a part that is
method-specific, and (3) measurement error. One advantage of
the CS-C(M-1) model is that all latent variables are well-defined
with a clear and unambiguous interpretation (Geiser, 2009). The
CS-C(M-1) model also overcomes many limitations of previous
CFA-MTMM modeling approaches. For example, the CS-C(M-
1) model allows specifying trait-specific method factors using
multiple indicators per trait-method unit (TMU) and separating
the observed variance into trait, method, and measurement error
variance. According to the results of simulation studies (Crayen,
2008; Geiser, 2009), the CS-C(M-1) model performs well in many
conditions.

However, the CS-C(M-1) model cannot be applied to all
possible longitudinal MTMM measurement designs. In par-
ticular, the CS-C(M-1) model is not suitable for MTMM
measurement designs combining structurally different and inter-
changeable methods. In the next section, the differences between
measurement designs with structurally different and interchange-
able methods are explained in greater detail.

4. DIFFERENT TYPES OF METHODS
Eid et al. (2008) clarified that the type of method used in a study
is of particular importance for defining appropriate CFA-MTMM
models. More specifically, Eid et al. (2008) showed that measure-
ment designs with (a) interchangeable methods, (b) structurally
different methods, and (c) a combination of structurally dif-
ferent and interchangeable methods imply different sampling
procedures and therefore require different CFA-MTMM models.
According to Eid et al. (2008), interchangeable methods are meth-
ods that can be randomly sampled from a set of similar methods.
Consider, for example, multiple peer ratings of students’ empathy.
Both, peer ratings and subordinates’ ratings can be considered as
interchangeable, because they have more or less the same access
to the target’s behavior (Eid et al., 2008). Figure 3B illustrates the
sampling procedure for interchangeable methods. According to
Figure 3B, measurement designs with interchangeable methods
imply a multistage sampling procedure (Eid et al., 2008; Koch
et al., in press). First, a target (t, e.g., teacher) is randomly chosen
from a set of all possible targets (t ∈ T, i.e., all teachers). Second,
multiple (e.g., three) students (e.g., Edgar, Emily, and Mark) are
randomly sampled from the same target-specific rater set Rt .
Therefore, measurement designs with interchangeable methods
imply a multilevel data structure (Eid et al., 2008).

In contrast, measurement designs with structurally different
methods (see Figure 3A) use methods that are not randomly
sampled out of a common set of similar methods (raters). For
example, structurally different methods such as self-ratings, par-
ent ratings, and the ratings of the class teacher do not stem
from the same group of methods, but differ in many ways. As
a consequence, measurement designs with structurally different
methods can usually be modeled with single-level factor mod-
els [e.g., CS-(M-1) model]. An increasing number of studies
use a combination of structurally different and interchange-
able methods. For example, in organizational psychology it is
very common to use self-reports, supervisor reports, and inter-
changeable colleague reports (so-called 360◦ feedback designs).
In educational and developmental psychology, many researchers
use student reports, teacher and parent reports, as well as inter-
changeable peer reports. All of these designs imply a combination
of structurally different and interchangeable methods.

5. THE NEED FOR LONGITUDINAL MULTILEVEL CFA-MTMM
MODELS

So far, no appropriate CFA model has been proposed for
longitudinal MTMM data combining structurally different and
interchangeable methods. Researchers who use such MTMM
measurement designs (e.g., longitudinal multisource feedback
designs with different types of raters) are therefore forced to either
aggregate the interchangeable ratings into a single score or analyze
both types of methods (structurally different and interchangeable
methods) in separate models. The aggregation of level one units
(here interchangeable methods) has been associated with various
methodological shortcomings, such as, interpretation problems
(e.g., ecological fallacy), loss of information, smaller sample size,
larger standard errors, and loss of power (Hox, 2010; Snijders
and Bosker, 2011). If both types of methods are analyzed sep-
arately, then researchers are not able to integrate (or compare)
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A B

FIGURE 3 | Sampling procedure for different types of methods. Panel (A)

refers to the sampling procedure of measurement designs with structurally
different methods. Panel B refers to the sampling procedure of measurement
designs with interchangeable methods. The big gray filled circles are the sets
of possible targets, the small gray filled circles are the sets of possible

methods (raters). The black filled circles represent possible observation units
belonging to the set of targets or raters. Structurally different (fixed) methods
are indicated by straight lines connecting raters and targets directly.
Interchangeable (random) methods are illustrated by straight lines connecting
a target with a particular set of possible raters by a black line.

the information of both types of methods (rater groups) in the
same model. For example, convergent validity of interchange-
able peer reports and self-reports could be examined. Given that
many researchers increasingly apply measurement designs with a
combination of structurally different and interchangeable meth-
ods, there is a need for developing new methods for the analysis
of such complex MTMM measurement designs. In the next sec-
tion, we present the LS-COM model, which integrates LS theory
and the CS-C(M-1) modeling approach for a combination of
different types of methods. In addition, we present the results
of a Monte Carlo simulation study, in which we examined the
statistical performance of the LS-COM model under different
conditions.

6. THE LATENT STATE COMBINATION OF METHODS
(LS-COM) MODEL

The LS-COM allows researchers

1. to scrutinize the degree of measurement invariance across
time,

2. to test mean changes of particular constructs,
3. to examine the stability and change of construct and method

effects across time,
4. to investigate the psychometric properties (e.g., the convergent

and discriminant validity and reliability) of the given mea-
sures on each occasion of measurement and across occasions
of measurement, and

5. to scrutinize the generalizability of method effects across dif-
ferent methods and/or different constructs.

Similar to the CS-C(M-1) model, we define the LS-COM model
in different steps.

6.1. STEP 1: CHOICE OF REFERENCE METHOD AND BASIC
DECOMPOSITION

In the first step, a reference or gold-standard method has to be
chosen. The remaining methods serve as non-reference methods.

The reference method is often a method that is either seen as
most valid by the researcher based on theory or prior empirical
results or a method that is particularly outstanding or special
relative to the other methods (e.g., objective IQ tests versus
self-ratings of intelligence). In the LS-COM model either one of
the structurally different or the set of interchangeable methods
can be chosen as reference method. For the sake of simplicity, we
define the LS-COM model for two structurally different methods
(method 1 = self-report, method 2 = parent report) and one set
of interchangeable methods (method 3 = multiple peer reports
for a student). Note that the LS-COM model is not restricted in
terms of the number of structurally different methods. Moreover,
we chose the first method (a structurally different method, e.g.,
self-reports) as reference method and assume that there is only
one parent report for each target. Pham et al. (2012) as well as
Schultze (2012) show how the set of interchangeable methods
can be chosen as reference method. The observed variables of
each method can be decomposed into a latent state and a latent
measurement error variable:

Level 2: Ytij1l = Stij1l + εtij1l, (structurally different method 1)
(6)

Level 2: Ytij2l = Stij2l + εtij2l, (structurally different method 2)
(7)

Level 1: Yrtij3l = Srtij3l + εrtij3l. (set of interchangeable methods)
(8)

The index i represents the indicators, j is the construct, k is
the method, and l is the occasion of measurement. In addition,
the indices r for rater and t for target are required. The reason
is that the interchangeable raters r are nested within different
targets t. Hence, the observed variables of the self-reports and par-
ent reports are measured on Level 2 (the target level), whereas
the observed variables pertaining to the interchangeable meth-
ods (peer reports) are measured on Level 1 (the rater level).
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A value of the target-specific latent state variables Stijkl is the true
score of target t with respect to indicator i, construct j, method
k (i.e., self-report or parent report), and occasion of measure-
ment l. The rater-specific latent state variables Srtijkl reflect the
(method-specific) true peer rating of a rater r for a particular tar-
get t on indicator i, construct j, and occasion of measurement
l. The measurement error variables on both levels are repre-
sented by εtijkl (Level 2) and εrtijkl (Level 1). In the Appendix
A in Supplementary Material, we show how the latent state and
measurement error variables are formally defined in terms of
conditional expectations.

6.2. STEP 2: DEFINITION OF RATER-SPECIFIC LATENT METHOD
VARIABLES ON LEVEL 1

In the second step, rater-specific (Level 1) latent method variables
are defined for the interchangeable methods (i.e., multiple
peer reports). This is possible given that multiple peers r rate
each target t on different items (indicators: i). Therefore, the
rater-specific latent state variables can be decomposed into a
rater-unspecific latent state Stij3l variable and a rater-specific
method UMrtij3l variable.

Yrtij3l = Srtij3l + εrtij3l (9)

Srtij3l = Stij3l + UMrtij3l (10)

Yrtij3l = Stij3l + UMrtij3l + εrtij3l. (11)

A value of the latent state variables Stij3l can be conceived as
the expected peer rating of the target t across the true occasion-
specific peer ratings for that target. That is, the latent state vari-
ables Stij3l can be conceived as the average peer rating and are thus
variables on Level 2. A value of the latent unique method vari-
ables UMrtij3l is the true occasion-specific deviation of a particular
rater from this true mean. Hence, a value of the UMrtij3l-variables
represents the over- or underestimation of the true expected
peer rating by a particular rater r. Positive values indicate an
overestimation, whereas negative values indicate an underesti-
mation of the true expected peer rating by a particular rater.
Given that the unique method UMrtij3l-variables are defined as
latent residual variables, the general properties of residual vari-
ables hold. That means that the unique method UMrtij3l-variables
are uncorrelated with the Level 2 latent state Stij3l variables [i.e.,
Cor(Stij1l, UMrtj3l) = 0] and have an expectation (mean) of zero
[i.e., E(UMrtj3l) = 0]. Moreover, as in classical multilevel (struc-
tural equation) models, it is assumed that the Level 1 residuals
(here: the UMrtij3l-variables) are independently and identically
distributed on Level 1 (i.e., iid-assumption).

6.3. STEP 3: LATENT REGRESSIONS AND DEFINITION OF LATENT
METHOD VARIABLES ON LEVEL 2

Given that all latent state variables Stijkl are now measured on
the same level (Level 2; the target level), it is possible to contrast
the latent state variables pertaining to different types of methods
against each other. Following the original CT-C(M-1) approach
for structurally different methods (Eid, 2000; Eid et al., 2003,
2008), the latent state variables pertaining to the non-reference

methods are regressed on the latent state variables pertaining to
the reference method (in this example self-reports):

E(Stij2l|Stij1l) = αij2l + λSij2l Stij1l, (parent reports) (12)

E(Stij3l|Stij1l) = αij3l + λSij3l Stij1l. (peer reports) (13)

The (independent) latent state variable Stij1l in the latent regres-
sion analysis denotes the occasion-specific true score measured
by the reference method (e.g., self-reports). The residuals of
the latent regression analyses are defined as latent method vari-
ables. These method variables are also measured on the target
level (Level 2). With regard to the structurally different non-
reference method (e.g., parent reports), the method variables can
be defined as follows:

Mtij2l ≡ Stij2l − E(Stij2l|Stij1l) = Stij2l − (αij2l + λSij2l Stij1l).
(14)

The method variables Mtij2l represent that part of the true par-
ent reports that cannot be predicted by the self-reports. In other
words, these method variables capture the occasion-specific part
of the parent report that cannot be predicted by the self-report.
As consequence of the definition of the Mtij2l-variables as resid-
ual variables the latent method variables are uncorrelated with
the latent state variables [i.e., Cor(Stij1l, Mtj2l) = 0] and have an
expectation (mean) of zero [i.e., E(Mtj2l) = 0]. For the set of
interchangeable methods (e.g., peer reports), the method vari-
ables can be defined as follows:

CMtij3l ≡ Stij3l − E(Stij3l|Stij1l) = Stij3l − (αij3l + λSij3lStij1l).
(15)

The method variables CMtij3l represent that part of the true
expected peer ratings that is not shared with self-report on the
same occasion of measurement. The common method variable
is called common method variable, given that they represent
the perspective of the peers that is shared by all peers, but is
not shared with the self-reports on a particular occasion of
measurement. By definition the latent common method variables
are uncorrelated with the corresponding latent state variables of
the reference method [i.e., Cor(Stij1l, CMtj3l) = 0] and have an
expectation (mean) of zero [i.e., E(CMtj3l) = 0]. Moreover, the
following correlations are assumed to be zero in the LS-COM
model:

Cor(Stij1l, UMrtj′3l′) = 0, (16)

Cor(CMtij3l, UMrtj′3l′) = 0, (17)

Cor(Mtij2l, UMrtj′3l′) = 0, (18)

Cor(εrt(ijkl), εrt(ijkl)′) = 0, (19)

Cor(εt(ijkl), εt(ijkl)′) = 0, (20)

Cor(εrt(ijkl), εrt(i′j′k′l′)) = 0. (21)

According to Equations (16–18), it is assumed that the Level 1
unique method variables are uncorrelated with all variables on
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Level 2 (i.e., latent state, latent common method, and latent
method variables). Equations (19–21) imply that all measure-
ment error variables belonging to different indicators, different
constructs, different methods, and different occasions of mea-
surement are uncorrelated with each other.

6.4. STEP 4: DEFINITION OF LATENT METHOD FACTORS
In order to define latent method factors, it is assumed that
the latent method variables of the same method only differ by
multiplicative constants (i.e., λMij2l, λCMij3l, λUMij3l). According
to these assumptions, it is possible to define common latent
method factors that are homogeneous across different indicators
(i.e., Mtj2l, CMtj3l, UMrtj3l):

Level 2: Mtij2l = λMij2lMtj2l, (22)

Level 2: CMtij3l = λCMij3lCMtj3l, (23)

Level 1: UMrtij3l = λUMij3lUMrtj3l. (24)

The above Equations (22–24) state that the method effects are
now measured by latent method factors that are common to all
indicators.

6.5. STEP 5: DEFINITION OF LATENT STATE FACTORS
Following a similar logic, it is possible to construe a latent state
factor Stj1l that is common to all indicators:

Stij1l = αij1l + λSij1lStj1l. (25)

Overall, the general measurement equation of the LS-COM
model for three methods (e.g., k = 1 = self-report, k = 2 =
parent report, k = 3 = peer reports) and latent state factors (Stj1l)
can be expressed by:

Ytij1l = αij1l + λSij1lStj1l + εtij1l, (26)

Ytij2l = αij2l + λSij2lStj1l + λMij2lMtj2l + εtij2l, (27)

Yrtij3l = αij3l + λSij3lStj1l + λCMij3lCMtj3l + λUMij3lUMrtj3l + εrtij3l.

(28)

Equation (26) states that the reference method (e.g., self-report)
indicators are only measured by a latent reference state fac-
tor Stj1l with an intercept αij1l and factor loading parameter
λSij1l and a latent measurement error variable εtij1l. According
to Equation (27) the indicators pertaining to a structurally dif-
ferent non-reference method (e.g., parent reports) are measured
by the latent reference state factor Stj1l (with an intercept αij2l

and factor loading parameter λSij2l), a latent method factor Mtj2l

(with a factor loading parameter λMij2l), and a measurement
error variable εtij2l. Finally, Equation (28) states that the indica-
tors belonging to the interchangeable non-reference method (e.g.,
peer reports) are measured by the latent reference state factor Stj1l

(with a corresponding intercept αij3l and factor loading parame-
ter λSij3lStj1l), a latent common method factor CMtj3l at Level 2

and a latent unique method factor UMrtj3l at Level 1 (with corre-
sponding factor loading parameters λCMij3l and λUMij3l), as well
as a measurement error variable εrtij3l.

7. VARIANCE DECOMPOSITION
Based on the definition of the LS-COM model each indicator’s
variance can be decomposed as follows:

Var(Ytij1l) = λ2
Sij1lVar(Stj1l) + Var(εtij1l), (29)

Var(Ytij2l) = λ2
Sij2lVar(Stj1l) + λ2

Mij2lVar(Mtj2l) + Var(εtij2l),

(30)

Var(Yrtij3l) = λ2
Sij3lVar(Stj1l) + λ2

CMij3lVar(CMtj3l)

+ λ2
UMij3lVar(UMrtj3l) + Var(εrtij3l).

(31)

Based on the above variance decomposition (see Equations
29–31), it is possible to define different coefficients for quanti-
fying convergent validity, method-specificity and reliability (see
Table 1). In contrast to the CS-C(M-1) model, the LS-COM
model allows calculating Level 2 and Level 1 variance coefficients,
because it contains method factors at both Level 1 (UMrtj3l) and
Level 2 (CMtj3l).

In total, four different consistency coefficients [i.e., Con(Stij2l),
Con(Stij3l), Con(Srtij3l), and the rater consistency coefficient
RC(Srtij3l)] can be defined. The Level 2 consistency coefficient
Con(Stij2l) for the indicators pertaining to the structurally dif-
ferent non-reference methods represents the amount of true
interindividual differences of the non-reference method (e.g.,
parent report) that can be explained by the reference method
(self-report). The Level 1 consistency coefficient Con(Srtij3l) for
the indicators pertaining to the interchangeable non-reference
methods (e.g., peer reports) reflects the amount of true interindi-
vidual differences of the individual peer reports that can be
explained by the reference method (here: self-report).

Sometimes researchers rather seek to know whether peers in
general agree with the student self-reports. In such cases, they
may calculate the Level 2 consistency coefficient Con(Stij3l) for
the indicators pertaining to the set of interchangeable meth-
ods. This consistency coefficient captures the amount of true
interindividual differences of the expected peer ratings (the entire
peer-group) that can be explained by the reference method (here:
self-reports). Moreover, the true rater consistency coefficient
RC(Srtij3l) is defined as the proportion of true interindividual
differences of the peer ratings that are free of measurement
error and rater-specific effects. The rater consistency coefficient
indicates how much true variance of a non-reference indica-
tor is due to the overall amount of rater agreement (peers and
self-ratings) and not due to measurement error influences or
individual (rater-specific) influences. The true rater consistency
coefficient can also be interpreted as true intra-class correla-
tion. Moreover, three different method-specificity coefficients
[i.e., MS(Stij2l), CMS(Srtij3l), and UMS(Srtij3l)] can be analyzed.
The method specificity coefficients MS(Stij2l) indicate the degree
or true variance of a non-reference method indicator pertaining
to a structurally different method (e.g., parent reports) that is
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Table 1 | Variance components of the non-reference method indicators in LS-COM model.

Level Method Definition

CONSISTENCY

Level 2 Struct. different Con(Stij2l ) =
λ2

Sij2l Var (Stij1l )

Var (Ytij2l ) − Var (εtij2l )

Level 2 Interchangeable Con(Stij3l ) =
λ2

Sij3l Var (Stij1l )

λ2
Sij3l Var (Stij1l ) + λ2

CMij3l Var (CMtj3l )

Level 1 Interchangeable Con(Srtij3l ) =
λ2

Sij3l Var (Stij1l )

Var (Yrtij3l ) − Var (εrtij3l )

Level 1 Interchangeable RC(Srtij3l ) =
λ2

Sij3l Var (Stij1l ) + λ2
CMij3l Var (CMtj3l )

Var (Yrtij3l ) − Var (εrtij3l )

METHOD SPECIFICITY

Level 2 Struct. different MS(Stij2l ) =
λ2

Mij2l Var (Mtj2l )

Var (Ytij2l ) − Var (εtij2l )

Level 2 Interchangeable CMS(Srtij3l ) =
λ2

CMij3l Var (CMtj3l )

Var (Yrtij3l ) − Var (εrtij3l )

Level 1 Interchangeable UMS(Srtij3l ) =
λ2

UMij3l Var (UMrtj3l )

Var (Yrtij3l ) − Var (εrtij3l )

RELIABILITY

Level 2 Struct. different Rel(Ytij2l ) = 1 − Var (εtij2l )
Var (Ytij2l )

Level 1 Interchangeable Rel(Yrtij3l ) = 1 − Var (εrtij3l )
Var (Yrtij3l )

not determined by the reference method (e.g., self-report). The
unique method specificity coefficient UMS(Srtij3l) represents the
proportion of true variance of a non-reference method indicator
pertaining to the interchangeable methods that is neither shared
with the self-reports nor with other peers. Hence, this coeffi-
cient reflects the unique view of a particular rater on a particular
occasion of measurement. The common method specificity coef-
ficient CMS(Srtij3l) reflects the proportion of true interindividual
differences of the peer ratings that cannot be explained the refer-
ence method (here: self-reports), but that is shared by other peers
(Eid et al., 2008). Hence, this coefficient can also be interpreted
as “rater consensus” with respect to the peer ratings that is not
shared with the reference method.

8. PERMISSIBLE CORRELATIONS
Figure 4 shows a path diagram of a LS-COM model with three
indicators per TMU, one construct, three methods and three
occasions of measurement. As illustrated in the figure, the latent
state factors can be correlated with each other (see Figure 4).
Correlations between latent state factors pertaining to the same
construct (e.g., empathy) and different occasions of measure-
ment can be interpreted as indicators of construct stability. High
positive correlations indicate that the construct is rather stable
across time. Correlations between latent state factors pertaining
to different constructs and the same occasion of measurement
can be interpreted in terms of discriminant validity. High cor-
relations indicate low discriminant validity at a given moment
in time. Correlations between latent state factors pertaining to
different constructs and different measurement occasions may

be interpreted as coefficients of predictive validity. For exam-
ple, students’ self-reported level of empathy measured on the
first occasion of measurement (St111) may be indicative for the
self-reported level of relational aggression measured on the sec-
ond occasion of measurement (St212). Moreover, correlations
between the occasion-specific latent method factors pertaining
to the same measurement level are permitted in the LS-COM
model.

The stability of method (rater) effects can be investigated
by correlations between method factors pertaining to the same
construct, same method, and different occasions of measure-
ment. For example, correlations between the unique method
factors UMrtj3l and UMrtj3l′ (where l �= l′) indicate to what
extent the individual rater-specific effects remain stable across
time. Following a similar logic, the correlations between com-
mon method factors CMtj3l and CMtj3l′ (where l �= l′) indi-
cate to what extent the common rater effects (i.e., rater effects
that are not shared with the self-report, but are shared with
all other raters belonging to a particular target) remain sta-
ble across time. The generalization of method effects across
constructs is indicated by correlations between method factors
pertaining to different constructs (e.g., empathy and relational
aggression). For example, a negative correlation between the
method factors pertaining to the peer reports assessing empathy
and relational aggression would indicate that peers who tend to
underestimate students’ self-reported empathy level, tend to over-
rate students’ self-reported aggression level and vice versa. The
generalization of method effects across different methods (rater
types) is indicated by the correlation between method factors
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FIGURE 4 | The LS-COM model with latent state factors and three

indicators (i = 3), one construct (j = 1), two structurally different and

one set of interchangeable methods (k = 3), and three occasions of

measurement (l = 3), where r: rater and t: target. Yrtijkl : observed variables
at Level 1, Ytijkl : observed variables at Level 2, Stjkl : latent state factors, λSijkl :
state factor loadings,Mtjkl : latent method factors, λMijkl : method factor

loadings, CMtjkl : latent common method factors, λCMijkl : common method
factor loadings, UMrtjkl : latent unique method factors, λUMijkl : unique method
factor loadings, εrtijkl : measurement errors at Level 1, and εtijkl : measurement
errors at Level 2. Intercepts (αijkl ) are not depicted in the figure. In this
example, one of the structurally different methods (Method 1) serves as
reference method.

pertaining to different methods (e.g., parents and peers). For
example, correlations between the two method factors Mtj2l and
CMtj3l indicate whether peers and parents deviate in a similar
ways (how a shared bias) from the self-reports on occasion of
measurement l.

8.1. MEAN CHANGE
In addition to the investigation of the latent correlation as well as
the variance components (provided in Table 1), many researchers
seek to scrutinize the mean change of a particular construct across

time. According to Equations (26–28), the expectation (mean) of
the latent state factor can be identified as follows:

E(Ytij1l) = E(αij1l) + E(λtij1lStj1l) + E(εtij1l), (32)

= αij1l + λtij1lE(Stj1l). (33)

Given that εtij1l is a zero-mean normally distributed residual
variable, the latent mean of the latent state variables can be iden-
tified by setting one intercept for each latent state factor to zero
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[e.g., E(α1j1l) = 0] and the corresponding factor loading to one
[i.e., λS1j1l = 1]. Another possibility is to set the intercepts and
factor loadings equal across time (i.e., assuming strong mea-
surement invariance; see below) and to set the latent mean of
the first latent state factor to zero. Then, the latent means of
the remaining latent state variables reflect the true mean change
of construct j from occasion of measurement 1 to occasion of
measurement l.

8.2. TESTING MEASUREMENT INVARIANCE ACROSS TIME
Measurement invariance (MI) plays an important role in lon-
gitudinal analysis (Meredith, 1993; Widaman and Reise, 1997;
Geiser et al., 2014). According to Widaman and Reise (1997) four
different degrees of MI can be distinguished: (1) configural MI,
(2) weak MI, (3) strong MI, and (4) strict MI. Configural MI
implies that the number of factors as well as the factor structure
as such is similar across different measurement occasions. In
addition to configural MI, weak MI requires that the factor
loading parameters for each indicator i are equal across different
occasions of measurement. In addition to weak MI, strong
MI assumes that the intercepts of indicators i are equal across
different occasions of measurement. The most restrictive form
of longitudinal MI (i.e., strict MI) implies that, in addition to
the previous restrictions, the residual variances of indicators i are
also equal across time. In the current work, we focus on one (not
all possible) MI restriction that can be specified and empirically
tested. In particular, we discuss the minimal set of restrictions
that are necessary to meaningfully study mean change (i.e., strong
MI) with respect to the reference method (e.g., self-reports). To
meaningfully interpret mean change in the reference state factors,
we recommend that the following MI restrictions be tested:

αij1l = αij1l′ = αij1, where l �= l′, (34)

λSij1l = λSij1l′ = λSij1, where l �= l′. (35)

The above restrictions (34) and (35) state that the intercept
and factor loading parameters of the reference state factors are
time-invariant. These assumptions imply that the scale on which
the reference latent state factors are measured does not change
across time. Hence, researchers who are interested in studying
mean change as measured by the reference method (e.g., self-
reports) should at least establish strong MI as proposed above (see
Equations 34–35). LS-COM models implying different degrees of
MI can be compared by using a χ2-difference test. For calculating
level-specific χ2-difference tests see Ryu and West (2009).

9. SIMULATION STUDY
To investigate the performance of the LS-COM model proposed
throughout the previous sections, a Monte Carlo (MC) simula-
tion study was performed. The main purpose of the simulation
was to examine the applicability of the LS-COM model across
a range of conditions and to establish a set of guidelines and
recommendations concerning sample size and model complexity
that ensure consistent and unbiased estimation of parameters and
their standard errors and minimize potential estimation problems
(so called Heywood cases).

9.1. RESULTS OF PREVIOUS SIMULATION STUDIES
Numerous simulation studies have been performed in the past
focusing on the applicability and robustness of the single-level
(classical) SEMs (e.g., Boomsma, 1982; Gerbing and Anderson,
1985; MacKinnon et al., 1995; Marsh et al., 1998; Fan et al.,
1999; Raykov, 2000; Enders and Bandalos, 2001; Jackson, 2001;
Bandalos, 2002). So far, only few simulation studies have been
carried out investigating complex multilevel structural equation
models (e.g., Satorra and Muthen, 1995; Hox and Maas, 2001;
Julian, 2001; Stapleton, 2002; Maas and Hox, 2005) or longitu-
dinal CFA-MTMM models (Crayen, 2008; Geiser, 2009). In this
section, we briefly summarize the results of previous simulation
studies that are most relevant to the present study.

With regard to single-level (classical) SEMs a ratio of 5 (some-
times 10) observations per parameter has been suggested to
ensure reliable parameter estimates and standard errors (Bentler
and Chou, 1987; Bollen, 1989, 2002). With regard to multilevel
(two level) SEMs, simulation studies indicate that the number of
Level 2 units are more important than the number of Level 1 units
suggesting that at least 100 Level 2 units be sampled for accu-
rate standard error estimates and for detecting small effects on
Level 2 (Hox and Maas, 2001; Maas and Hox, 2005; Meuleman
and Billiet, 2009). It has also been found that ignoring the multi-
level structure completely can lead to biased parameter estimates
as well as their standard errors (Julian, 2001). Recent simulation
studies favor the use of Bayesian estimation techniques showing
that 20 Level 2 units can be sufficient for reliable parameter esti-
mates when using weakly informative priors (Hox et al., 2012).
Nevertheless for maximum likelihood estimation, it has been gen-
erally recommended to sample at least 100 Level 2 units to ensure
reliable parameter and standard error estimates (Hox and Maas,
2001; Maas and Hox, 2005; Meuleman and Billiet, 2009).

Simulation studies examining the statistical performance of
longitudinal CFA-MTMM [i.e., CS-C(M-1)] models have shown
that the parameter estimates and their standard errors are well-
recovered in general. Nevertheless, the standard errors seem to
be more sensitive to bias than the parameter estimates (Crayen,
2008; Geiser, 2009). Moreover, the statistical performance of the
CS-C(M-1) model increases with larger sample sizes (i.e., more
empirical informations), fewer constructs and methods (i.e., less
complex models) and with low convergent validity (i.e., increas-
ing method bias) (Crayen, 2008; Geiser, 2009).

Given that the CS-C(M-1) model by Geiser (2009) is a single-
level confirmatory factor model, it is not clear to which extent the
results described above apply to the LS-COM model. Similarly,
the results of the simulation studies examining the performance
of multilevel structural equation models (ML-SEM) may also not
apply to the LS-COM model, given that the models used in those
simulation studies are usually less complex (including only a few
latent factors and no complex MTMM structure).

9.2. DESIGN OF THE SIMULATION STUDY
To investigate the effect of model complexity and sample size
on estimation problems and precision it was necessary to vary a
number of potentially influential factors. Because the LS-COM
model is a longitudinal multilevel CFA-MTMM model, three
main factors influence model complexity. To allow distinguishing

Frontiers in Psychology | Quantitative Psychology and Measurement April 2014 | Volume 5 | Article 311 | 10

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Koch et al. Longitudinal MTMM analysis

their influences (a) the number of constructs (1 vs. 2), (b) the
number of methods (2 vs. 3), and (c) the number of occasions of
measurement (2, 3, and 4) were varied independently.

In addition to these sources of model complexity, real-life
applications of MTMM analysis vary greatly in the degree of
convergent validity between the employed methods. To inves-
tigate whether convergent validity has an effect on the qual-
ity of the estimation this factor was also varied in two levels
(high vs. low convergent validity). We used the coefficients of
consistency, method specificity, and reliability to specify the
true (population) model parameters. The degree of consistency
and method specificity were allowed to differ across MC con-
ditions, implying a condition of high consistency (i.e., high
convergent validity) and a condition of low consistency (i.e.,
low convergent validity). The reliability of each indicator was
obtained by the sum of the consistency and method specificity
coefficients (range: 0.775–0.825). Table 2 shows the population
values for the different variance components for the different
indicators.

Due to the multilevel structure of the LS-COM model sample
size can be varied on the level of targets (Level 2) as well as on
the level of the interchangeable raters (Level 1). As with model
complexity, these two factors were varied independently of each
other. The number of Level 2 units was set at 100, 250, and 500
targets (Level 2), while the number Level 1 units was set at 2, 5,
10, and 20 raters per target.

In total this simulation design resulted in 2 ×2 × 2 × 3 × 4 ×
3 = 288 possible conditions. Of these 288 only 232 were included,
because the remaining 56 conditions represented constellations
in which the model is underidentified due to there being fewer
targets than free model parameters. Of these 56 conditions 50
were conditions with only 100 Level 2 units and all but 8 were
conditions represented models with 2 constructs.

Overall, 116,000 (232 × 500) data sets with a varying num-
ber or observations (200–10,000) were simulated using Mplus
6.1 (Muthén and Muthén, 2010), the free software R 2.14.0
(R Core Team, 2014), as well as various R packages such
as MplusAutomation (Hallquist, 2011), OpenMx (Boker
et al., 2011), and corcounts (Erhardt, 2013). All files of
this simulation study can be downloaded from the following

Table 2 | Consistency, method specificity and reliability of the

LS-COM model.

Low consistency High consistency

Mean SD Mean SD

Consistency 0.30 (±0.025) 0.60 (±0.025)

Unique method specificity 0.25 (±0.025) 0.10 (±0.025)

Common method specificity 0.25 (±0.025) 0.10 (±0.025)

Method specificity 0.50 (±0.050) 0.20 (±0.050)

Reliability 0.80 (±0.025) 0.80 (±0.025)

The variance coefficients above were standardized with regard to the observed

variance of an indicator. Values in parentheses indicate the variation in stan-

dard deviations of the consistency and method specificity values across different

indicators.

website 3. An example Mplus syntax for the simulations study is
provided in Appendix B in Supplementary Material.

Strong MI was assumed in all models (c.f. Widaman and Reise,
1997). All models were estimated using the maximum likelihood
estimator implemented in Mplus assuming multivariate normally
distributed and complete data.

9.3. EVALUATION CRITERIA
The performance of the LS-COM model was examined using the
following criteria: (a) rate of non-convergence after a maximum
of 1000 iterations, (b) rate of improper solutions4 (i.e., Heywood
cases) due to non-positive definite covariance matrices � and �,
(c) the amount of parameter estimation as well as standard error
bias, and (d) the accuracy of the χ2-model fit statistics.

The absolute parameter bias was first calculated for each
parameter p and then aggregated across all parameters of the same
parameter type c for which effects were presumed to be equal
(e.g., all common method factor loadings, λCMij3l; c.f. Bandalos,
2006):

peb(c) = 1

nc

nc∑
c = 1

( |Mpc − epc|
epc

)
. (36)

Mpc is the average of the MC parameter estimates across all 500
replications for parameter p of parameter type c, whereas epc is
the true population value of that parameter. nc is the number of
parameters in cluster c.

In a similar way, the absolute standard error bias was
calculated:

seb(c) = 1

nc

nc∑
c=1

( |MSEpc − SDpc|
SDpc

)
. (37)

MSEpc is the average standard error of parameter p allotted to
parameter type c across all 500 MC replications, whereas SDpc is
the standard deviation of the parameter estimate for parameter p
in cluster c across all 500 MC replications.

The aggregation of the absolute parameter estimation and
standard error biases was done for two reasons. First, the LS-
COM model incorporates many free parameters to be estimated
(sometimes more than 100) and it would not be feasible to report
bias for each single model parameter. Second, it is reasonable
to assume that similar parameters (e.g., all measurement error
variances) are biased in a similar way. Hence, by aggregating
parameters that belong to the same parameter type, it was possible
to investigate general bias in parameter estimates and their stan-
dard errors. In total 12 types of parameters were defined. Eight of
these stemmed from the between part of the model: (1) the state
factor loadings (λS), (2) the common method factor loadings
(λCM), (3) the method factor loadings (λM), (4) the covariances
of latent variables on Level 2 (covL2), (5) the latent means (μ), (6)
the latent intercepts (α), (7) the variance of the latent variables at
Level 2 (varL2), and (8) the Level 2 residual variances (εL2). The

3http://www.ewi-psy.fu-berlin.de/einrichtungen/arbeitsbereiche/psymeth/
mitarbeiter/tkoch/index.html.
4�-warning messages indicate linear dependencies in the covariance matrix
of the latent variables, whereas �-warning messages indicate estimation prob-
lems with regard to the latent error variables (e.g., negative error variances).
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remaining four parameter clusters all pertained to parameters at
Level 1: (9) the unique method factor loadings (λUM), (10) the
unique method factor variances (varL1), (11) the covariances of
the unique method factors (covL1), and (12) the Level 1 residual
variances (εL1).

In line with previous MC simulation studies investigating
MTMM-SEMs (e.g., Nussbeck et al., 2006; Geiser, 2009) 0.10 was
chosen as a cut-off criterion for both parameter and SE biases, and
absolute values beyond this threshold were deemed unacceptable.

10. RESULTS
10.1. RATE OF NON-CONVERGENCE
All 116,000 specified LS-COM (H0) models converged properly
within 1000 iterations.

10.2. RATE OF IMPROPER SOLUTIONS
Mplus warning messages regarding potential �-problems were
encountered in 65 out of 232 (28.02%) MC conditions, but
in only 2,366 out of 116,000 (2.04%) total replications in the
simulation. The main reason for the �-warning messages were
linear dependencies in the latent covariance matrix due to higher
order partial correlations above |1|. Moreover, only 2 out of
232 MC conditions contained improper solutions with regard to
latent residual matrix �. Hence, the actual amount of improper
solutions with regard to this simulation study was below 5%.

Most of the conditions exhibiting general warning messages
were high consistency conditions (i.e., 56 MC conditions and
2,306 out of 116,000 replications, 1.99%) and only few were
low consistency conditions (i.e., 9 MC conditions and 60 out
of 116,000 replications, 0.05%) Moreover, the frequency of �-
warning messages decreased with increasing sample size on Level
1 (number of raters per target) as well as with increasing sample
size on Level 2 (number of targets). Figure 5 shows the relation-
ship between the average amount of �-warning messages and the
sample size on both levels in the low and the high consistency
conditions. Figure 5 shows that the amount of �-warning mes-
sages decreased substantially with the number of targets as well
as with the number of raters per target. Figure 5 also indicates

that the number of raters per target might be more important for
the reduction of �-warning messages than the number of Level 2
units (here: targets).

10.3. AMOUNT OF PARAMETER AND STANDARD ERROR BIAS
Across all 232 conditions the absolute parameter estimation bias
(peb, see Equation 36) was below the cutoff value of 10%.
However, the absolute standard error bias (seb, see Equation 37)
exceeded the value of 10% in 21 out of 232 MC conditions. Higher
seb values were more often found in the high consistency (14 out
of 21 conditions, 66.67%) conditions than in the low consistency
(7 out of 21 conditions, 33.33%) conditions. Figure 6 shows the
average peb and seb values across all parameters with respect to
the sample size on Level 1 and Level 2 as well as with respect to
the consistency condition (high vs low).

Figure 6 shows that the average peb and seb values decreased
with increasing sample size on Level 1 and Level 2. In particular,
the sample size on Level 1 (number of raters per target) seemed
to be crucial for the reduction of the seb. Moreover, Figure 6
shows that the average amount of peb and seb was lower in the
low consistency condition than in the high consistency condition.
Note that the average peb and seb (i.e., across all parameters)
were below 10% (see Figure 6). Further investigations revealed
that specific LS-COM model parameters were more sensitive to
bias than others. Specifically, the common method factor loadings
λCM , method factor loadings λM , unique method factor load-
ings λUM , as well as the variances of unique method factors varL1

showed the largest standard error biases. Additionally, the seb of
the latent means on Level 2 exceeded the cutoff value of 10%
in one single MC condition (i.e., one construct, two methods,
two occasions of measurement, 10 Level 1 units and 100 Level
2 units). Figure 7 shows the dependency of the seb values on the
sample size at each of the measurement levels in the high and low
consistency condition.

According to Figure 7, the standard error bias was substan-
tially reduced with increasing sample size on both levels. In
particular, the standard error bias dropped below the cutoff value
of 10% when more than 2 raters per target were sampled.

FIGURE 5 | Average number of �-warning messages in high and low consistency conditions. nL1 = number of Level 1 units; nL2 = number of Level 2
units.
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FIGURE 6 | Average peb and seb values with respect to sample size in high and low consistency conditions in the LS-COM model. nL1 = number of
Level 1 units; nL2 = number of Level 2 units.

10.4. χ2-FIT-STATISTICS
In Figure 8A,B the simulated and expected proportions of the χ2

values for monoconstruct and multiconstruct LS-COM models
are presented. According to these results, the simulated χ2-values
were always below the theoretically expected χ2-values indicating
a downward bias in the asymptotic type I error. These results sug-
gest that too many specified LS-COM models would be accepted
with respect to a nominal alpha level of 0.05 if researchers used
the theoretical χ2 distribution to test the model fit. Hence, the χ2

model fit test appeared to be too liberal with respect to LS-COM
models under the conditions studied here. However, the differ-
ences between the observed and the expected χ2-distributions
at a nominal alpha level of 5% were relatively small (on average
0.03 for monoconstruct condition and 0.04 for the multiconstruct
condition). The results also indicate that the χ2 model fit test was
more accurate for less complex (i.e., monoconstruct) LS-COM
models. We did not find a straightforward relationship between
sample size and the accuracy of the χ2 model fit test for the
LS-COM model.

11. DISCUSSION
In the present work a multilevel longitudinal CFA-MTMM model
for the combination of structurally different and interchangeable

methods (called LS-COM model) was proposed. The LS-COM
model combines the advantages of multilevel, longitudinal, and
CFA-MTMM modeling approaches and is suitable for MTMM
measurement designs combining different types of methods.
Given that such complex MTMM measurement designs are
increasingly used in psychology (e.g., 360◦ feedback designs,
multisource, mutirater designs), the LS-COM fills a gap in the
current literature on longitudinal MTMM modeling. Previous
studies on longitudinal MTMM modeling have either focused
exclusively on single-indicator models or on a specific type of
method (e.g., structurally different methods) (e.g., Kenny and
Zautra, 2001; Burns and Haynes, 2006; Courvoisier et al., 2008;
Grimm et al., 2009; Geiser et al., 2010). In the present arti-
cle a new CFA-MTMM model has been developed allowing the
simultaneous analysis of different types of methods (i.e., struc-
turally different and interchangeable methods) across time using
a multiple indicator, multilevel latent variable approach. The LS-
COM model overcomes many limitations of previous models by
allowing researchers to

1. study method effects on different levels (rater and target level),
2. analyze the stability and change of construct and method

effects across time,
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FIGURE 7 | Relationship between average standard error bias (seb)

and sample size for different LS-COM model parameters in the high

and low consistency condition. λCM = common method factor loading

parameters; λM = method factor loading parameters; λUM = unique
method factor loading parameters; varL1 variance of the unique method
factors.
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FIGURE 8 | PP-plot of the observed and theoretical proportions of the χ2 values for the monoconstruct LS-COM model (A) and multiconstruct

LS-COM model (B) for different sample sizes.

3. evaluate the convergent and discriminant validity among dif-
ferent methods across time,

4. investigate the stability and change of a given construct
(attribute) across time,

5. examine different variance coefficients and the psychome-
tric properties of the measures on multiple occasions of
measurement,

6. test important assumptions (e.g., measurement invariance),
and

7. study potential causes of method effects by including external
variables in the model.

Moreover, the LS-COM model is defined based on the stochas-
tic measurement theory (Suppes and Zinnes, 1963; Zimmerman,
1975; Steyer and Eid, 2001), which bears the advantage of defining
the latent variables as random variables with a clear psychome-
tric interpretation. That means that the latent variables in the
LS-COM model are not simply assumed, but properly defined
as random variables on the probability space (see Appendix A in
Supplementary Material for the formal definitions). In addition,
the LS-COM makes use of a latent regression modeling [CT-C(M-
1)] approach, which allows contrasting different methods against
a reference method. The CT-C(M-1) modeling approach bears
the advantages of using “pure” method factors by defining the
method variables as latent residual variables (see Geiser et al.,
2008, for more details). In addition, the CT-C(M-1) modeling
approach allows separating the total variance of each indica-
tor into state, method, and measurement error components and
calculating different variance coefficients (e.g., coefficients of con-
sistency, method specificity, reliability), which is not possible in
other MTMM modeling approaches [e.g., latent means (Pohl and
Steyer, 2010) and latent difference modeling (Pohl et al., 2008)
approaches].

Researchers who are interested in studying the mean change
of an attribute across time should first test the degree of mea-
surement invariance and then estimate the latent means of the
latent state factors as described above. In addition, the stabil-
ity and change of the interindividual differences in an attribute
can be investigated by the correlations of the latent state factors
pertaining to different occasions of measurement. The stability
and change of the method factors across time can be studied
with regard to the correlations between the latent method fac-
tors measured on different occasions of measurement. In total,
three different types of method effects can be examined. First,
the method effects of the structurally different method (e.g., par-
ent reports) that is not shared with the reference method (e.g.,
self-reports). Second, the common method effect of the inter-
changeable methods (e.g., general peer rating) that is not shared
with the reference method (e.g., self-report). Third, the unique
method effect of the interchangeable methods (e.g., single peer
rating) that is neither shared with the reference method (e.g.,
self-reports), nor with other peers. A meaningful interpretation
of correlation coefficients between method factors across time
(e.g., as stability of method effects), typically requires that the
same raters are recruited at each time point. The generalizabil-
ity of the method effects can be examined by the correlations of
latent method factors pertaining to different types of methods
(structurally different and interchangeable methods).

In order to examine the trustworthiness of the parameter
and standard error estimates in the LS-COM model, we con-
ducted a MC simulation study. To our knowledge, no simulation
study has been performed so far scrutinizing the statistical per-
formance of complex longitudinal, multilevel, multiple indicator
CFA-MTMM models.

According to the results of our MC simulation study, the
LS-COM model can produce reliable parameter estimates even
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in small samples with just 100 targets and 2 raters per targets.
However, for such small samples the standard errors of LS-COM
model parameters will be marginally biased. Most sensitive to bias
are the standard errors of the method factor loading parameters
(i.e., λUMijkl, λCMijkl, λMijkl) as well as the standard errors of the
unique method factor variance [i.e., Var(UMrtjkl)]. The standard
error bias can be reduced by increasing the number of Level 1
units (i.e., number of raters per target). In cases with at least 5
raters per target and 100 targets, the LS-COM produced unbiased
parameters as well as standard errors in our simulation. In gen-
eral, parameter estimates seemed more accurate in cases with low
convergent validity. Low convergent validity is often seen in prac-
tice (e.g., Eid et al., 2003, 2008; Carretero-Dios et al., 2011; Pham
et al., 2012), so that the LS-COM model should generally result in
unbiased parameter and SE estimates.

The number of methods as well as the number of occasions of
measurement did not seem to affect the accuracy of the parame-
ter estimation or their standard errors. If at all, more occasions of
measurement proved beneficial for the stability of the parameter
estimation. This is most likely due to the fact that strong MI was
assumed for the repeated measures in the simulation. Because of
this, the ratio of available information to free parameters actu-
ally increased with more measurement occasions. It should be
noted, however, that this condition might not be present in appli-
cations in which the assumption of strong MI does not hold or
the number of occasions is very large.

In contrast to the number measurement occasions an increas-
ing number of constructs generally does make the LS-COM
model more complex, because invariance assumptions are gen-
erally not imposed across different constructs. In cases with many
constructs, we recommend splitting the complete LS-COM model
into multiple submodels and analyzing all combinations using
two constructs simultaneously. All coefficients of interest (e.g.,
correlations) can still be estimated without affecting the meaning
of any parameter in the model. A prerequisite for the step-by-step
procedure is that the same reference method is chosen.

The results of this simulation study support previous find-
ings of classical SEM (see Bentler and Chou, 1987; Bollen, 1989,
2002). Based on a simulation study, Bentler and Chou (1987) sug-
gested that a ratio of 5:1 (observations per parameter) is sufficient
for proper parameter estimates with regard to classical structural
equation models. The results of our simulation study support
this conclusion for LS-COM models. We therefore recommend
sampling at least 5 raters per target and at least as many tar-
gets as there are free parameters to be estimated. Our simulation
study also revealed new insights into complex multilevel SEM,
namely that the sample size on Level 1 is an important factor that
influences the quality of model estimation. Previous simulation
studies devoted to this research area claimed that the number of
Level 1 units is less important than the number of Level 2 units
(Maas and Hox, 2005). Our results show that the number of Level
1 units can be crucial for the reduction of standard error bias in
complex multilevel structural equation models.

So far, only few studies have investigated the accuracy of χ2-fit-
statistics in complex ML-SEMs (Ryu and West, 2009; Ryu, 2014;
Schermelleh-Engel et al., 2014). The results of our simulation

study are generally encouraging as they indicated that the over-
all χ2-test of exact fit was only marginally biased with regard to
a nominal alpha level of 5% and multivariate normal distributed
and complete data. More specifically, our results indicate that the
overall maximum likelihood χ2-test of exact fit may be slightly
too liberal for complex ML-SEM models. However, we recom-
mended to use robust maximum likelihood estimation (MLR)
when multivariate normality cannot be assumed.

Future studies should focus on three issues associated with
complex longitudinal multilevel MTMM modeling. First, the sta-
tistical effects of attrition (i.e., missingness) of the interchangeable
raters across time and the possibilities of alternative modeling
approaches should be investigated. Second, the robustness of χ2

fit statistics in complex multilevel SEM with non-normal and
(un)complete data should be examined and alternative fit statis-
tics for complex multilevel SEMs should be scrutinized. With
respect to the investigation of fit statistics in multilevel SEM,
researchers maybe inspired by the recent work of Schermelleh-
Engel et al. (2014) and Ryu (2014). Third, future studies should
focus on possible extensions of the LS-COM model to the other
longitudinal modeling approaches [e.g., latent state-trait models,
latent difference (change) models, latent growth curve models]
with one or more sets of interchangeable methods and apply these
models to real data.

12. CONCLUSION AND GENERAL RECOMMENDATION
In this work, we presented a new longitudinal multilevel CFA-
MTMM model for the combination of structurally different
and interchangeable methods. The model extends the spectrum
of longitudinal MTMM modeling approaches by allowing the
simultaneous investigation of method effects on different mea-
surement levels across time. With respect to the results of the
simulation study, we recommend that researchers should sample
at least as many Level 2 units (i.e., targets) as there are free param-
eters to be estimated in the model and at least 5 interchangeable
raters per target in order to obtain a reliable sample size for proper
parameter standard error estimation. Moreover, we suggest that
researchers should test the degree of MI when studying mean
change of a given attribute across time.
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