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Given the importance of recursion in
modern linguistics, there ought to be
much to commend in Watumull et al’s
(2014) attempt to clarify what recursion
is (or ought to be); I have trudged this
very terrain myself, using some of the
same sources, and in order to make similar
points (e.g., Lobina, 2011, but especially in
Lobina, 2012). However, there are so many
issues with Watumull et al’s own attempt
that a proper response is in order. I will
here limit myself to the following: (a) the
characterization of recursion these authors
offer is wholly mistaken, the unavoidable
result of misunderstanding, misrepresent-
ing, and misinterpreting the relevant liter-
ature from the formal sciences; and b) as a
corrective, I provide a definition of recur-
sion that stands on much firmer ground
in order to then show how it relates to
Chomsky’s introduction of recursive tech-
niques into linguistics.

Watumull et al. (WEA, from now on)
base their definition on a quote of Godel
(1931) regarding what they call the “prim-
itive notion of recursion” (p. 2), deriv-
ing therefrom three criterial properties of
recursion: (a) the function must spec-
ify a finite sequence (Turing computabil-
ity, WEA claim); (b) this function must
be defined in terms of preceding func-
tions, that is, it must be defined by induc-
tion, which WEA associate with strong
generativity (i.e., the generation of ever
more complex structure); and (c) this
function may in fact just reduce to the
successor function (that is, mathemati-
cal induction, which WEA associate with
the unboundedness of a generative proce-
dure). Unfortunately, this characterization
of recursion is mistaken in both design and
detail.

To begin with, WEA don’t provide the
full version of Godel’s text, their ellipses
omitting important material, as the full

text demonstrably shows (I'll be quoting
from Davis (1965), which offers a differ-
ent translation from the one WEA use, but
this won’t affect my analysis):

A number theoretic function ¢ is said
to be recursive if there exists a finite
sequence of number-theoretic functions
é1, @2, ..., ¢, which ends with ¢ and
has the property that each function ¢y
of the sequence either is defined recur-
sively from two of the preceding func-
tions, or results [footnote not included]
from one of the preceding functions by
substitution, or, finally, is a constant or
the successor function x + 1 (pp. 14-5;
underline in the original).

As is clear from the full quote, what Godel
is doing here is defining a specific class
of functions; he called these functions
the recursive class in that text, but these
are now known as the primitive recur-
sive functions (Davis, 1965, p. 4). What he
is absolutely not doing is defining recur-
sion per se. Moreover, Godel’s definition
is not actually a combination of proper-
ties subsuming any such prior concept at
all, as WEA would have us believe (and
they do so by omitting substitution and
the constant function from the text). That
is clearly not what the quote states. Here
Godel is merely saying that if we have a
list of functions (and there is no indica-
tion that this list is computed by a Turing
Machine, a notion that was unavailable to
Godel in 1931 anyway), any one function
from this list will be defined as recur-
sive if it

e is defined by induction from previous
functions, OR

e is substituted by some of them, OR

e is the constant function, OR

e is the successor function.

Godel’s quote is in fact a pretty standard
definition of the primitive recursive class
(cf. the five recursive functions outlined
in Kleene 1952, pp. 220-223). There are
other types of recursive functions (such
as the general and the partial), and all
these functions are recursive for the same
reason; they just happen to be different
classes of functions because of the different
input-output relations they encompass.

So what is recursion, then? As Brainerd
and Landweber (1974) put it, it is use-
ful to define functions “using some
form of induction scheme..., a general
scheme. .. which we call recursion” (p. 54).
This is consonant with the original inter-
pretation of recursion as being part of a
definition by induction, as chronicled by
Soare (1996). Also known as a recursive
definition, it consists, as WEA themselves
allude to (e.g., in page 2), in “defining
a function by specifying each of its val-
ues in terms of previously defined values”
(Cutland, 1980, p. 32). WEA don’t actually
provide an example of what a definition
by induction involves, and it is important
to do so. A standard example is that of
the factorial class (n!=nxn—1xn—
2...%x 2 x 1, where n is a natural num-
ber), which can be recursively defined in
the two-part system so typical of such def-
initions: (a) if n =1, n! = 1 (base case),
(b) if n > 1, n! =n x (n—1)! (recursive
step). Note that the recursive step involves
another invocation of the factorial func-
tion, and it is precisely the self-referential
(or self-call) property of such definitions
that makes a function recursive (Tomalin,
2006, p. 61).

So what’s wrong with WEA’s character-
ization, then? The first property WEA list
can be swiftly dealt with: there’s no rea-
son to equate the finite sequence of func-
tions Godel mentions in his 1931 paper
with Turing computability; nor is there
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any indication in that text that such a
sequence of functions is the result of a
computation. As for the second property
WEA outline—the identification between
a definition by induction and structure
generation— these are two very different
things, and it is not clear why WEA make
the connection at all. After all, the previ-
ously defined values that a recursive func-
tion calculates are not objects that partake
in the further construction of other, more
complex objects. Rather, the computation
of the factorial of 4, for instance, neces-
sitates the computation of the factorial of
3, but the latter is the value that is calcu-
lated by another function (the result of a
self-call), neither internal to the factorial
of 4 itself nor constitutive of its opera-
tions. This is also true of a Turing Machine
(TM), which WEA describe in rather
peculiar terms;! all a TM does is write or
erase digits on a tape according to some
rules (the so-called configuration), and
whilst a collection of digits could stand for
many different things (as specified in the
TM’s look-up table at least), every opera-
tion a TM carries out is exhausted at each
stage; that is, the configuration changes for
each cell, making each step of a TM com-
putation a self-contained one. Technically,
therefore, there is neither structure (WEA,
p- 2) nor “derivational history” (WEA,
p- 4, ft. 2) being carried forward on the
tape. A similar state of affairs applies to
the three-way identification WEA spec-
ify regarding the third criterial property:
the successor function qua mathemati-
cal induction qua the unboundedness of
a generative procedure. A mathematical
induction, a related and yet distinct con-
cept to a definition by induction, is a
technique employed to prove whether a
given property applies to an infinite set,
and proceeds as follows: first, it is shown
that a given statement is true for 1; then,
it is assumed that it is true for n, a fixed
number (the inductive hypothesis); and
finally, it is established that it is there-
fore true for n+ 1 (the inductive step).
The misidentification between mathemat-
ical induction and the successor func-
tion (recall, a primitive recursive function)

'Indeed, WEA insist on talking of the outputs of a
TM as being “recursed,” which can give the impres-
sion that recursion is part of its operations, but this is
not the case at all.

could perhaps be excused on the grounds
that most expositions of mathematical
induction employ the successor function
as a case in point (e.g., Kleene, 1952, pp. 20
et seq.), but this doesn’t have to be the case:
Buck (1963) provides examples of mathe-
matical induction with many other types
of data. In any case, what mathematical
induction clearly isn’t is unboundedness
itself; as stated, mathematical induction is
a technique to prove if a given statement is
true of an infinite set, a different concept
altogether.

I should note, in any case, that I don’t
dispute the importance of the three prop-
erties WEA line out for a theory of lan-
guage. What I deny is that these properties
are criterial of what recursion is; and more
specifically, that they are associated to (or
indeed identified with) the three concepts
WEA selectively and mistakenly extract
from Godel (1931). Moreover, WEA pro-
vide a story that is somewhat at odds
with the manner in which Chomsky intro-
duced recursion into linguistics, including
how he has always understood this notion
(at least in his individual writings), and I
would like to end this note with some brief
comments regarding this point.

It is commonplace among linguists
that the number of sentences that lan-
guage users can produce and understand
is unbounded, and therefore that a com-
putational system must be postulated in
order to account for this fact. Chomsky has
been rather clear that generative grammar
developed within ‘a particular mathe-
matical theory, namely, recursive func-
tion theory’ for this very task (p. 101
in Piattelli-Palmarini, 1980), a choice of
words that is rather illustrative. As Soare
(1996) has chronicled, mathematical logic
made ample use of recursive techniques in
order to formalise the notion of a “com-
putation” in the 1930s and 1940s, to the
point that in subsequent decades recur-
sion itself was taken to be synonymous
with the term computation (and recursive
with computable), a state of affairs Soare
has called the Recursion Convention. The
field has apparently moved on from this,
now preferring to call itself computability
theory instead of recursive function the-
ory (Soare, 2007), perhaps on account
of the fact that even though recursively-
specified formalisms such as the partial
recursive functions can indeed model what

a computation is, many non-recursive for-
malisms do just as well (e.g., a Turing
Machine)?. As I reported in Lobina (2011,
p. 155, ft. 5), in fact, Chomsky has always
tacitly followed the Recursion Convention,
and this might help explain his insistence
on the centrality of recursion.

Chomsky has been remarkably consis-
tent in stating that the language faculty
recursively enumerates syntactic objects,
where a set is recursively enumerable if
there is an algorithm that can list its mem-
bers. Indeed, in the 1966 edition of his
Language and mind book, re-edited in
2006, we find that a “generative grammar
recursively enumerates structural descrip-
tion of sentences” (p. 165), a stand that is
maintained in Chomsky (1981, pp. 11-13)
and then re-emphasised in the 1990s with
the postulation of a computational mech-
anism, termed merge, that “recursively
constructs syntactic objects from [lexi-
cal] items...and syntactic objects already
formed” (Chomsky, 1995, p. 226). To
be sure, the early years of generative
grammar saw the employment of Post’s
production systems, a more obvious recur-
sive formalism®, but this aspect of the
theory hasn’t translated much with the
advent of merge, given that a recent
description delineates it in very general
terms as a set-theoretic operation in which
repeated applications over one element
yield a potentially infinite set of struc-
tures, drawing an analogy between the way
merge applies and the successor function
(Chomsky, 2008). Incidentally, it bears
emphasis that what used to be called a
recursively enumerable set is nowadays
more appropriately termed a computably
enumerable set, adding to the point that
Chomsky’s employment of recursion may
perhaps owe more to Soare’s Recursion
Convention than to any other single factor.

Needless to say, this narrative has little
to do with G6del’s definition of the (prim-
itive) recursive class of functions, as WEA
would have it. There is in fact so much
more that one could say about WEA, but

*The point here is that even though these formalisms
are extensionally equivalent—i.e., they converge on
the same output given a common input— there are
intensional differences regarding how they in fact
achieve these input-output pairs (see Epstein and
Carnielli, 2008 for details).

* As Post (1943) points out, a production system ‘natu-
rally lends itself to the generating of sets by the method
of definition by induction’ (p. 201); cf. WEA (p. 3).
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this, apparently, is not the place to do so
(see the acknowledgment section for direc-
tions to a longer version of this paper).
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