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INTRODUCTION

In the present behavioral and fMRI study, we investigated for the first time interindividual
variability in word stress processing in a language with variable stress position (German) in
order to identify behavioral predictors and neural correlates underlying these differences. It
has been argued that speakers of languages with variable stress should perform relatively
well in tasks tapping into the representation and processing of word stress, given that this
is a relevant feature of their language. Nevertheless, in previous studies on word stress
processing large degrees of interindividual variability have been observed but were ignored
or left unexplained. Twenty-five native speakers of German performed a sequence recall
task using both segmental and suprasegmental stimuli. In general, the suprasegmental
condition activated a subcortico-cortico-cerebellar network including, amongst others,
bilateral inferior frontal gyrus, insula, precuneus, cerebellum, the basal ganglia, pre-SMA
and SMA, which has been suggested to be dedicated to the processing of temporal
aspects of speech. However, substantial interindividual differences were observed. In
particular, main effects of group were observed in the left middle temporal gyrus (below
vs. above average performance in stress processing) and in the left precuneus (above
vs. below average). Moreover, condition (segmental vs. suprasegmental) and group
(above vs. below average) interacted in the right hippocampus and cerebellum. At the
behavioral level, differences in word stress processing could be partly explained by
individual performance in basic auditory perception including duration discrimination and
by working memory performance (WM). We conclude that even in a language with variable
stress, interindividual differences in behavioral performance and in the neuro-cognitive
foundations of stress processing can be observed which may partly be traced back to
individual basic auditory processing and WM performance.

Keywords: word stress, fMRI, interindividual differences, segmental processing, stress processing

In contrast, other languages (e.g., English, Spanish, Russian,

In some languages (e.g., Czech, Finnish, Polish, Turkish, Persian,
or French) main stress always falls on the same position within a
word (fixed stress; for a typological overview see Van der Hulst,
1999). In those languages, no minimal pairs of words exist which
do only differ in terms of their stress position. Accordingly, in
fixed stress languages word stress is not contrastive and does
not carry lexical information. In consequence, the processing
and representation of word stress is not particularly relevant in
the use of such languages. In this vein, it has been repeatedly
reported that speakers of languages with fixed stress encounter
difficulties when confronted with tasks requiring processing or
representation of word prosody (Dupoux et al., 1997; Peperkamp
et al.,, 1999, 2010; Mehler et al., 2004; Domahs et al., 2012,
2013a).

or German) have variable stress positions. Word stress may be
contrastive, carrying lexical information. Thus, there may be
minimal pairs, which only differ in their suprasegmental make-
up, i.e., stress pattern, their segmental sequence being identical
(e.g., German verbs umfdhren vs. timfahren, to drive around
vs. to knock over). Therefore, the processing and representation
of word stress is particularly relevant in languages with vari-
able stress and speakers of those languages are typically found
to be highly sensitive to suprasegmental manipulations, show-
ing relatively good performance in a variety of tasks tapping on
word stress (Domahs et al., 2008; Molczanow et al., 2013; for
a direct comparison between speakers of a language with fixed
stress (French) and with variable stress (Spanish or German) see
Dupoux et al., 2001, 2008; Schmidt-Kassow et al., 2011a).
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However, comparing speakers of different languages typically
ignores the possibility that there may be substantial interindi-
vidual variability in stress processing performance even within a
given language. Thus, the present study addresses the questions
whether there are interindividual differences in stress processing
in a language with variable stress (German) and, if so, which neu-
ral correlates may underlie those differences. Before the details of
the present study will be outlined, a brief summary of research on
stress processing will be given by describing word stress assign-
ment in German and discussing evidence on the neuronal basis
of stress processing.

WORD STRESS ASSIGNMENT IN GERMAN

Given that German is a language with variable stress, the stress
pattern of individual words is largely unpredictable and has thus
to be lexicalized (Eisenberg, 2006; Domahs et al., 2008). This lex-
ical knowledge can be used to distinguish between the elements
of minimal pairs and to activate the correct meaning related to
each of the members of a minimal pair. Beyond complete lexi-
calization, there are some rules and regularities in German stress
assignment which become apparent, when participants are asked
to pronounce pseudowords or have to deal with stress violations:

(a) Only one of the final three syllables of a word can bear main
stress (“three syllable window,” Vennemann, 1990). Thus,
words can have ultimate stress (U, final syllable stressed),
penultimate stress (PU, prefinal syllable stressed), or ante-
penultimate stress (APU, semi-prefinal syllable stressed).

(b) Stress assignment is influenced by syllabic structure, in par-
ticular by the syllable weight of the final syllables (Tappeiner
et al., 2007; Domabhs et al., 2008; Janssen and Domabhs, 2008;
Roettger et al., 2012) such that words with open final and/or
closed pre-final syllables are predominantly stressed on the
penultimate syllable. Complex final syllables typically lead to
main stress on the final syllable. Antepenultimate stress is
typically found, when the penult is open and the final syllable
is closed.

(c) Main stress may be conceived as surface expression of met-

rical foot structure (which is determined by syllable weight)

such that strong feet bear main stress. As prosodic feet are

typically binary (i.e., containing two syllables which form a

trochee, Knaus and Domahs, 2009), but heavy final syllables

are parsed into non-branching feet, ultimate and antepenul-
timate stress can be seen as structurally similar in contrast to
penultimate stress (Domahs et al., 2008, 2013b; Haake et al.,

2013).

Penultimate stress is the most frequent pattern in German.

Féry (1998) found that 73% of German bisyllabic words are

stressed on the penult. In this light, it has been debated

whether in German the penultimate stress pattern can be
regarded as the default (e.g., Eisenberg, 1991; Kaltenbacher,

1994; Wiese, 1996; Levelt et al., 1999) or not (Giegerich, 1985;

Vennemann, 1991; Féry, 1998; Domabhs et al., 2008; Janssen

and Domahs, 2008; Roettger et al., 2012).

(d)

Phonetically, German word stress is marked by a combination
of the following cues: duration, (global) intensity, fundamental

frequency (pitch), vowel formants and voice quality (for a com-
prehensive overview see Lintfert, 2010). Haake et al. (2013) found
asignificant relationship between auditory perception of duration
cues and the representation of word stress both in children with
specific language impairment and in typically developing children
acquiring German. Heim and Alter (2006, 2007) provided EEG
evidence that context stress, e.g., in a sentence, can be used as
additional information to identify stress patterns.

THE NEURAL BASES OF WORD STRESS PROCESSING

There are currently only very few functional neuroimaging stud-
ies investigating the neural correlates of word stress processing
(Aleman et al., 2005; Klein et al., 2011; Domabhs et al., 2013b).
In the study by Aleman et al. (2005) participants had to identify
weak-initial and strong-initial words. The bilateral supplemen-
tary motor area (SMA) and the left inferior frontal gyrus (IFG),
the superior temporal gyrus (STG) as well as the superior tem-
poral sulcus (STS), and the insula were associated with the
processing of word stress compared to a semantic control con-
dition. In the study by Klein et al. (2011) participants were asked
to solve an identity matching task with pseudowords. Processing
of word stress minimal pairs as compared to segmental minimal
pairs was associated with activation in a bilateral fronto-temporal
network. Klein et al. (2011) suggested that there is a basic sys-
tem for word stress processing in the left hemisphere, whereas the
right hemisphere supports the left in case of increasing task diffi-
culty. Domahs et al. (2013b) investigated the neural correlates of
processing correctly vs. incorrectly stressed words. They observed
activations of the left posterior angular and retrosplenial cortex
when contrasting the processing of correct vs. incorrect stress. In
the inverse contrast, bilateral STG were found to be involved. The
analysis of severe vs. mild stress violations revealed activations of
the left superior temporal and left anterior angular gyrus. Frontal
activations, including Broca’s area and its right homolog, were
found when contrasting mild with severe stress violations.

With respect to interindividual differences in stress process-
ing, Boecker et al. (1999) performed an ERP study using a word
stress discrimination task. Based on the median split of the behav-
ioral outcome, they defined two groups of participants: good and
poor performers. The authors found a significant N400-effect
for sequence-final words with a weak-strong pattern only in the
group of good performers, but not in the group of poor per-
formers, providing first evidence to the possibility of substantial
interindividual differences in word stress processing in a language
with variable stress (Dutch).

THE PRESENT STUDY

While differences in word stress processing between speakers
of languages with fixed vs. variable stress have been described
repeatedly (Dupoux et al., 2001, 2008; Peperkamp et al., 2010;
Schmidt-Kassow et al., 2011a,b), interindividual differences
within one type of language—although observed—remained
largely ignored or unexplained (Boecker et al., 1999; Peperkamp
et al., 1999; Domahs et al., 2008, 2013b; Dupoux et al., 2010).
In general, it has been argued that speakers of a language with
variable stress should perform relatively well in word stress pro-
cessing (Dupoux et al., 1997, 2001, 2008, 2010; Peperkamp et al.,
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1999; Schmidt-Kassow et al., 2011a). Although interindividual
variance in word stress processing in German has not been the
focus of previous research, such variability has been observed
(albeit ignored) in adult participants in previous studies (Domahs
etal., 2008, 2013b). In a recent study, (Haake et al., 2013) reported
interindividual variability in word stress processing in both chil-
dren with specific language impairment and typically developing
children. This variance was at least partly predicted by individual
perceptual processing of auditory cues related to word stress (e.g.,
duration).

The aim of the current study was to investigate interindivid-
ual performance differences in the processing of word stress. To
this end, native speakers of German had to perform a variant
of a sequence recall task, adapted from Dupoux et al. (2001;
see also Haake et al, 2013). Studies on languages with fixed
stress using this task have shown that when demands on working
memory increase, performance of speakers of such languages in
reproducing pseudoword minimal pairs (e.g., mikuta vs. mikutd)
decreases disproportionately (Dupoux et al., 1997, 2001). We
used a suprasegmental variant of this task to investigate interindi-
vidual heterogeneity in word stress processing in native speakers
of German, a language with variable stress, while a segmental vari-
ant of this task served as a control condition. Note that speakers
of German should be highly familiar with both suprasegmental
and segmental features since both are essential in the use of this
language.

In sum, the research questions of the present study were
the following: (i) Are there substantial interindividual differ-
ences in word stress processing within a group of native speakers
of German, a language where this feature is functional? (ii)
Which neural correlates in functional magnetic resonance imag-
ing (fMRI) are associated with word stress processing in good and
poor performers? Following the results of previous neuroimag-
ing studies on word stress processing (Aleman et al., 2005; Klein
et al., 2011; Domabhs et al., 2013b), we expected to find clusters
of activated voxels in the left IFG, the bilateral superior temporal
gyrus/sulcus and in the insula as well as bi-hemispheric activation
in the SMA. (iii) Can predictors for interindividual variability be
identified (e.g., working memory abilities and/or basic auditory
processing)?

MATERIALS AND METHODS

PARTICIPANTS

Twenty-five right-handed native German-speaking healthy vol-
unteers (nine female; mean age = 28.8 years, SD = 10.1 years)
participated in the study after having given their written informed
consent. The study was approved by the Institutional Review
Board of the Medical Faculty at RWTH Aachen University
(EK 182/06).

STIMULI

Stimulus material consisted of trisyllabic pseudowords obeying
German phonotactic constraints. The pseudowords were built
from five different consonants (plosives: p, t, k; nasals: n, m) and
three different vowels (a, u, i). All items had the same syllable
structure (CV.CV.CV). Minimal pairs of pseudowords were cre-
ated such that they either differed only with respect to word stress

(suprasegmental condition, SSEG) or only with respect to one
consonant (segmental condition, SEG). There were two supraseg-
mental contrasts and two segmental contrasts, each consisting of
two items, respectively (see Table 1). In the suprasegmental con-
dition, penultimate stress (PU) was compared to final stress (U)
and antepenultimate stress (APU) was contrasted to final stress
(U). In the segmental condition, the consonants differed either
in place of articulation (POA) or in a combination of place and
manner of articulation (MOA). In the POA condition the conso-
nants /m/ vs. /n/ and /k/ vs. /p/ were contrasted, whereas in the
MOA condition /t/ vs. /f/ and /k/ vs. /s/ were contrasted.

For each type of stimulus, different tokens were recorded such
that in each minimal pair one token was spoken by a female
speaker (native speaker of Polish) and one token was spoken
by a male speaker (native speaker of Persian), with the order
being counterbalanced across conditions. Each pseudoword was
recorded multiple times from each speaker so that different
tokens from the same word were presented in the experiment.
In this way, phonetic variance of stimuli was increased, disfavor-
ing purely auditory/phonetic strategies and encouraging a more
abstract, phonological type of target comparison. The duration
of the pseudowords was approximately 1000 ms. Stimuli were
recorded using Amadeus Pro sound editing software (HairerSoft,
Kenilworth, UK).

PRETEST PROCEDURE

Each participant completed pretests to evaluate his/her basal
auditory processing performance. The following three auditory
cues were examined, because they are critical for word stress
perception: pitch, duration and skewness. The tasks testing for
pitch and length discrimination were taken from the Seashore-
Test (Stanton, 1928). Skewness discrimination was determined
using the procedure developed by (Haake et al., 2013). The pro-
cedure was similar to the one used in the Seashore Test. Basically,
skewness discrimination required the ability to distinguish the
intensity of sounds (stronger vs. weaker). All items were presented
via headphones employing Adobe Audition 1.5 (Adobe Systems,
San Jose, CA, USA).

Table 1 | Stimuli for the segmental and suprasegmental conditions.

Contrast Item 1 Item 2
Suprasegmental (SSEG) PU vs. U mipatu mipata
tamupi tamupi
APU vs. U mikuta mikuta
katimu katimu
Segmental (SEG) POA kUipami kipani
méatika matipa
MOA kumita kamifa
tanuki tanusi

Contrasts are highlighted in bold face. APU, antepenultimate stress; PU, penul-
timate stress; U, final stress; POA, place of articulation; MOA, combination of
place and manner of articulation.
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Moreover, given that working memory was crucial for the
sequence recall task used in the present study, measures of work-
ing memory span were determined for each participant (letter
word span forward and backward, following the German version
of the Wechsler Memory Scale for number word span forward
and backward; Tewes, 1991). Participants were asked to repeat
sequences of letters which were given by the examiner. For let-
ter span forward, participants had first to repeat two sequences of
three different letters, respectively (for example: f-b-i and c-g-e).
At the second level of complexity two sequences of four differ-
ent letters had to be repeated, respectively, and so forth. On the
heighest (sixth) level participants had to repeat two sequences of
eight letters. For the letter span backward task participants were
asked to repeat two sequences of two up to eight letters, respec-
tively, in inverted order. The test procedure was stopped when a
participant repeated both sequences on a given level incorrectly.

fMRI PROCEDURE

The experiment was a combined behavioral and fMRI study.
Participants were lying in the scanner, listening to the pseu-
dowords presented via headphones. They had response boxes in
both hands and were instructed to press the correct response
buttons with the index finger of the respective hand. Head move-
ments were prevented by using soft foam pads. To familiarize
participants with the task and to reduce potential training effects
during fMRI data acquisition, all participants were given the
opportunity to practice two blocks (one per type of contrast)
in a separate room before entering the scanner. The same pseu-
dowords as employed in the scanner served as practice items, but
spoken by different speakers (a female native speaker of Dutch
and a male native speaker of German).

The experiment had a block design and comprised 8 blocks,
each one of which lasted about 73.8 s. Each block consisted of two
phases: a learning phase and an experimental phase. There were
two types of blocks: Block A contained the segmental condition,
and Block B the suprasegmental condition. Blocks were separated
by pauses of 30s. The blocks were presented in an alternating
fashion, either starting with Block A (A-B-A-B etc.) or starting
with Block B (B-A-B-A etc.), counterbalanced over participants
(see Figure 1).

In each learning phase the two pseudowords needed for the fol-
lowing experimental task were presented, such that participants

could familiarize with both words and their association with
the respective response button (see Figure 1). Participants were
instructed to respond to the first pseudoword encountered by
pressing the right button. In this way the right button was always
correct for the first pseudoword, such that no further explana-
tion of the correct association between pseudowords and response
buttons was needed. When hearing the second pseudoword of
the learning phase, participants had to decide whether it matched
with the first one (pressing the right button) or not (pressing the
left button). Here matching refers to a phonological (type-based)
rather than a phonetic (token-based) match. The participants
had to make this decision in a sequence of 12 pseudowords per
learning phase in pseudorandomized order such that no more
than two identical items were presented in a row. The items were
spoken either by the male or the female speaker, but no more
than three times in a row by the same speaker. Participants were
instructed to respond as fast and as accurately as possible by
pressing the corresponding button after stimulus presentation.
Maximum duration of response time was set to 2000 ms. Only in
the learning phase Feedback was presented immediately after each
trial only in the learning phase: a “Smiley” for a correct response
and a “Frowney” for an incorrect or missing response. The learn-
ing phase lasted for about 44.3 s per block. At the end of the
learning phase, participants had learned the correct correspon-
dence between both pseudowords and their associated response
buttons, which was also valid for the following experimental
task.

In the experimental phase participants were presented with
pairs of pseudowords from the set of items learned in the pre-
ceding learning phase. The task was to press the respective
response buttons (as learned in the preceding learning phase)
in the order the pseudowords had just been presented. No feed-
back was provided during the experimental phase. Eight item
pairs were presented in random order per block. There were 12
different randomized orders of items for each block, such that
only three to four participants had the same order of items.
In each item pair, one item was spoken by the male und one
by the female speaker. The duration of the experimental phase
was 29.5s per block (see Figure 1). Between pairs in the exper-
imental phase, the background color was slightly modified (a
different shade of gray for each sequence) to visually indicate the
start of a new pair. Overall, the experiment took 13:34 min. The

A (SEG) B (SSEG) A (SEG) B (SSEG)
Experimental task: Experimental task: Experimental task: Experimental task:
Learning MOA Learning APU /U Learning POA Learning PU/U
phase 1. kiimifa — kimita phase 2. mikuta — mikuta phase 3. kuipani — kupami phase 4. mipatu — mipata
5. tanusi - tanuki 6. katimu - katima 7. métika - matipa 8. tampi - tamupi
| 443s 295s 443's 295s 443s 295s 443s 295s |
[ 1
30 30 30
0s =738s s s s Total duration (8 blocks) = 800.4 s

=13.34 min.

second run

FIGURE 1 | fMRI design with 8 blocks (sequence A-B-A-B-A-B-A-B). Each block started with a learning phase followed by the experimental task. SEG,
segmental; SSEG, suprasegmental; APU, Antepenultima; MOA, Manner and place of articulation; POA, Place of articulation; PU, Penultima; U, Final syllable.
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experiment was presented with Presentation software (version
14.5, Neurobehavioral Systems, Albany, USA).

IMAGING ACQUISITION

For each participant, a high-resolution T1-weighted anatomi-
cal scan was acquired with a 3T Philips Magnetom MRI system
using the standard head coil (TR = 9.89 s, matrix 256 x 256 mm,
176 slices, voxel size = 1 x 1 x 1 mm?; FOV = 256 mm, TE =
4.59 ms; flip angle = 8°). Moreover, one functional imaging block
sensitive to blood oxygenation level-dependent (BOLD) contrast
was recorded for each participant (T2*-weighted echo-planar
sequence, TR = 2.89s; TE = 30 ms; flip angle = 79°; FOV =
240 mm; 80 x 80 matrix; 42 slices, voxel size = 3 x 3 x 3 mm>,
gap = 0.5 mm).

ANALYSIS OF BEHAVIORAL DATA

Behavioral data analysis was based responses in the experimen-
tal phase only. Furthermore, items with response latency faster
than 200 ms were not considered. Analyses focused on accu-
racy data since reaction times in the suprasegmental condition
were confounded with different “points of uniqueness” when par-
ticipants were able to detect the stress difference in a pair of
pseudowords (e.g., earlier point of uniqueness in “mikuta” vs.
“mikata” compared to “mikuta” vs. “mikutd”).

Participant’s individual performance in word stress process-
ing was evaluated employing accuracy data of the suprasegmental
condition. Based on a median split of the number of correct trials
in the suprasegmental condition (see Figure 2), each participant
was assigned either to a group of poor performers (below average)
or to a group of good performers (above average).

In an initial step, a 2 x 2 repeated measures Analysis of
Variance (ANOVA) on accuracy was performed with the within-
participant factor condition (segmental vs. suprasegmental) and

Suprasegmental condition
400 o mm oo m s *
oe?
90 """"""""""""""'""""'""""""""""" """"""
*60
80 | > s
T e B
S 6010020
>
B B0 oo
=
8 A0 e
<
T I
L
LT et
0 T
0 5 10 15 20 25
Participants
FIGURE 2 | Group classification based on a median split between
accuracy results in the suprasegmental condition. Note that chance
performance would yield 50% accuracy. Black squares = participants of the
above average group, gray dots = participants of the below average group.

the between-participant factor group (above vs. below average
word stress processing).

To pursue the potential association between performance in
basal auditory processing, working memory, and suprasegmen-
tal processing, a stepwise multiple regression analysis with mean
accuracy in the suprasegmental condition as criterion variable
was conducted, which was stopped when the inclusion of another
predictor would not increase R? significantly (at p < 0.05). The
predictors incorporated were performance measures from the
pretest tasks, i.e., pitch discrimination, duration discrimination,
skewness discrimination, a combined measure of these three
auditory processing tasks (mean auditory processing accuracy),
and working memory span.

ANALYSIS OF IMAGING DATA

The anatomical scans were normalized and averaged in SPM8
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The fMRI
time series were corrected for movement in SPM8. Images were
motion corrected and realigned to each participant’s first image.
Data was normalized into standard MNI space. Images were
resampled every 2.5 mm using 4th degree spline interpolation and
smoothed with a 6 mm FWHM Gaussian kernel to accommodate
inter-subject variation in brain anatomy and to increase signal to-
noise ratio in the images. The data were high-pass filtered (128s)
to remove low-frequency signal drifts and corrected for autocor-
relation assuming an AR(1) process. Brain activity was convolved
over all experimental trials with the canonical haemodynamic
response function (HRF) and its derivative.

On the first level, the intraindividual beta contrast weights
for segmental and suprasegmental processing were evaluated.
On the second level, both main effects and their interaction
were evaluated in a 2 x 2 (flexible factorial) ANOVA with the
between-subject factor group (above vs. below average) and the
within-participant factor condition (segmental vs. suprasegmen-
tal). For the anatomical localization of effects, the anatomical
automatic labeling tool (AAL) in SPM8 (http://www.cyceron.fr/
index.php/en/plateforme-en/freeware) was used to identify
Brodmann Areas (BA). If possible, the SPM Anatomy Toolbox
(Eickhoff et al., 2005), available for all published cytoarchitec-
tonic maps from www.fz-juelich.de/ime/spm_anatomy_toolbox,
was additionally used and in the results will be indicated by an
“Area” specification.

RESULTS

BEHAVIORAL DATA

Accuracy in the segmental task ranged from 56.3 to 96.9% and
in the suprasegmental task from 56.3 to 100%. The group clas-
sification was based on a median split for the accuracy results in
the suprasegmental condition (see Figure 2). The ratio of male
and female participants was comparable between both groups
(good: 8m/5f, poor: 8m/4f). A descriptive overview of the results
is provided in Figure 3.

A repeated measures ANOVA over arcsine-transformed error
rates revealed a significant main effect of group [F(;, 23) = 12.16,
p < 0.01], indicating that good performers made significantly
less errors (in total) than poor performers (16.0 vs. 29.0%, see
Figure 3). There was no main effect of condition [F(;, 3) < 1].
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However, there was a significant two-way interaction of condi-
tion and group [F(1, 23) = 9.3, p < 0.01]. The effect of condition
was only significant for poor performers [#(11) = 3.24; p < 0.01],
meaning that in this group the error rate in the suprasegmen-
tal condition was higher than in the segmental condition (36.2
vs. 21.9%). In contrast, for good performers the effect of condi-
tion did not reach significance [#(12) = 1.78, p = 0.10]. However,
it should be noted that, in contrast to the poor performers,
error rate was numerically higher in the segmental than in the
suprasegmental condition (19.7 vs. 12.3%).

Crucially, both groups differed significantly only in the
suprasegmental condition [f(24) = 6.21, p < 0.001] indicating
that the good performers performed reliably better (87.7%) than
the poor performers (63.8%).There was no significant difference
between groups for the segmental condition [t24) = —0.4, p =
0.70], see Figure 3. Furthermore, no correlation was observed
between stress processing (suprasegmental) and consonant pro-
cessing (segmental) (Spearman rho = 0.072, p = 0.733).

In order to examine whether performance in the supraseg-
mental condition was influenced by basic auditory processing
abilities and/or working memory skills, a stepwise multiple lin-
ear regression analysis was performed over arcsine-transformed
error rate of the suprasegmental condition. The final model com-
prised the predictors auditory processing and working memory
span forward [R? = 0.400, adjusted R?> = 0.345, F@, 24y =73,
p < 0.01].

fMRI DATA

Analysis of fMRI data was based on all trials in the experimen-
tal phase. In a first step, a conjunction analysis was conducted to
identify common overall activation in the paradigm irrespective
of group and condition.

OVERVIEW: CONJUNCTION ANALYSIS

A conjunction over all conditions and groups was calculated
(SEG in poor performers, SSEG in poor performers, SEG in good
performers, SSEG in good performers) to show joined activa-
tion at an uncorrected voxelwise p < 0.0001. Please note that

Error rate [%]
- =k N N W W B
o o o o o o o

(5]

o

SEG

Above average

SSEG SEG SSEG

Below average

FIGURE 3 | Comparison of mean error rate (%) per condition and
group. Standard deviations are given in parentheses. SEG, segmental
condition; SSEG, suprasegmental condition. **p < 0.01; ***p < 0.001.

this more rigorous p-value had to be used in the conjunction
(compared to the level of p < 0.001 for the complex contrasts
reported below) to visualize the different maxima of activation
(cf. Wood et al., 2009; Klein et al., 2010). However, all activa-
tions reported here remain significant following family-wise error
correction (FWE) at a cluster-level of p < 0.05. Significant acti-
vations in the entire primary auditory cortex were present (see
Table 2 and Figure 4). Bilateral activation was found in the supe-
rior temporal gyrus/sulcus (STG; STS) and the middle temporal
gyrus (MTG). Furthermore, left-hemispheric clusters of activated
voxels were observed in the inferior frontal gyrus (IFG; Area 44,
Area 6 (BA 44); SPM Anatomy Toolbox, Amunts et al., 1999;
cf. Eickhoff et al., 2005), the insula, the inferior parietal sulcus
(IPS; hIP2, IPC (PE, PFm), hIP1 (BA 7); SPM Anatomy Toolbox,
Choi et al., 2006; cf. Eickhoff et al., 2005) the SMA, and the mid-
dle frontal gyrus (MFG). In the right hemisphere voxels in the
IFG, inferior parietal lobule (hIP2, SPL (7PC), hIP1, hIP3; SPM
Anatomy Toolbox, Choi et al., 2006; Scheperjans et al., 2008a,b;
cf. Eickhoff et al., 2005) and the cerebellum were activated, while
the precentral gyrus was found active bilaterally (see Table 2,
Figure 4).

Table 2 | Maxima of the conjunction analysis over both conditions
(segmental and suprasegmental) as well as both groups (above and
below average) at an uncorrected voxelwise p < 0.0001
(cluster-corrected FWE of p < 0.05).

Brain region (BA) MNI Cluster z score
size

x y z
RH superior temporal 57 -19 -2 963 762
gyrus/sulcus (BA 22)
RH middle temporal 57 -28 -5 706
gyrus (BA 21)2
LH superior temporal —51 —-22 4 6.52
gyrus (BA 41/42)2
LH middle temporal —60 -31 4 885 713
gyrus (BA 22)
LH insula -33 20 1 13 4.71
LH inferior frontal -57 8 16 55 5.40
gyrus (BA 44)
RH inferior frontal 33 26 -5 i 4.54
gyrus (BA 47)
LH SMA (BA 6) -3 -4 58 82 4.57
LH IPS (BA7) —45 —43 43 293 5.30
RH IPS (BA 7) 39 —43 43 41 4.84
LH precentral gyrus —48 -4 46 1" 4.56
(BA 6)
RH precentral gyrus 57 1 37 17 4.49
(BA 6)
LH middle frontal -27 —4 52 17 4.37
gyrus (BA 6)
RH cerebellum 6 —67 -20 58 4.82

IPS, inferior parietal sulcus; LH, left hemisphere, RH, right hemisphere; SMA,
supplementary motor area.
aMinor maximum.
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FIGURE 4 | Conjunction analysis over all groups and conditions at an
uncorrected voxelwise p < 0.0001 (cluster-corrected FWE of p < 0.05).

CONDITION-BASED COMPARISONS

Suprasegmental vs. segmental processing

Suprasegmental was contrasted to segmental processing at an
uncorrected voxelwise threshold of p < 0.001 and a cluster size
of k = 10 voxels (see Figure 5A, Table 3). Larger activation for
suprasegmental processing was found bilaterally in the IFG (Area
44 and Area 45 (BA44 and BA 45); SPM Anatomy Toolbox, cf.
Fickhoff et al., 2005) as well as in the insula. Furthermore, in the
left hemisphere the thalamus, the IPS (hIP1, hIP3 (BA 7); SPM
Anatomy Toolbox, cf. Eickhoff et al., 2005) and the pre-SMA (BA
6) were activated, while in the right hemisphere the pallidum as
well as the right SMA (BA 6) revealed stronger activation in stress
processing compared to consonant processing. Further clusters of
activated voxels were found in the bilateral precentral gyrus, in
the left MFG (BA 10) and in the cerebellum, bilaterally.

Segmental vs. suprasegmental processing

Inspection of the inverse contrast (uncorrected p < 0.001, k =
10 voxel) revealed activation in the bilateral SMA (BA 6), the
right middle orbital gyrus and the left precuneus (see Figure 5B,
Table 3).

GROUP-BASED COMPARISONS

Poor performers vs. good performers

Poor performers revealed significantly stronger activation than
good performers in the left MTG at an uncorrected voxelwise
p < 0.001 and a cluster size of 10 voxels (see Figure 6A, Table 3).

Good performers vs. poor performers

When comparing good performers vs. poor performers (uncor-
rected p < 0.001, k = 10 voxel), significantly more activation was
found in the left precuneus (see Figure 6B, Table 3).

INTERACTION BETWEEN GROUP AND CONDITION

We conducted an ANCOVA over participants on the fMRI data
with working memory and auditory performance from the pretest
as covariates, to correct the segmental and suprasegmental activa-
tions for working memory and auditory abilities. In this context,
we also examined whether there is additional fMRI variance,
which is exclusively explained by the covariates. However, at the
threshold given (FWE-cluster threshold corrected) there was no
such additional activity to be found.

Group and condition interacted significantly in the right hip-
pocampus (CA (BA 27), SPM Anatomy Toolbox, Amunts et al.,
2005; cf. Eickhoff et al., 2005) and cerebellum at an uncor-
rected voxelwise p < 0.001 and a cluster size of 10 voxels (see

Figure 7, Table 3). However, especially in the cerebellum the
interactions in signal change seem to be mostly due to differ-
ent degrees of deactivation. However, it can be seen that good
performers showed relatively more activation (or less deactiva-
tion, respectively) in the segmental condition in the right hip-
pocampus and cerebellum compared to poor performers, whereas
poor performers revealed relatively stronger activation com-
pared to good performers in these areas in the suprasegmental
condition.

DISCUSSION

The current study set off to examine whether there are interindi-
vidual differences in word stress processing performance in
native speakers of German and, if so, which neural correlates
underlie these differences. So far, most studies focused on typo-
logically motivated processing differences between speakers of
languages with fixed vs. variable stress. In particular, Dupoux,
Peperkamp and colleagues compared speakers of Spanish (vari-
able stress pattern) to speakers of French (fixed stress pat-
tern; see Dupoux et al., 1997, 2001; Peperkamp et al., 1999;
Peperkamp and Dupoux, 2002) and found superior performance
of the former compared to the latter (for similar results in a
comparison between French and German see Schmidt-Kassow
et al., 2011a). Interindividual differences within one language—
although repeatedly observed—were treated as noise (Peperkamp
et al., 1999; Domahs et al., 2008, 2013b; Dupoux et al., 2010) or
were left unexplained (Boecker et al., 1999).

In the present study, participants were examined in both
suprasegmental as well as segmental variants of the sequence
recall task both at a behavioral and at a neuro-functional level.
Indeed, based on behavioral results we were able to identify
considerable interindividual differences within native speakers of
German (accuracy in the suprasegmental task ranging from floor
to ceiling performance).

To explore more thoroughly, which factors modulate supraseg-
mental processing differences, working memory span as well as
auditory processing abilities were analyzed. In fact, we demon-
strated that suprasegmental performance was predicted by both
basic auditory processing abilities (i.e., duration, time, skew-
ness discrimination) and working memory span. The influ-
ence of working memory on performance in the supraseg-
mental task seems highly plausible since working memory was
clearly task-relevant. Crucially, the fact that a combined mea-
sure of duration, time, and skewness discrimination predicted
individual performance in word stress processing, provides a
first hint toward an explanation for the interindividual vari-
ability observed. This result fits nicely with findings recently
reported by Haake et al. (2013), who observed that word stress
processing in children with specific language impairment as
well as in typically developing children is predicted by audi-
tory processing of duration cues. Obviously, basic auditory
processing performance may exert its influence not only in
children, but also in healthy adults for whom the recognition
and interpretation of word stress is relevant in their native
language.

In sum, there was substantial interindividual variability in
word stress processing. Hence, two groups were defined based
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FIGURE 5 | (A) Comparison of suprasegmental vs. segmental condition IPS, inferior parietal sulcus; LH, left hemisphere; MFG, middle frontal gyrus;
(uncorrected p < 0.001, kK = 10 voxels). (B) Segmental vs. suprasegmental RH, right hemisphere; SEG, segmental; SMA, supplementary motor area;
condition (uncorrected p < 0.001, k = 10 voxels). IFG, inferior frontal gyrus; SSEG, suprasegmental.

Table 3 | Significant brain activation differences for various group and condition contrasts.

Contrast Brain region (BA) MNI Cluster size z score
X y z

Suprasegmental vs. segmental RH inferior frontal gyrus (BA 44/45) 51 17 16 345 5.19
RH inferior frontal gyrus (BA 45)2 54 29 22 4.97
LH inferior frontal gyrus (BA 44/45) -51 14 31 112 4.38
LH insula -30 20 -1 115 5.15
RH insula 33 23 -2 134 4.50
LH thalamus —6 -13 -2 151 3.85
RH pallidum 18 -1 1 70 4.02
LH IPS [hIP1, hIP3 (BA 7)] —36 —52 37 79 4.08
LH pre—SMA (BA 6) 0 17 46 184 4.95
RH SMA (BA 6) 9 2 58 12 3.67
RH precentral gyrus (BA 6) 42 -1 49 100 4.37
LH precentral gyrus (BA 6) -39 —4 40 55 4.31
LH middle frontal gyrus (BA 10) -30 53 22 16 3.94
LH cerebellum -9 —76 —-29 140 4.05
RH cerebellum 24 -34 —41 31 4.01

Segmental vs. suprasegmental LH SMA (BA 6) -9 -19 52 44 3.98
RH SMA (BA 6) 15 -10 40 19 4.09
RH middle orbital gyrus (BA 10) 3 50 -5 88 4.19
LH precuneus (BA 7) -6 —58 19 13 3.47

Below vs. above LH middle temporal gyrus (BA 21) —69 -34 -8 16 3.84

Above vs. below LH precunes (BA 7) 0 —52 40 24 3.71

Interaction group * condition RH hippocampus 30 -34 -2 i 3.76
RH cerebellum 24 =31 —-23 16 4.48

IPS, inferior parietal sulcus; LH, left hemisphere,; RH, right hemisphere; SMA, supplementary motor area.
@ Minor maximum.

on a median split of individual accuracy results in the supraseg- NEURAL CORRELATES OF SEGMENTAL AND SUPRASEGMENTAL
mental task. Neural correlates of segmental and suprasegmental PROCESSING

processing and their interaction with group membership were The conjunction analysis revealed a large cluster of activation
investigated and will be discussed in the following. in auditory cortex across performance levels and conditions
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FIGURE 6 | (A) Comparison of participants below vs. above average (uncorrected p < 0.001, k = 10 voxels). (B) Participants above vs. below average
(uncorrected p < 0.001, k = 10 voxels). The bar charts below the activation figure depict the corresponding beta estimates for the respective brain region.
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FIGURE 7 | Interaction between group and condition (uncorrected p < 0.001, k = 10 voxels). The bar charts next to the activation figure depict the
corresponding beta estimates for the respective brain region.
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(cf. Figure4, Table2), extending from the superior temporal
gyrus to the middle temporal gyrus and to the insula. This
finding is highly plausible, because participants had to pro-
cess auditory linguistic stimuli. More specifically, previous stud-
ies reported activation in the STG or STS for processing of
prosodic information in general (e.g., Dogil, 2003; Ischebeck
et al, 2008), and for processing of word stress in particu-
lar (Aleman et al., 2005; Klein et al., 2011; Domahs et al.,
2013b).

In addition, activation in the bilateral supplementary motor
area (with left-hemispheric peak activation within a large clus-
ter extending into the right hemisphere) and in the bilateral
inferior parietal sulcus was found. This may be related to the
fact that participants had to determine either stress localization
or consonant differences by button presses since the SMA has
been suggested to subserve decision making (Kong et al., 2005).
Additionally, a combination of working memory related BA 44
and intraparietal BA 7 activation indicated that participants
had to hold the sequences of pseudowords in working mem-
ory. Moreover, bilateral activation in the precentral gyrus was
observed, probably indicating motor processing associated with
finger movements and button presses (Zilles and Rehkdamper,
1998).

Beyond these task-related effects, cerebellum, temporal cortex,
premotor cortex, preSSMA/SMA and inferior frontal cortex have
been described as part of a network involved in speech perception,
especially engaged in the temporal processing of speech (Grahn
and Brett, 2007; Kotz et al., 2009; Kotz and Schwartze, 2010).

SUPRASEGMENTAL vs. SEGMENTAL PROCESSING
In the behavioral data, no correlation was observed between stress
processing (suprasegmental) and consonant processing (segmen-
tal). This suggests that the linguistic abilities underlying these two
conditions may be to a certain degree independent, although they
were tested with a comparable paradigm in the present study.

When the suprasegmental task was contrasted to the seg-
mental task, a subcortico-cortico-cerebellar network of brain
regions was revealed, including bilateral IFG (BA44 and BA 45),
bilateral insula, bilateral precentral gyrus, bilateral cerebellum,
left thalamus, left pre-SMA (BA 6), right globus pallidus, and
right SMA (BA 6). There is accumulating evidence, that this
network is involved in processing spectro-temporal aspects of
speech (Lutz et al., 2000; Lewis et al., 2004; Bengtsson et al,,
2005; Riecker et al., 2006; Grahn and Brett, 2007; Coull et al.,
2008; Geiser et al., 2008; Kotz et al., 2009; Kotz and Schwartze,
2011; Schwartze et al., 2012a,b, see Kotz and Schwartze, 2010,
for a review). This finding seems very plausible, given that dura-
tion is the most relevant acoustic cue to word stress in German
(Jessen and Marasek, 1997; Classen et al., 1998; Schneider, 2007;
Schneider and Maobius, 2007; Lintfert, 2010) and performance
in auditory discrimination in general and duration discrimina-
tion in particular predicts performance in the more complex
task related to word stress (behavioral results of the present
study, see Haake et al., 2013, for evidence from German speaking
children).

More specifically, bilateral activation in the inferior frontal gyri
related to the suprasegmental condition is in line with previous

studies, which reported these areas to be activated in processing
linguistic aspects of prosody (e.g., Wildgruber et al., 2004; Li et al.,
2010; Klein et al., 2011; Domahs et al., 2013b).

Furthermore, activation in the left insula related to supraseg-
mental processing is consistent with previous studies, which
found this area activated for auditory temporal processing (Lewis
et al., 2000; Ackermann et al., 2001; Lewis and Miall, 2003), for
pitch-related stimuli (Zarate and Zatorre, 2005) as well as for
auditory timing perception (Geiser et al., 2008) and word stress
processing proper (Aleman et al., 2005; Klein et al., 2011).

Activation in the bilateral inferior parietal sulcus may reflect
the fact that participants had to store information in work-
ing memory and to respond by button presses. Possibly, they
employed a spatial representation of the pseudowords (e.g., first
syllable = left, last syllable = right) and of response buttons
to come to the correct decision. Amongst others, the intrapari-
etal cortex has been suggested to subserve mental imagery (Just
et al., 2004). Moreover, the IPS has been frequently reported
to be involved in the processing of proximity relations (see
Dehaene et al., 2003 for a review). Recall that stress is an inher-
ently relational property and requires the comparison of acoustic
cues (e.g., duration, pitch, and skewness) between stressed and
unstressed syllables. In the present study, the inferior parietal
sulcus may be associated with mental imagery and with the eval-
uation of gradual differences in acoustic cues related to word
stress. This might comprise positional information, which has
to be encoded in the IPS and held in working memory as well
as the actual comparison process of the positional information
within the sequences of CV-syllables—a process also most prob-
ably associated with the intraparietal cortices (cf. Klein et al,
2011). In particular, bilateral inferior parietal cortex has been
found activated in tasks tapping on suprasegmental compared
to segmental aspects of words (Li et al., 2010; Klein et al,
2011).

Beyond temporal processing of speech input, activation in the
supplementary motor area may be related to the fact that in gen-
eral the suprasegmental task in this study was somewhat more
difficult than the segmental task. The SMA has been found to
support operation procedures (Kong et al., 2005). Interestingly,
Domahs et al. (2013b) observed increased activation in bilateral
SMA in a difficult compared to an easy condition in a word stress
violation task. Moreover, SMA activation in the suprasegmen-
tal condition together with a significantly increased activation in
the precentral gyrus could point to an involvement of the cen-
tral motor system. Given that both the SMA and the precentral
gyrus were activated bilaterally, these findings may reflect con-
trol of finger movements in participants (e.g., Shibasaki et al.,
1993; Catalan et al., 1998). Possibly, participants may have needed
higher control of their finger movements in the more difficult
suprasegmental condition. An alternative explanation could be
that in more difficult conditions participants may establish a
correspondence between their fingers and the positional infor-
mation of stress, for instance, by using finger counting. This
would be also in line with the activation pattern observed in
SMA, precentral and intraparietal areas. However, this account
remains speculative so far and needs further evaluation in future
studies.
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INTERINDIVIDUAL DIFFERENCES

The middle temporal gyrus was found activated in both condi-
tions (segmental, suprasegmental) for both groups (cf. Table 3).
This fits well with the fact that the MTG has been associated
with phonology (Graves et al., 2010) and, more generally, with
complex sound and speech processing (Scott et al., 2000).
Nevertheless, poor performers showed stronger activation in this
region.

Further significant changes in the BOLD signal were found in
the precuneus. These findings are rather difficult to interpret since
for good performers the BOLD signal in the precuneus seemed to
be close to zero in both the segmental and the suprasegmental
conditions (see Figure 6B), whereas in poor performers the pre-
cuneus was strongly deactivated in both conditions. Considering
that the amplitude of the BOLD signal indicated by SPM is
subject to arbitrary factors (such as the definition of the base-
line), the present findings can only be interpreted in relative
terms, not in terms of “activation” or “deactivation.” Generally,
the precuneus has been suggested not only to subserve learn-
ing of motor-sequences (Sadato et al., 1996; Sakai et al., 1998)
but also to be involved in mental imagery (Dehaene et al., 1996;
Huijbers et al., 2011). Possibly, good performers may have relied
more on mental imagery or motor-sequence learning to solve the
task correctly, compared to poor performers. Nevertheless, we
are well aware of the fact that currently this explanation remains
speculative.

One may conclude that both groups activated the MTG for
phonological processing of stimuli in both conditions, but that
poor performers required more resources. It may be speculated
that good performers have used a combination of visual and audi-
tory representations to solve the tasks, whereas poor performers
only relied on auditory information (but to a higher degree).
Possibly, a combination of visual and auditory processing may be
advantageous.

Although native speakers of German are highly familiar with
the use of suprasegmental features in their mother tongue, the
present study shows that their performance in an experimental
task tapping on this aspect of language may nevertheless be very
heterogeneous. Until now, it was assumed that native German
speakers should be “naturally” competent in word stress process-
ing, since this is a relevant feature of their language, which is
acquired early. Preverbal infants learn the typical stress pattern
of their mother tongue and can use it in speech segmenta-
tion (Hoehle et al., 2009). Importantly, even those participants,
who showed poor performance in the specific suprasegmental
task in the present study, were competent speakers of German.
Note that the stress pattern of real words is stored in the lex-
icon. However, in the present study, participants had to pro-
cess pseudowords which by definition cannot be stored in the
mental lexicon. Thus, processing word stress in everyday lan-
guage requires lexical retrieval, whereas the suprasegmental task
in our experiment may have required other types of prosodic
knowledge (e.g., rule-based knowledge). Furthermore, every-day
language is typically embedded in a redundant context, which
helps in resolving ambiguities related to word stress, e.g., in the
interpretation of minimal pairs. Therefore, the specific difficul-
ties in suprasegmental processing of pseudowords observed in

the present study are subclinical with no obvious impact on
language use.

INTERACTION BETWEEN GROUP AND CONDITION

Behaviorally, a two-way interaction of condition (segmental vs.
suprasegmental) and group (below vs. above average) indicated
that the good performers were numerically better in supraseg-
mental than in segmental processing, whereas the poor perform-
ers were significantly better in segmental than in suprasegmental
processing (see Figure 3). Importantly, a two-way interaction of
condition and group was also revealed in the neuro-functional
data (see Figure 7, Table 3). Good performers showed relatively
more activation (or less deactivation, respectively) in the segmen-
tal condition in the right hippocampus and cerebellum compared
to poor performers, whereas poor performers revealed relatively
stronger activation in these areas in the suprasegmental condition
compared to good performers.

Hippocampal cells have been shown to be involved in auditory
working memory in rats (Sakurai, 1990, 1994). More recently,
the hippocampus has been argued to contribute to performance
in a variety of cognitive tasks including working memory and
perception, when these tasks require high-resolution binding of
features and relational information (Yonelinas, 2013). Clearly, the
sequence recall task used in the present experiment does require
such a complex and demanding type of binding. Interestingly,
activation in the right hippocampus was related to relative task
difficulty: Poor performers seemed to need relatively more cogni-
tive resources in the suprasegmental task (which they performed
worse than the segmental task), but good performers seemed to
put relatively more effort into the segmental task (which they
performed worse than the suprasegmental task).

Furthermore, a similar pattern of (de-)activation was observed
for the interaction in the right cerebellum. The cerebellum has
been considered to be part of a network related to the process-
ing of spectro-temporal aspects of speech (Kotz and Schwartze,
2010). The interaction in the cerebellum suggests that poor per-
formers may have needed the cerebellum relatively more for the
suprasegmental task (although achieving inferior results) than
good performers. The opposite pattern was observed in the
segmental condition. Again, these interpretations have to be con-
sidered very cautiously and remain speculative, because the inter-
action pattern consists only of different degrees of deactivation.

CONCLUSION AND PERSPECTIVES

The present study is a first step toward a more comprehensive
understanding of the processing of word stress. In particular, it
highlights the need to examine brain activation data not only
at the second level in group analyses, but also to analyze indi-
vidual data at the first level. Taken together, our results pro-
vide behavioral and neuro-functional evidence for substantial
interindividual differences within a group of native speakers of
German, a language with variable stress, in word stress process-
ing. They suggest that part of the behavioral variance is explained
by basic auditory processing and working memory performance.
It would be interesting to explore, whether speakers of a language
with fixed stress (e.g., Czech, Finnish, Polish, Turkish, Persian, or
French) show similar interindividual heterogeneity.
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