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Musicians sway expressively as they play in ways that seem clearly related to the music,
but quantifying the relationship has been difficult. We suggest that a complex systems
framework and its accompanying tools for analyzing non-linear dynamical systems can
help identify the motor synergies involved. Synergies are temporary assemblies of parts
that come together to accomplish specific goals. We assume that the goal of the
performer is to convey musical structure and expression to the audience and to other
performers. We provide examples of how dynamical systems tools, such as recurrence
quantification analysis (RQA), can be used to examine performers’ movements and relate
them to the musical structure and to the musician’s expressive intentions. We show how
detrended fluctuation analysis (DFA) can be used to identify synergies and discover how
they are affected by the performer’s expressive intentions.
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INTRODUCTION
Almost universally, musicians sway as they play in ways that
appear to be musically expressive. Postural sway reflects emo-
tion (Stins et al., 2011), but understanding of its relationship to
musical expression has been hampered by the complexity of the
behavior and the lack of suitable tools for studying it. The usual
approach has been to adapt the methods and theory used to study
language-based gestures (Wanderley et al., 2005; Davidson, 2007,
2012; Ginsborg, 2009). We suggest that this gestural approach has
inherent limitations that become more salient when applied to
music. We propose a complex systems approach using concepts
and mathematical tools developed for describing and analyz-
ing the behavior of non-linear dynamical systems (Kelso, 1995;
Latash, 2008).

GESTURAL APPROACH TO BODY MOVEMENT IN
PERFORMANCE
Linguistic communication is generally thought of as a one-way
process in which the listener infers the speaker’s meaning from
the speech signal (Clark, 1996). The role of gestures is stud-
ied by first classifying the different types of body movements
that serve as meaningful signals, i.e., gestures, and then see-
ing how each type of gesture helps convey a speaker’s meaning
to the listener/perceiver (McNeill, 1992, 2005; Kendon, 1993;
Beattie and Shovelton, 1999). Gestures are thought to ground
cognition in action (Beilock and Goldin-Meadow, 2010), aid
memory retrieval (Cook et al., 2010), provide a window into
the speaker’s intentions (Goldin-Meadow, 2003), relay emotion
(Cavé et al., 1996), and improve intelligibility (Munhall et al.,
2004).

Music highlights the limitations of this approach. In language,
meaning is largely carried by discrete units (e.g., words and utter-
ances) that can be readily linked to body gestures (e.g., pointing),

with which they are closely bound in time (McNeill, 2006). In
music, on the other hand, meanings and gestures are less clearly
demarcated, and ambiguity and vagueness are more pervasive
(Patel, 2008). Turn taking is less salient and communication more
continuous. Aspects of communication that seem secondary in
language are more salient: the communication of emotion (Juslin,
2005), coordination of activity (Blacking, 1995), strengthening
of social ties (Gioia, 2006), and the central role of the body
(Davidson, 2007).

THE BODY IN PERFORMANCE
Researchers examining the large-scale body movements that
musicians make during performance have looked for one-to-
one correspondences between particular types of movement and
musical features (e.g., slowing at a cadence; Friberg and Sundberg,
1999). This approach has met with some success for sound-
producing gestures (i.e., movements that make sound). Skilled
performers reliably reproduce minute fluctuations in tempo,
dynamics, and timbre by accurately replicating their sound-
producing movements across performances (Clarke, 1989). For
sound-accompanying gestures (i.e., postural sway and other move-
ments that do not directly produce sound), on the other hand,
the gestural approach has been less successful, largely because
movements seem to differ from one performance to the next
(Davidson, 2009). Even so, the conviction that the movements
are meaningful persists because they are reliably related to musi-
cal structure (Wanderley, 2002; Wanderley et al., 2005; Ginsborg,
2009; Palmer et al., 2009; MacRitchie et al., 2013), convey per-
formers’ expressive intentions to audiences (Dahl and Friberg,
2007; Nusseck and Wanderley, 2009), conductors’ intentions to
orchestras (Luck, 2000), and help musicians coordinate with each
other (Goebl and Palmer, 2009; Livingstone et al., 2009; Keller
and Appel, 2010; Keller, 2012).
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Uncovering the relationship of sound-accompanying move-
ments to musical structure and expression has been hampered
by methodological difficulties (Lemann et al., 2009). One prob-
lem is that movements in music performance typically serve
multiple purposes (Davidson, 2009). A second is that the classifi-
cation of continuous body movements into discrete types requires
arbitrary segmentation that obscures their essential continuity
and inter-relatedness. Third, movement is the product of a non-
linear system (Latash, 2008). For example, performer’s sway is
not a simple product of the beat plus expression. Elements inter-
act so that a change in one produces non-linear changes in the
other (Davidson, 2002; Wanderley et al., 2005). A complex sys-
tem approach avoids these problems, providing for one-to-many
mappings between actions and goals, avoiding arbitrary segmen-
tation, and respecting the complex inter-relatedness of the motor,
cognitive and affective systems.

COMPLEX SYSTEMS PERSPECTIVE
Dynamical systems theory provides a systematic approach to the
study of complex systems along with the mathematical tools
needed to identify regularities in their behavior and track their
evolution over time (Strogatz, 1994). These have been successfully
applied to action, thought, and social interaction by psychologists
working in the cognitive and ecological traditions (Kelso, 1995;
van Gelder, 1998; Thelen and Smith, 2006; Warren, 2006; Marsh,
2010; Bruin and Kästner, 2012). Dynamical systems theory has
been extensively applied in the field of motor control by treat-
ing movement as a continuous, time-evolving process on which
multiple constraints are imposed simultaneously by the physical,
mental, and social contexts (Latash, 2008).

The behavior of a complex system is a product of its initial
conditions, the interaction of its components, and the constraints
imposed by the context (Strogatz, 1994). To experience this, point
the tips of your two index fingers toward each other. Slowly move
your fingers up and down in opposite directions (anti-phase).
Slowly speed up to go as fast as you can. As you speed up, you
will notice that your fingers spontaneously start moving in the
same direction (in-phase; Haken et al., 1985). In contrast, if you
start out fast and in-phase and slow down, there is no automatic
transition to anti-phase movement. This simple exercise illus-
trates the self-organizing nature of a complex system. Behavior
is an emergent product of initial conditions, components, and
constraints (such as movement frequency). Another example is
provided by the spontaneous rhythmic entrainment that sponta-
neously occurs when two people perform a repetitive movement
while seated side-by-side (Richardson et al., 2005; Demos et al.,
2012). The frequency of their movements is not predictable from
their behavior when alone but is an emergent product of their
interaction (Miles et al., 2010).

In systems of even modest complexity, components can be
organized in an indefinite number of configurations (the degrees
of freedom problem; see Turvey, 1990). As a result, there is no
one-to-one correspondence between components and functions.
The same goal can be accomplished by a variety of different move-
ments; the same movement by a variety of patterns of neural
activation (Thelen, 1995). Stability is achieved by temporarily
limiting the number of possibilities by constraining parts of the

system, allowing the required behavior to emerge from the inter-
action of muscles, limbs, spine, and brain, and other components
both inside and outside the body. These organize themselves, just
as your two fingers did, into temporary functional assemblies,
called synergies, which enable purposeful behavior and recovery
from perturbations (Bernstein, 1967; Latash et al., 2007). In social
situations requiring joint action, synergies automatically extend
across participants (Marsh, 2010; Riley et al., 2011).

A synergy is not simply the linear sum of the activity of its
parts, but is a non-summative product of their interaction; it is
non-linear (Latash, 2008). Synergies have three main properties:
pattern sharing, task-dependence, and trade-offs (Latash, 2008).
Pattern sharing refers to the idea that the work required to accom-
plish a particular goal is distributed across units (e.g., neurons,
muscles, people). Task-dependence refers to the idea that a par-
ticular functional assembly will be adapted for use in a variety
of contexts (e.g., using your hand to turn a knob or a screw-
driver). Most important for our purposes is the idea that actions
are accomplished by trading-off stability and flexibility. Stability
in one part of the system is achieved by increased variability else-
where. For example, in order to stabilize their position on the
two spatial dimensions that must be controlled to hit a target,
expert marksmen increase variability on the third, non-essential
dimension (Scholz et al., 2000).

MEASUREMENT OF DYNAMICAL SYSTEMS
The behavior of a complex system can be difficult to unpack
because of its inherent complexity. An early success was
Mandelbrot’s (1967, 1983) use of fractal mathematics to describe
the seemingly random structure of the English coastline. He
showed that there is an underlying regularity to the pattern based
on self-similarity at different scales. The shape of each small
region is similar to the larger region in which it is embedded.
Self-similarity is a hallmark of complex systems.

We will briefly describe two methods for identifying self-
similarity. First, recurrence quantification analysis (RQA) iden-
tifies recurrent states, i.e., self-similarities, when the behavior of
a system is plotted in phase-space. Phase-space is an abstract
mathematical representation of the functioning of a system over
time (Abarbanel, 1995, p. 21). The phase-space of any non-
linear complex system can be reconstructed from measurement
of the system on a single dimension because each dimension
contains information about all the other dimensions (Takens,
1981). Recurrence between two systems can be identified in simi-
lar fashion using cross-recurrence quantification analysis (CRQA;
see Marwan et al., 2007). Second, detrended fluctuation analysis
(DFA) quantifies the noise structure in the fluctuations of a time-
series (Peng et al., 1994). Complex systems exhibit characteristic
noise structures. For example, pink noise indicates the presence
of long-range correlations reflecting the presence of processes that
operate over time. When extended to different types of time-series
and to multiple time-scales this method is called multi-fractal
detrended fluctuation analysis (MFDFA; see Ihlen, 2012).

These techniques (RQA, CRQA, and [MF]DFA) have been
successfully applied to the analysis of complex systems in many
fields (see Marwan, 2008 for RQA; Ihlen, 2012 for MFDFA) and
have been recently adopted by psychologists to study change in
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behavior over time. Typical applications have examined inter-
speaker coordination of postural sway (Shockley et al., 2003), eye
movements (Richardson and Dale, 2005), and word order (Dale
and Spivey, 2005, 2006). For music performance, the techniques
have been successfully applied to the timing of actions (Rankin
et al., 2009) and postural sway (Demos et al., 2011; Demos, 2013).

A DYNAMICAL APPROACH TO GESTURES IN MUSIC
PERFORMANCE
In order to perform, a musician must interpret the musical struc-
ture, organizing the notes provided in the score in terms of
phrasing, rhythm, meter, melodic contour, and so on. The musi-
cian expresses this understanding through nuances of timing,
articulation, dynamics, and timbre (Clarke, 1989, 1995; Kendall
and Carterette, 1990; Palmer, 1997). The process creates a com-
plex web of bi-directional (possibly non-linear) relationships
between structure, movement, and sound. This is why musicians
seem to sway differently each time they play (Davidson, 2009),
why dampening musical expression reduces sway (Davidson,
2002) and dampening sway reduces expressive variation in tim-
ing (Wanderley et al., 2005). Music performance seems to be the
product of a complex system whose components include mini-
mally the score, instrument, performer, and audience (Hargreaves
et al., 2005). We will show how techniques designed for dynam-
ical systems reveal additional connections between movement,
structure, and expression.

First, we describe the application of MFDFA and RQA to
the postural sway of two trombonists as they each played the
same two solo pieces twice in each of three different perfor-
mance styles (normal, expressive, non-expressive), for a total of
24 performances (Demos, 2013). After each performance, the
musicians marked the phrasing they had used on a copy of the
score. Phrasing changed with the performance style, differently
for each performer. For example, when playing expressively one
performer used longer phrases, the other shorter. These changes
rippled through the system and were reflected in each musician’s
postural sway.

We measured sway on two spatial dimensions, anterior-
posterior (AP) and medio-lateral (ML). Sway in the two direc-
tions can be independent (Winter et al., 1996) or coupled
(Balasubramaniam et al., 2000; Mochizuki et al., 2006) depend-
ing on the requirements of the task. The AP and ML movements
of the trombonists were coupled, R2

(22) = 0.41, p < 0.001. Also,
sway was different in the AP than in the ML direction due to
the need to compensate for the back and forth movements of the
trombone slide.

Figure 1 shows how the musical dynamics (fluctuations in
loudness) were related to the noise structure of the musicians’
movements (obtained by MFDFA). The figure quantifies the rela-
tionship between postural sway and musical expression, showing
the root-mean-square (RMS) of loudness (a measure of musical
dynamics) plotted against the Hurst exponents for the velocity
of center-of-pressure measurements of large-scale postural sway,
separately for ML and AP directions. Hurst exponents, obtained
by MFDFA, measure the quality of the noise in the movements
with values close to 1 indicating more long-range self-similarity
(pink noise) and smaller values (between 0.5 and 1) indicating

FIGURE 1 | Hurst exponents for ML and AP sway in 24 performances

plotted against RMS of loudness.

self-similarity over shorter ranges, or no correlation (white noise
= 0.5). As can be seen, as the sound became pinker (more long-
range similarity) the sway moved in the same direction with ML
sway becoming pink and AP sway becoming less white. This result
quantifies the relationship between postural sway and musical
expression that is self-evident to any musician or audience mem-
ber (Davidson, 2009). While the measures may be unfamiliar, the
human senses are attuned to the physical properties they reflect,
even though psychological science has been slow to measure them
(Van Orden et al., 2003). White noise is the sound of static; pink
noise is more structured: the sound of wind in the trees, a musical
beat (Rankin et al., 2009), or a melodic pattern (Voss and Clarke,
1978; Su and Wu, 2006).

Figure 2 summarizes two results from the RQA of the per-
formances. Before RQA, we first performed phase-space recon-
struction, separately for ML and AP sway, and then used RQA
to measure recurrence (self-similarity) and entropy (orderliness,
predictability, or structure over time; Marwan et al., 2007).
We first did the analyses across each entire performance and
then, to relate recurrence to the musical structure, we aver-
aged recurrence for each musical beat across performances. The
left panel of Figure 2 shows percent recurrence as a function
of serial position within a phrase for the four performances
played in the normal style. AP sway was not related to posi-
tion in the musical phrase. ML sway, in contrast, followed a
quadratic curve, with less recurrence at the starts and ends of
phrases (tested with mixed models). This means that ML sway
was more novel (less recurrent or self-similar) at the starts and
ends of phrases. Not shown in the figure was the interaction
with length of phrase. For longer phrases, the quadric function
flipped, becoming more, instead of less, recurrent at the starts and
ends of phrases. This suggests how movement might inform an
audience of a performer’s musical interpretation and expressive
intent.
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FIGURE 2 | Left panel displays mean percent recurrence as a function of serial position in a phrase for performances in the normal style. Right panel
displays mean entropy of recurrence for each direction of sway and each performance style.

The right panel of Figure 2 shows the mean entropy of move-
ment across the whole performance, separately for each perfor-
mance style. There was an interaction between direction of sway
and performance style. Overall, AP was less orderly than ML sway,
reflecting the need for AP sway to compensate for movements of
the trombone slide. Together with the coupling of ML and AP
sway reported above, the effect suggests a synergistic trade-off
between ML and AP sway. Regular swaying in the ML direction
may have provided the stability needed to make the rapid adjust-
ments required in AP sway. This interpretation is strengthened
by the interaction with performance style. During non-expressive
performances, the difference between AP and ML sway decreased
due to a sharp increase in entropy for movements in the AP direc-
tion. The effect suggests that playing non-expressively changed
the synergy, reducing the flexibility of AP movement.

Motor synergies can also be observed in the sounds of musi-
cal performance. For example, Chaffin et al. (2007) analyzed the
tempo and dynamics of a professional pianist’s performances of
J.S. Bach’s Italian Concerto (Presto). There were more differ-
ences between performances at locations important to musical
expression (such as structural boundaries), and fewer differences
in technically demanding passages. In other words, the pianist
exploited the need for a balance between stability and flexibil-
ity to achieve both her technical and expressive goals, creating
the stability needed to cope with technical difficulties by allowing
flexibility at expressively important locations.

The balance between flexibility and stability can be also seen
in the sound-producing movements of musicians. When cellists
rapidly repeat a note, they reduce variability in the amplitude and
duration of movements of the bow and simultaneously increase
the variability of movements of the wrist and elbow (Winold et al.,
1994). Variability in wrist and elbow buys stability in bowing with
speed of bowing acting as the constraint that controls the balance.
The balance in bowing can also be affected by the performer’s
expressive intentions, for example when playing more staccato or
legato (Wiesendanger et al., 2006).

The dynamic relationship between musical interpretation, the
motor system and expressive interpretation explains why viewers
are able to identify the expressive intentions of a performer simply
from watching, even when they cannot hear what the performer

is playing (Davidson, 1993, 1994, 2007; Nusseck and Wanderley,
2009). It also explains why viewers can identify the emotional
intentions of a performer even when they see only head, arm or
trunk movements (Dahl and Friberg, 2007). Because the move-
ment of each body part and the musical sounds they produce are
all components of the same complex system, each provides infor-
mation about the others; change in one is related to changes in
the others (Latash et al., 2007).

CONCLUSION
The study of complex systems is well developed in other fields.
Application to the motor system has been amply demonstrated
(Kelso, 1995; Latash, 2008). The dynamical systems framework
can also help to understand performers’ movements and suggests
new ways of thinking about the relationship between movement,
musical expression, and musical structure.
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