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Using eye-tracking methodology, gaze to a speaking face was compared in a group of
children with autism spectrum disorders (ASD) and a group with typical development (TD).
Patterns of gaze were observed under three conditions: audiovisual (AV) speech in auditory
noise, visual only speech and an AV non-face, non-speech control. Children with ASD
looked less to the face of the speaker and fixated less on the speakers’ mouth than TD
controls. No differences in gaze were reported for the non-face, non-speech control task.
Since the mouth holds much of the articulatory information available on the face, these
findings suggest that children with ASD may have reduced access to critical linguistic
information. This reduced access to visible articulatory information could be a contributor
to the communication and language problems exhibited by children with ASD.

Keywords: autism spectrum disorders, audiovisual speech perception, eyetracking, communication development,

speech in noise, lipreading

INTRODUCTION
Autism spectrum disorders (ASD) refer to neurodevelopmental
disorders along a continuum of severity that are generally char-
acterized by marked deficits in social and communicative func-
tioning (American Psychiatric Association, 2000). A feature of the
social deficits associated with ASD is facial gaze avoidance and
reduced eye contact with others in social situations (Hutt and Oun-
stead, 1966; Hobson et al., 1988; Volkmar et al., 1989; Volkmar and
Mayes, 1990; Phillips et al., 1992). One implication of this reduced
gaze to other’s faces is a potential difference in face processing. A
number of studies have suggested that individuals with ASD show
differences in face processing, including impaired face discrimi-
nation and recognition (for a review see Dawson et al., 2005, but
see Jemel et al., 2006 for evidence that face processing abilities are
stronger in ASD than previously reported) and identification of
emotion (Pelphrey et al., 2002).

Along with identity and affective information, the face pro-
vides valuable information about a talker’s articulations. Visible
speech information influences what typically developing listen-
ers hear (e.g., increases identification in the presence of auditory
noise, Sumby and Pollack, 1954) and is known to facilitate
language processing (McGurk and MacDonald, 1976; MacDon-
ald and McGurk, 1978; Reisberg et al., 1987; Desjardins et al.,
1997; MacDonald et al., 2000; Lachs and Pisoni, 2004). Fur-
ther, typical speech and language development is thought to take
place in an audiovisual (AV) context (Meltzoff and Kuhl, 1994;
Desjardins et al., 1997; Lachs et al., 2001; Bergeson and Pisoni,
2004). Thus, differences in access to visible speech information
would have significant consequences for a perceiver. For exam-
ple, there is evidence that the production of speech differs in
blind versus sighted individuals (for example, sighted speakers
produce vowels further apart in articulatory space than those of
blind speakers, ostensibly because of their access to visible con-
trasts; Menard et al., 2009), suggesting that speech perception

and production is influenced by experience with the speaking
face.

Consistent with their difficulties with information on faces, a
growing body of literature indicates that children with ASD are
less influenced by visible speech information than TD controls
(De Gelder et al., 1991; Massaro and Bosseler, 2003; Williams et al.,
2004; Mongillo et al., 2008; Iarocci et al., 2010; Irwin et al., 2011,
but see Iarocci and McDonald, 2006 and Woynaroski et al., 2013).
In particular, children and adolescents with ASD appear to benefit
less from the visible articulatory information on the speaker’s face
in the context of auditory noise (Smith and Bennetto, 2007; Irwin
et al., 2011). Further, children with ASD have been reported to be
particularly poor at lipreading (Massaro and Bosseler, 2003).

Although avoidance of gaze to others’ faces has been noted
clinically, the exact nature of gaze patterns to faces in ASD has
been a topic of investigation. A varied body of research using
eye-tracking methodology has examined patterns of facial gaze
patterns in individuals with ASD, in particular with complex
social situations and with affective stimuli. A number of studies
find that individuals with ASD differ in the amount of fixa-
tions to the eye region of the face when compared to typically
developing (TD) controls (Klin et al., 2002; Pelphrey et al., 2002;
Dalton et al., 2005; Boraston and Blakemore, 2007; Speer et al.,
2007; Kleinhans et al., 2008; Sterling et al., 2008). In particular,
during affective or emotion based tasks, individuals with ASD
have been reported to spend significantly more time looking at
the mouth (Klin et al., 2002; Neumann et al., 2006; Spezio et al.,
2007). However, a recent review by Falck-Ytter and von Hofsten
(2011) calls into question whether individuals with ASD look less
to the eyes and more to the mouth when gazing at faces; they
argue that only limited support exists for this in adults and even
less evidence in children. Apart from gaze to eyes and mouth,
some studies show increased gaze at “non-core” features (e.g.,
regions other than the eyes, nose, and mouth) of the face by
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individuals with ASD compared to TD controls, when gazing
at facial expression of emotion (Pelphrey et al., 2002). Reports
of differences in patterns of gaze to faces are not unequivocal,
however, with a number of studies reporting no group differ-
ences in certain tasks (Adolphs et al., 2001; Speer et al., 2007;
Kleinhans et al., 2008). Further, when assessing gaze to a face,
pattern of gaze may be a function of both language skill and
development. Norbury et al. (2009) report that pattern of gaze
to the mouth is associated with communicative competence in
ASD. Reported differences in gaze to faces in children with ASD
appear to vary depending on the age of the child (Dawson et al.,
2005; Chawarska and Shic, 2009; Senju and Johnson, 2009).
Moreover, recent work by Foxe et al. (2013) suggests that mul-
tisensory integration deficits present in children with ASD may
resolve in adulthood (although subtle differences may persist;
Saalasti et al., 2012).

Critically, little is known about gaze to the face during speech
perception tasks. A question that arises is whether the previously
reported deficit in visual speech processing in children with ASD
might simply be a consequence of a failure to fixate on the face.
However, recent findings by Irwin et al. (2011) provide evidence
against this possibility. Irwin et al. (2011) tested children with
ASD and matched TD peers on a set of AV speech perception
tasks while concurrently recording eye fixation patterns. The tasks
included a speech-in-noise task with auditory-only (static face)
and AV syllables (to measure the improvement in perceptual iden-
tification with the addition of visual information), a McGurk task
(with mismatched auditory and visual stimuli), and a visual-only
(speechreading) task. Crucially, Irwin et al. (2011) excluded all
trials where the participant did not fixate on the speaker’s face.
They found that even when fixated on the speaker’s face, children
with ASD were less influenced by visible articulatory information
than their TD peers, both in the speech-in-noise tasks and with
AV mismatched (McGurk) stimuli. Moreover, the children with
ASD were less accurate at identifying visual-only syllables than the
TD peers (although their overall speechreading accuracy was fairly
high).

Irwin et al.’s (2011) findings indicate that fixation on the face
is not sufficient to support efficient AV speech perception. This
could suggest differences in how visual speech information is pro-
cessed in individuals with ASD. However, it could also be due
to different gaze patterns on a face exhibited by individuals with
ASD. Perhaps if they tend to fixate on different regions of the
face than TD individuals, individuals with ASD have reduced
access to critical visual information. Consistent with this pos-
sibility is evidence that attentional factors can modulate visual
influences in speech perception in typical adults; visual influence
is reduced when perceivers are asked to attend to a distractor stim-
ulus on the speaker’s face (Alsius et al., 2005). Typically developing
adults have been shown to increase gaze to the mouth area of the
speaker as intelligibility decreases during AV speech tasks (Yi et al.,
2013). Further, Buchan et al. (2007) report that typically devel-
oping adults gaze to a central area on the face in the presence
of AV speech in noise, reducing the frequency of gaze fixations
on the eyes and increasing gaze fixations to the nose and the
mouth. If children with ASD do not have access to the same visible
articulatory information as the TD controls because their gaze

patterns differ, this may influence their perception of a speaker’s
message.

To assess whether there are differences in gaze that underlie
the AV speech perception differences in children with ASD as
compared to children with typical development, for the present
paper we conducted a detailed analysis of the eye-gaze patterns
for the participants and tasks reported in Irwin et al. (2011). In
particular, we examined patterns of gaze to a speaking face under
perceptual conditions where there is an incentive to look at the
face: (1) in the presence of auditory noise and (2) where no audi-
tory signal is present (speechreading). We tested whether children
with ASD differ from TD controls not only in overall time spent
on the face, but also in the relative amount of time spent fixat-
ing on the mouth and non-focal regions. We further examined
whether the two groups differ in the time-course of eye-gaze pat-
terns to these regions over the course of a speech syllable. Given
that the children with ASD in this sample exhibited poorer use
of visual speech information than the TD controls in percep-
tual measures (both for visual-only and AV speech), the analyses
reported here may shed some light on the basis for these differ-
ences: Is reduced use of visual speech information in perception
associated with differences in patterns of fixation on the talking
face?

Finally, as a control for the possibility that there are more gen-
eral group differences in gaze pattern unrelated to faces, we also
analyzed gaze patterns in a control condition with dynamic AV
non-face, non-speech stimuli.

MATERIALS AND METHODS
PARTICIPANTS
Participants in the current study were 20 native English speak-
ing monolingual children, 10 with ASD (eight boys, mean age
10.2 years, age range 5.58–15.9 years) and 10 TD controls (eight
boys, mean age 9.6, age range 7–12.6 years). Because the speech
conditions in this study required the child participants to report
what the speaker said, all participants in this study were verbal.
All child participants were reported by parents to have normal
or corrected-to-normal hearing and vision. The TD participants
had no history of developmental delays including vision, hearing,
speech or language problems, by parent report.

The TD controls were matched with the child ASD partic-
ipants on sex, age, cognitive functioning and language skill.
The TD controls were taken from a larger set of children
participating in a study of speech perception (n = 80). In
addition, the primary caregivers of children with ASD com-
pleted a diagnostic interview [autism diagnostic interview-revised
(ADI-R), Lord et al., 1994] about their children (n = 10 adult
females).

Prior to their participation in the study, child participants
with ASD received a diagnosis from a licensed clinician. Four
participants had a diagnosis of autism, four of Asperger syn-
drome and two were diagnosed with pervasive developmental
disorder not otherwise specified (PDD-NOS); these diagnoses all
fall within the classification of ASD. For characterization pur-
poses, participants with ASD were also assessed with the autism
diagnostic observation schedule (ADOS; Lord et al., 2000), and
their caregivers (n = 10) were interviewed with the ADI-R (Lord
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et al., 1994). All participants with ASD met or exceeded cut-
off scores for autism spectrum or autism proper on the ADOS
algorithm. Scores obtained from caregiver interviews showed
that the children with ASD met or exceeded cutoff criteria on
the language/communication, reciprocal social interactions and
repetitive behavior/interest domains on the ADI-R. Consistent
with the range of clinical diagnoses, there was heterogeneity in
the extent of social and communication deficits and presence of
restricted and repetitive behavior (for example, scores on the com-
bined communication and social impairment scales in the ADOS
ranged from 7 to 20, where 10 is the minimum cutoff score and 22
is the maximum possible score).

The mean age and standard deviations of the child ASD and
child TD participants, along with measures of cognitive and lan-
guage functioning, are presented in Table 1. The measures of
cognitive functioning were standardized scores for general con-
ceptual ability (GCA) on the Differential Abilities Scale (DAS); the
measures of language function were core language index scores
(CLI) from the clinical evaluation of language fundamentals-4
(CELF-4; Semel et al., 2003). Independent-samples t-tests on age,
GCA, and CLI did not reveal significant differences between the
groups, as shown in Table 1.

The sample included here represents a subset of the partici-
pants whose data were reported in Irwin et al. (2011). The data of
three children with ASD and one TD control were excluded from
the present analyses because they spent too little time fixating on
the face to permit statistical analysis. The data of two other TD
control participants were also removed due to the removal of their
respective matched ASD participants.

MATERIALS
Stimuli
Speech stimuli. The speech stimuli were created from a record-
ing of the productions of a male, monolingual, native speaker of
American English. This speaker was audio- and video-recorded in
a recording booth producing a randomized list of the consonant-
vowel (CV) syllables /ma/ and /na/. The video was centered on
the speaker’s face and was framed from just above the top of
the speaker’s head to just below his chin, and was captured at
640 × 480 pixels. The audio was simultaneously recorded to com-
puter and normalized for amplitude, and then realigned with the

Table 1 | Mean age and cognitive and language measures for the

children with ASD andTD.

ASD TD T -test

n 10 10

Age 10.2 (3.1) 9.6 (2.4) t (18) = −0.51, ns

General conceptual ability

(GCA)

92.1 (15.5) 98.9 (15.5) t (18) = 0.97, ns

Core language index scores

(CLI)

87.4 (17.3) 97.8 (15.1) t (18) = 1.4, ns

GCA and CLI are standardized scores. Standard deviations are in parentheses.

video in Final Cut Pro. Two tokens of /ma/ and /na/ were selected as
stimuli. The stimuli were trimmed to start with the mouth position
at rest, followed by an opening gesture, closing for the consonant,
and release of the consonant into the following vowel, and ended
with the mouth returning to rest at the end of the syllable. The
stimuli were approximately 1500 ms long, with the acoustic onset
of the consonant (for the AV stimuli) occurring at around 600 ms;
the acoustic portions of the stimuli were approximately 550 ms in
duration, on average.

For AV speech in noise, the stimuli were AV stimuli of /ma/ and
/na/. Three versions of each stimulus was created by setting the
mean dB of the syllables at 60 dBA, and then adding pink noise at
70, 75, and 70 dBA to the AV /ma/ and /na/ tokens to create stimuli
with a range of signal-to-noise levels from less to more noisy (i.e.,
−10, −15, and −20 dB S/N, respectively). Noise onset and offset
were aligned to the auditory speech syllable onset and offset.

The visual-only (speechreading) stimuli were identical to the
AV stimuli, except that the audio channel was removed.

Non-speech control stimuli. The AV non-speech stimuli consisted
of a set of figure-eight shapes that increased and decreased in size,
paired with sine-wave tones that varied in frequency and ampli-
tude. These stimuli were modeled on the speaker’s productions
of /ma/ and /na/ but did not look or sound like speech. To create
the visual stimulus, we measured the lip aperture in every video
frame of the /ma/ and /na/ syllables. We then used the aperture
values to drive the size of the figure: when the lips closed the figure
was small, and upon consonant release into the vowel the figure
expanded (see Figures 1C,D). The auditory stimuli were created
by converting the auditory /ma/ and /na/ syllables into sine-wave
analogs, which consist of three or four time-varying sinusoids,
following the center-frequency and amplitude pattern of the spec-
tral peaks of an utterance (Remez et al., 1981). These sine-wave
analogs sound like chirps or tones. Thus, the AV non-speech stim-
uli retained the temporal dynamics of speech, without looking or
sounding like a speaking face (see Figures 1A–E).

Visual tracking methodology
Visual tracking was done with an ASL Model 504 pan/tilt remote
tracking system, a remote video-based single eye tracker that uses
bright pupil, coaxial illumination to track both pupil and corneal
reflections at 120 Hz. To optimize the accuracy of the pupil coor-
dinates obtained by the optical camera, this model has a magnetic
head tracking unit that tracks the position of a small magnetic
sensor attached to the head of the participant, above their left eye.

Language assessment
Language ability was assessed with the CELF-4 (Semel et al., 2003).
The CELF-4 is reliable in assessing the language skills of chil-
dren in the general population and those with a clinical diagnosis
including ASD (Semel et al., 2003).

Cognitive assessment
Cognitive ability was assessed using the Differential Ability Scales
(DAS) School Age Cognitive Battery (Elliott, 1991). The DAS
provides a GCA score, which assesses verbal ability, non-verbal
reasoning ability, and spatial ability.
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FIGURE 1 | Sample images of the speaker (top panels) during a

production of /ma/ and the corresponding non-speech figure-eight

shapes (lower panels) taken from each time bin. Panels A through E

illustrate, respectively, the initial rest position (A), opening prior to the
consonant closing gesture (B), the closure for /m/ (C), peak mouth opening
for the vowel (D), and the return to rest at the end of the vowel (E).

ADOS
Children with ASD were assessed with the ADOS generic (ADOS-
G). The ADOS is a semi-structured standardized assessment of
communication, social interaction, and play/imaginative use of
materials for individuals suspected of having an ASD (Lord et al.,
2002).

ADI-R
Caregivers of participants with ASD were given the ADI-R (Lord
et al., 1994). The ADI-R is a standardized, semi-structured inter-
view for caregivers of those with an ASD to assess autism
symptomatology.

PROCEDURE
After consent was obtained in accordance with the Yale Uni-
versity School of Medicine, all participants completed the
experimental tasks in the eye-tracker. Each participant was
placed in front of the monitor, after which calibration of
the participant’s fixation points in the eye-tracker was com-
pleted. Prior to any stimulus presentation for each task, direc-
tions appeared on the monitor. These directions were read
aloud to the participant by a researcher to ensure that they
understood the task. In addition, two practice items were
completed with the researcher present to confirm that the
participant understood and could complete the task. For all
conditions, if participants were unsure, they were asked to
guess.

Condition 1: AV speech in noise
Participants were told that they would see and hear a man saying
some sounds that were not words and to say out loud what they
heard. Each of the six stimuli (two different tokens of each /ma/
and /na/, at each of the three levels of signal-to-noise ratios) was
presented four times, for a total of 24 trials in a random sequence.

Condition 2: visual only (speechreading)
Participants were told that they would see a man saying some
sounds that they would not be able to hear, and then asked to say

out loud what they thought the man was saying. Each of the four
stimuli (two different tokens of each /ma/ and /na) was presented
five times, for a total of 20 trials in a random sequence.

Condition 3: non-speech control
For this task, two stimuli were presented in sequence on each trial.
The paired stimuli were either modeled on different tokens of
the same syllable (e.g., both /ma/ or both /na/) or on tokens of
different syllables (one /ma/ and one /na/). Participants were told
that they would see two shapes that would open and close and
should say out loud whether the two shapes opened and closed
in the same way (e.g., both modeled on /ma/ or both modeled
on /na/, although no reference was made to the speech origins
of the stimuli to participants) or if the way that they closed was
different (e.g., one modeled on /ma/ and one on /na/). Each pairing
was presented seven times, for a total of 28 trials in a random
sequence.

The three tasks were blocked and presented in random order.
The inter-stimulus interval for all trials within the blocks was
3 s. After every five trials, participants were presented with
a slide of animated shapes and faces, to maintain attention
to the task. All audio stimuli were presented at a comfort-
able listening level (60 dBA) from a centrally located speaker
under the eye-tracker, and visual stimuli were presented at a
640 × 480 aspect ratio on a video monitor 30 inches from the
participant.

After the experimental procedure participants were tested with
the battery of cognitive and language assessments and caregivers of
the ASD participants were interviewed separately with the ADI-R.

RESULTS
Participant gaze to the speaker’s face was examined by group for the
AV speech-in-noise and visual-only (speechreading) trials, as was
gaze on the figure-eight shape in non-speech trials. The eye tracker
recorded fixation position in x and y coordinates at approximately
8 ms intervals. (In cases where the coordinates were not recorded,
the x- and y-coordinates of the previous time point were applied).
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Each x-y coordinate was coded according to whether it was on-
screen or off-screen, and if it was on-screen, whether it was part
of an on-face fixation or not. Off-screen fixations were eliminated
from the data.

The on-face coordinates were coded according to face regions,
namely: forehead, jaw, cheeks, ears, eyes, mouth region (including
the spaces between the lower lip and the jaw and between the upper
lip and the nose), and nose. The primary regions of interest were
the mouth region and a collective set of non-focal regions (face areas
other than the mouth region, eyes, and nose), in light of reports
that children with ASD spend relatively more time fixating on
non-focal regions of the face (Pelphrey et al., 2002). The non-focal
regions encompassed the ears, the cheeks, the forehead, and all
other regions not otherwise labeled (primarily the space between
the eye and the ear, between the nose and cheek, and between the
eyes). The jaw area was not included in either the mouth region
or the non-focal regions; this is because the jaw, unlike the other
non-focal regions, has extensive movement that is time-locked to
the speech articulation – thus, jaw movement conveys information
about the kinematics of the speech act.

For the non-speech condition, the on-screen regions were
coded in an analogous manner, based on the extent of the
figure-eight shape. These regions are described below.

Data points were only included as fixations if they had less than
a 40 pixel movement from the previous time point, and occurred
within a contiguous 100 ms window of similar small movements
that did not cross into a different face region, as defined above. In
all, 14.5% of the time steps were eliminated across the AV speech-
in-noise and visual-only tasks for being either off-screen, saccades,
or blinks. Although the mean percentage of dropped data points
was higher for the ASD sample than for the TD sample, the differ-
ence was not statistically significant [for AV speech-in-noise, ASD:
M = 19.4%, SD = 13.3; TD: M = 11.8%, SD = 7.4; t(18) = 1.60,
ns; for visual-only, ASD: M = 17.0%, SD = 12.0; TD: M = 10.0%,
SD = 5.3; t(18) = 1.70, ns].

The individual time steps were collapsed into 300 ms time bins
(0–300 ms, 300–600 ms, 600–900 ms, 900–1200 ms, and 1200–
1500 ms); we thus calculated the total amount of time spent in
each region within each time bin. These time bin boundaries were
selected because they roughly corresponded to visual landmarks
in the speech signal. The first bin (0–300 ms) preceded the onset of
visible movement; the second bin (300–600 ms) included open-
ing of the mouth prior to the consonant and the initiation of
closing (either lips in /ma/ or upward tongue-tip movement in
/na/); the third bin (600–900 ms) included the consonantal clo-
sure and release, and the final two time bins (900–1200 ms and
1200–1500 ms, respectively) span production of the vowel until
the end of the trial (for an image of articulation in each of the
time bins paired with the corresponding figure-eight shape, see
Figure 1).

As a result, our dependent variables were the mean percentage
of time gazing on a given region within a time bin. Time spent
fixating on the face was calculated as a percentage of time fix-
ated anywhere on the computer monitor within each time bin. In
contrast, time spent fixating on specific face regions (mouth region
and non-focal areas) was calculated as a percentage of time spent
fixated on the face within each time bin.

First, we examined whether there were group differences in
the percentage of time spent fixating on the face of the speaker
out of time spent fixating on-screen. Figure 2 presents the mean
time spent on face by group and time bin separately for the AV
speech-in-noise and visual-only tasks. As the figure shows, the
ASD group on average spent consistently less time on the face
than the TD group in both tasks. A set of 2 (group: ASD, TD) by
5 (time bin: 0–300 ms, 300–600 ms, 600–900 ms, 900–1200 ms,
and 1200–1500 ms) mixed factor analyses of variance (ANOVAs)
were conducted for AV speech-in-noise and visual-only, respec-
tively. There was a significant main effect of group with less time
spent on the face by the ASD group than the TD group for AV
speech-in-noise with a marginal effect for visual-only [for AV
speech-in-noise, ASD: M = 60.8, SD = 25.0; TD: M = 82.3,
SD = 21.9; F(1,18) = 6.31, p = 0.02, η2

G = 0.22; for visual-
only, ASD: M = 74.3, SD = 20.7; TD: M = 84.2, SD = 14.9;
F(1,18) = 3.39, p = 0.08, η2

G = 0.12]. These mean differences
reflect moderate to large effect size estimates (Cohen, 1973; Olejnik
and Algina, 2003; Bakeman, 2005). There was also a main effect of
time bin in both analyses [AV speech-in-noise: F(4,72) = 26.48,
p < 0.0001, η2

G = 0.23; visual-only: F(4,72) = 42.7, p < 0.001,
η2

G = 0.41], reflecting a rapid increase in fixations on the face
from the first to second bins that leveled off by the third bin. The
interaction of group and time was not significant for either task.

Next, we examined whether there were group differences in
gaze to specific regions on the face. We chose the mouth region
and non-focal areas (as defined above) as regions of interest1. We
ran a set of 2 (group: ASD, TD) by 5 (time bin: 0–300 ms, 300–
600 ms, 600–1200 ms, 1200–1500 ms) ANOVAs on the percentage
of time spent in each region of interest out of time spent on the face,
with separate analyses for the AV speech-in-noise and visual-only
tasks, and separate analyses for the mouth region and non-focal
areas. Figure 3 presents the relative percentages of time spent in
each region of interest by group and time, separately for the AV
speech-in-noise and visual-only tasks.

First, consider the mouth region. There was a significant main
effect of group for both tasks, with a relatively smaller percentage
of time spent on the mouth region for the ASD group than the TD
group [for AV speech-in-noise, ASD: M = 26.0, SD = 24.1; TD:
M = 52.9, SD = 30.8; F(1,18) = 11.25, p < 0.005, η2

G = 0.29; for
visual-only, ASD: M = 35.0, SD = 29.5; TD: M = 56.1, SD = 32.6;
F(1,18) = 4.46, p = 0.05, η2

G = 0.14]. There was also a main
effect of time for both tasks [AV speech-in-noise: F(4,72) = 23.18,
p < 0.0001, η2

G = 0.32; visual-only: F(4,72) = 23.7, p < 0.0001,
η2

G = 0.30], with an overall increase in fixations on the mouth
region from the first to third bins before leveling off. Interestingly,
there was an interaction of group and time bin for AV speech-
in-noise [F(4,72) = 10.06, p < 0.0001, η2

G = 0.17], but not for
visual-only (F < 1). As shown in Figure 3, for AV speech-in-noise,
fixations on the mouth region were similar for the two groups in
the first time bin (0–300 ms, prior to the onset of mouth move-
ment), but the subsequent increase in mouth region fixations was

1In addition to the analyses of the mouth region and non-focal regions, we also
conducted statistical analyses of fixations on other major face areas, namely the eyes
and nose. However, each involved few fixations overall and the analyses did not
reveal reliable differences between groups; thus, they are not reported here.
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Irwin and Brancazio Gaze to a speaking face

FIGURE 2 | Mean time spent on the face region as a percentage of

time spent on-screen for each of the time bins and for the ASD

group (closed circles) and the TD group (open squares). The left and

right panels present results for AV speech in noise and visual-only,
respectively. Error bars represent standard errors, calculated
independently for each time bin.

FIGURE 3 | Mean time spent on the mouth region (solid lines) and

non-focal areas (dashed lines) as a percentage of time spent on the face

for each of the time bins and for the ASD group (closed circles) and the

TD group (open squares). The left and right panels present results for AV
speech in noise and visual-only, respectively. Error bars represent standard
errors, calculated independently for each time bin.

much more pronounced for the TD group than the ASD group. In
contrast, in the visual-only task the two groups’ trajectories across
time were similar, differing in overall percentage of time in the
mouth region.

Next, consider the non-focal regions. For AV speech-in-noise,
there was a significant main effect of group, with a relatively
higher percentage of time spent fixating on non-focal regions by
the ASD group than the TD group [ASD: M = 19.5, SD = 19.6;
TD: M = 7.3, SD = 10.5; F(1,18) = 6.48, p < 0.05, η2

G = 0.15].
There was not a significant main effect of time, F(4,72) = 1.11,
ns, but there was a significant interaction of group and time,
F(4,72) = 4.98, p < 0.005, η2

G = 0.12. Time spent on non-focal
regions was similar for the two groups in the first time bin, but
dropped off rapidly for the TD group while remaining relatively
frequent for the ASD group across the whole trial. For visual-only,
there was again a main effect of group [ASD: M = 17.3, SD = 16.9;
TD: M = 9.2, SD = 12.6; F(1,18) = 5.43, p < 0.05, η2

G = 0.11],

along with a significant main effect of time, F(4,72) = 17.64,
p < 0.0001, η2

G = 0.37, with a decrease in time spent on non-focal
regions from the first time bin to the subsequent bins. The inter-
action of group and time (F < 1) was not statistically significant
in the visual-only task2.

2We initially considered the jaw as a non-focal region, but removed it from the
category because of its extensive movement during the speech event (thus provid-
ing information about the kinematics of the speech act), which distinguished it
from other non-focal areas. However, we did repeat the analyses of the non-focal
regions with the jaw included. This inclusion did not change the outcome for AV
speech-in-noise, but it did for visual-only. In the visual-only task, there were con-
siderably more fixations in the jaw region by the TD participants than the ASD
participants (although, in an analysis of just fixations on the jaw, the difference was
not statistically reliable). As a result, including jaw in the non-focal category had the
effect of eliminating the statistically significant group difference in non-focal fixa-
tions. However, this obscures an interesting difference between the groups: The ASD
group spent relatively more time fixating on face areas that convey less information
about the kinematics of the speech articulations (e.g., the cheeks).
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FIGURE 4 | Mean time spent on the figure-eight shape region as a

percentage of time spent on-screen for each of the time bins and for

the ASD group (closed circles) and theTD group (open squares). Error
bars represent standard errors, calculated independently for each time bin.

The results in the speech tasks can be summarized as follows.
First, the ASD group spent, on average, less time gazing on the face
than the TD group, and this difference was more pronounced in
the AV speech-in-noise task than in the visual-only task. Second,
when fixating on the face, the ASD group spent relatively less time
fixating on the mouth region than the TD group, and relatively
more time fixating on non-focal regions. Finally, the two groups
differed in their relative pattern of fixations on the speech over
the course of a trial. Specifically, the TD group exhibited a pattern
of initially looking at non-focal regions but then shifting to the
mouth as the articulation unfolded. The ASD group had a similar
but reduced shift in the visual-only task, but did not exhibit this
shift in the AV speech-in-noise task.

NON-SPEECH CONTROL CONDITIONS
Finally, to assess whether there were group differences in gaze to
the non-speech stimuli, a series of independent 2 (group: ASD,
TD) × 5 (time bins: 0–300 ms, 300–600 ms, 600–900 ms, 900–
1200 ms, and 1200–1500 ms) ANOVAs were run on fixations to
the figure-eight shapes during time spent on screen. The earliest
time bin encompasses pre-movement (0–300 ms), the next time
bin (300–600 ms) an increase to maximum size; the third time
bin (600–900 ms) from maximum size to minimum size and the
final two time bins increasing until the end of the trial (900–
1200 ms, 1200–1500 ms, see Figure 1). We defined two regions of
interest: a narrow region encompassing an area around the outline
of the figure-eight shape at its smallest point (see Figure 1C),
and a broad region encompassing the area around the outline
of the shape at its largest point (see Figure 1D). We analyzed
percentage of trials with fixations in each region at the previously
defined time samples that incorporated the shape’s transition from
a small outline to a large one. The percentage of time spent in the
broad region, shown in Figure 4, had a main effect of time bin
[F(4,72) = 12.33, p < 0.0001, η2

G = 0.13], due to an increase from
the first bin (prior to movement) to the second, but no main effect
of group [F(1,18) = 1.09, ns] and no interaction of group and
time bin (F < 1). The percentage of time in the narrow region

also had a main effect of time bin [F(4,72) = 8.32, p < 0.001,
η2

G = 0.14], with less time in the inner region in the first bin (prior
to movement) and in the last two bins (when the shape was larger),
but again with no main effect of group (F < 1) and no interaction
of group and time bin [F(4,72) = 1.10, ns]. Overall, the TD and
ASD groups exhibited similar gaze patterns with the non-speech
stimuli.

DISCUSSION
The current study examined pattern of gaze to a speaking face
by children with ASD and a set of well-matched TD controls.
Gaze was examined under conditions that create a strong incentive
to attend to the speaker’s articulations, namely, AV speech with
background noise and visual only (speechread) speech. We found
differences in the gaze patterns of children with ASD relative to
their TD peers, which could impact their ability to obtain visible
articulatory information.

The findings indicated that children with ASD spent signifi-
cantly less time gazing to a speaking face than the TD controls,
which is consistent with diagnostic criteria for this disorder and
findings from previous research (Hutt and Ounstead, 1966; Hob-
son et al., 1988; Volkmar et al., 1989; Volkmar and Mayes, 1990;
Phillips et al., 1992). The reduction in gaze to the face of the
speaker was greater in the speech in noise than the visual-only
condition. This suggests that children with ASD gaze at the face of
the speaker when the task requires it, as in speechreading. This is
perhaps consistent with the finding that the difference in percep-
tual performance between the ASD and TD groups (Irwin et al.,
2011) was less pronounced in the visual-only condition than with
speech in noise.

Importantly, when fixated on the face of speaker, the children
with ASD were significantly less likely to gaze at the speaker’s
mouth than the TD children in the context of both speech in
noise and speechreading. This finding might appear to conflict
with previous findings of increased gaze to the mouth by indi-
viduals with ASD in comparison to TD controls (e.g., Klin et al.,
2002; Neumann et al., 2006; Spezio et al., 2007). However, this
disparity may arise from the specific demands of the respective
tasks. Findings of increased gaze on the mouth by children with
ASD have typically occurred when the task required emotional
or social judgments and when the mouth was not the primary
source of the relevant information. In contrast, our study involved
a speech perception task, so the mouth was the primary source
of relevant (articulatory) information. These findings in tandem
suggest that children with ASD paradoxically may be less likely
to attend to the mouth when it carries greater informational
value.

Instead of gazing at the mouth during the speech in noise task,
the children with ASD tended to spend more time directing their
gaze to non-focal areas of the face (also see Pelphrey et al., 2002).
Non-focal areas such as the ears, cheeks, and forehead carry little,
if any, articulatory information. For speech in noise, as the speaker
began to produce the articulatory signal, the TD children looked
more to the mouth than did the children with ASD, who continued
to gaze at non-focal regions.

Notably, the group differences were less prominent in the
visual-only condition, where visual phonetic information on the
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mouth is fundamental to the task (in contrast to the speech-in-
noise task, where there is an auditory speech signal). In this case,
the two groups exhibited a similar pattern of shifting from non-
focal areas to the mouth region as the speaker began to produce
the syllable, even though the ASD group overall spent relatively
less time on the mouth and more time on non-focal regions than
the TD controls. This finding suggests that children with ASD may
be able to approximate a similar pattern of gaze to areas of the face
that hold important articulatory information when it is required
by the task.

Finally, there were no significant differences by group in pattern
of gaze for the non-speech, non-face control condition. This sug-
gests that the differences in gaze patterns between children with
ASD and TD do not necessarily occur for all AV stimuli, and are
consistent with the notion that these differences are specific to
speaking faces.

In the Introduction, we outlined two possible reasons for
why children with ASD are less influenced by visual speech
information than their TD peers, even when they are fix-
ated on the face (Irwin et al., 2011), namely, that they have
an impairment in AV speech processing, or that they have
reduced access to critical visual information. The present results
do not address the question of a processing impairment, but
they do offer insight into the issue of access to speech infor-
mation. Because the mouth is the source of phonetically rel-
evant articulatory information available on the face (Thomas
and Jordan, 2004), our results may help account for the lan-
guage and communication difficulties exhibited by children with
ASD.

To summarize, even with a sample of verbal children who were
closely matched in language and cognition to controls, we found
differences in pattern of gaze to a speaking face between chil-
dren with ASD and TD controls. However, these findings should
be interpreted with caution, given the small sample size, broad
age range and varied diagnostic category. Future research should
be conducted to assess how differences in each of these variables
impacts pattern of gaze. In particular, an interesting question is
whether pattern of gaze relates to communicative skill (e.g., as
in Norbury et al., 2009; also see Falck-Ytter et al., 2012). A larger
sample would allow for examination of this relationship. Fur-
ther, the speech stimuli in the current study were consonant-vowel
speech syllables; future research should also examine sentence level
connected speech.

Finally, future work should consider the possible implications
of the results for intervention. Our results in the speech-in-noise
task indicate that children with ASD may not spontaneously look
to critical areas of a speaking face in the presence of background
noise, even though it would improve comprehension. This is par-
ticularly problematic in light of findings that auditory noise is
especially disruptive for individuals with ASD in speech percep-
tion (Alcántara et al., 2004). However, the results in the visual-only
speechreading task, where children with ASD did tend to shift their
gaze from non-focal areas to the mouth (albeit to a lesser degree
than the TD controls), suggests that children with ASD can show
more typical gaze patterns when necessary. Therefore, interven-
tion to help individuals with ASD to gain greater access to visible
articulatory information may be useful, with the goal of increased

communicative functioning in the natural listening and speaking
environment.
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