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Visual object recognition is of fundamental importance in our everyday interaction with
the environment. Recent models of visual perception emphasize the role of top-down
predictions facilitating object recognition via initial guesses that limit the number of object
representations that need to be considered. Several results suggest that this rapid and
efficient object processing relies on the early extraction and processing of low spatial
frequencies (LSF). The present study aimed to investigate the SF content of visual object
representations and its modulation by contextual and affective values of the perceived
object during a picture-name verification task. Stimuli consisted of pictures of objects
equalized in SF content and categorized as having low or high affective and contextual
values. To access the SF content of stored visual representations of objects, SFs of
each image were then randomly sampled on a trial-by-trial basis. Results reveal that
intermediate SFs between 14 and 24 cycles per object (2.3–4 cycles per degree) are
correlated with fast and accurate identification for all categories of objects. Moreover,
there was a significant interaction between affective and contextual values over the SFs
correlating with fast recognition. These results suggest that affective and contextual values
of a visual object modulate the SF content of its internal representation, thus highlighting
the flexibility of the visual recognition system.
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INTRODUCTION
Rapid and accurate visual recognition of everyday objects
encountered in different orientations, seen under various illu-
mination conditions, and partially occluded by other objects in
a visually cluttered environment is necessary for our survival.
The first theoretical efforts to explain this feat relied on purely
bottom-up mechanisms in the visual system: cells in early visual
areas would be sensitive to low-level features and cells in higher
areas would integrate this information in order to then match
it to a representation in memory (e.g., Maunsell and Newsome,
1987). However, it is improbable that feedforward pathways alone
can account for object recognition because of their severely lim-
ited information processing capabilities (Gilbert and Sigman,
2007). Moreover, since these early theoretical efforts, the essen-
tial role of such feedback mechanisms in vision has been amply
demonstrated (e.g., Rao and Ballard, 1999; Tomita et al., 1999;
Barceló et al., 2000; Pascual-Leone and Walsh, 2001). Nowadays,
most top-down models of object recognition (e.g., Grossberg,
1980; Ullman, 1995; Friston, 2003) propose that the search for
correspondence between the input pattern and the stored rep-
resentations is a bidirectional process where the input activates
bottom-up as well as top-down streams that simultaneously
explore many alternatives; object recognition is achieved when
the counter streams meet and a match is found. The content
of these stored representations could depend on several factors
such as task requirements (e.g., perception or action, basic-level

vs. superordinate-level categorization) or categorical properties
of the object (e.g., animate vs. inanimate, affective vs. non-
affective, social vs. non-social; Logothetis and Sheinberg, 1996).
Understanding the properties of the stored representations that
lead to the generation of predictions thus is an important unex-
plored issue. In particular, it remains to be understood if different
representational systems are used during recognition of different
categories of visual objects.

Building on the predictive account of visual object recognition,
Bar (2003) proposed a brain mechanism for the cortical activation
of top-down processing during object recognition, where low spa-
tial frequencies (LSFs) of the image input are projected rapidly
and directly through quick feedforward connections, from early
visual areas into the dorsal visual stream. Such LSF information
activates a relatively small set of probable candidate interpreta-
tions of the visual input in higher prefrontal integrative centers.
These initial guesses are then back-projected along the reverse
hierarchy to guide further processing and gradually encompass
high spatial frequencies (HSFs) available at lower cortical visual
areas. This proposal is supported by neurophysiological, com-
putational and psychophysical evidence that LSFs are processed
earlier than HSFs (Watt, 1987; Schyns and Oliva, 1994; Bredfeldt
and Ringach, 2002; Mermillod et al., 2005; Musel et al., 2012;
for reviews, see Bullier, 2001; Bar, 2003; Hegdé, 2008) and that
top-down processing in visual recognition relies on LSFs (Bar
et al., 2006); moreover, magnocellular projections, which are

www.frontiersin.org May 2014 | Volume 5 | Article 512 | 1

http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.00512/abstract
http://community.frontiersin.org/people/u/4178
http://community.frontiersin.org/people/u/10148
http://community.frontiersin.org/people/u/20569
mailto:frederic.gosselin@umontreal.ca
mailto:frederic.gosselin@umontreal.ca
http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Caplette et al. Object recognition

more sensitive to LSFs (Derrington and Lennie, 1984), seem to
be implicated in initiation of top-down processing (Kveraga et al.,
2007). Stored internal representations may thus be biased toward
LSFs, since objects would be primarily matched in memory with
an LSF draft.

Only a handful of studies have focused on the effect of spe-
cific SF band filtering during object recognition. In a name-
picture verification task, low-pass filtering selectively impaired
subordinate-level category verification (e.g., verify the “Siamese”
category instead of the “animal” category at the superordinate
level or the “cat” category at the basic level), while having lit-
tle to no effect on basic-level category verification, suggesting
that basic-level categorization does not particularly rely on LSFs
(Collin and McMullen, 2005). On the other hand, Harel and
Bentin (2009) reported that subordinate-level categorization was
impaired by the removal of HSFs, but also that basic-level catego-
rization was equally impaired by removal of either HSFs or LSFs,
thus suggesting that neither of these bands is especially useful for
recognition at the basic level. Finally, using a superordinate-level
categorization task, Calderone et al. (2013) reported no difference
in accuracy or response times between LSFs and HSFs. Overall,
these studies suggest that, although this seems a bit different
for subordinate-level categorization, neither LSFs or HSFs have
a privileged role in object recognition. Even if LSFs do initiate a
top-down processing, this suggests that their overall role in recog-
nition is negligible; other SFs (neither low or high), however, may
have a preponderant role.

Intrinsic properties of visual objects such as their affective
value or contextual associativity may modulate the content of
internal representations. Because of their great adaptive value,
emotional objects might necessitate fast recognition, to facilitate
an immediate behavioral response; this is likely to apply to both
dangerous and pleasant stimuli, the former threatening survival
and the latter promoting it (Bradley, 2009). In fact, the brain’s
prediction about the identity of a visual object may be partly
based on its affective value, i.e., prior experiences of how percep-
tion of a given object has influenced internal body sensations. As
such, affective value could be not just a label or judgment applied
to the object post-recognition, but rather an integral component
of mental object representations (Lebrecht et al., 2012) and could
act as an additional clue to the object’s identity to facilitate its
recognition (Barrett and Bar, 2009). Since emotional objects need
to be processed quickly, it is likely that LSFs, which are extracted
rapidly, are particularly important for their recognition. In agree-
ment with this idea, there is some evidence that LSFs are more
present in representations of objects with strong affective value
than in representations of neutral objects. Mermillod et al. (2010)
reported that threatening stimuli were recognized faster and more
accurately than neutral ones with LSFs but not with HSFs. Other
behavioral and neuroimaging studies also suggested an interac-
tion between emotional content and LSFs in various perceptual
tasks. Bocanegra and Zeelenberg (2009), for instance, observed
that in a Gabor orientation discrimination task, briefly presented
fearful faces improved subjects’ performance with LSF gratings
while impairing it with HSF gratings. Moreover, early ERP ampli-
tudes sensitive to affective content were found to be greater when
unpleasant scenes were presented intact or in LSFs rather than

in HSFs (Alorda et al., 2007). In the same vein, Vuilleumier et al.
(2003) observed that the amygdala responded to fearful faces only
if LSFs were present in the stimulus. In an intracranial ERP study
where subjects were presented with both visible and invisible
(masked) faces, Willenbockel et al. (2012) found that amygdala
activation correlated mostly with SFs around 2 and 6 cycles/face,
while insula activation correlated mostly with slightly higher SFs
near 9 cycles/face. All these results suggest that the internal rep-
resentations of objects with affective value would comprise more
LSFs than representations of neutral objects.

Relatedly, the contextual associativity of a visual object—
“what other objects or context might go with this object?” (Bar,
2004; Fenske et al., 2006)—could also impact on the SF content
of its mental representation. It has been shown that recognition of
an object that is highly associated with a certain context facilitates
the recognition of other objects that share the same context (e.g.,
Bar and Ullman, 1996). A lifetime of visual experience would
lead to contextual associations that guide expectations and aid
subsequent recognition of associated visual objects through rapid
sensitization of their internal representations (Biederman, 1972,
1981; Palmer, 1975; Biederman et al., 1982; Bar and Ullman,
1996). This associative processing is quickly triggered merely by
looking at an object and would be critical for visual recognition
and prediction (Bar and Aminoff, 2003; Aminoff et al., 2007). It
has been suggested that the rapidly extracted LSFs of an object
image are sufficient to activate these associated representations,
and thus that the representations of contextual objects are likely
to be biased toward LSFs (Bar, 2004; Fenske et al., 2006). However,
this hypothesis has never been tested directly.

Affective and contextual values may also interact, so that
representations of visual objects with affective value could be
modulated by their contextual value or vice-versa (e.g., Storbeck
and Clore, 2005; Brunyé et al., 2013; Shenhav et al., 2013). Indeed,
the affective value of a given object is often defined by the con-
text to which it has been associated to in memory. For example, a
tomb elicits sadness, not because it is inherently sad, but because
it evokes a context of cemetery/death. As such, affective objects
might be differentially represented whether or not their affec-
tive value originates from their associated contexts. Interactions
between both psychological properties have been reported. For
instance, our affective state influences the breadth of the associ-
ations we make (Storbeck and Clore, 2005) and conversely, the
generation of associations influences our affective state (Brunyé
et al., 2013). Also, it seems that associative and affective process-
ing both take place in the medial orbitofrontal cortex, and that
both contextual and affective values might in fact relate to a more
unified purpose (Shenhav et al., 2013).

The current study examined the SF content of stored internal
representations of visual objects with different affective and con-
textual values, by evaluating what are the SFs in the stimuli that
correlate with fast and accurate identification. Stimuli consisted of
pictures of objects equalized in SF content and categorized as hav-
ing low or high affective and contextual values. The SFs of these
stimuli were randomly sampled on a trial-by-trial basis while sub-
jects categorized the objects portrayed in the images. By varying
affective value, contextual value and spatial frequencies available
in the object image altogether, we aimed to clarify their roles in

Frontiers in Psychology | Perception Science May 2014 | Volume 5 | Article 512 | 2

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Caplette et al. Object recognition

visual recognition, and to study potential interactions between
them.

METHODS
PARTICIPANTS
Forty-seven healthy participants (33 males) with normal or
corrected-to-normal visual acuity were recruited on the campus
of the Université de Montréal for an object recognition study.
Participants were aged between 19 and 31 years (M = 23.04;
SD = 3.13) and did not suffer from any reading disability. A writ-
ten informed consent was obtained prior to the experiment, and
a monetary compensation was provided upon its completion.

APPARATUS
The experimental program was run on a Mac Pro computer
in the Matlab (Mathworks Inc.) environment, using functions
from the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).
A refresh rate of 120 Hz and a resolution of 1920 × 1080 pixels
were set on the Asus VG278H monitor used for stimuli pre-
sentation. The relationship between RGB values and luminance
levels was linearized. Luminance depth was 8 bits, and minimum
and maximum luminance values were 1.1 cd/m2 and 134.0 cd/m2,
respectively. A chin rest was used to maintain viewing distance
at 76 cm.

STIMULI
Selection and validation
One hundred fifty six object images were pre-selected mainly
from the database used in Shenhav et al. (2013) but also from
Internet searches. Each object image was presented to 30 raters
who decided either (i) if they associated the object to a partic-
ular emotion, and if so, to which one or (ii) if they associated
the object to a particular context, and if so, to which one. For
the experiment, we selected 18 objects with clear consensus (or
absence of) regarding their contextual and affective values in
each of our four object categories: contextual emotional, non-
contextual emotional, contextual neutral and non-contextual
neutral (Figure 1, Table S1). Clear consensus about high affective
or high contextual value meant that an object was associated to
the same context or to the same emotion by more than 75% of
raters; and clear consensus about low affective or contextual value
meant that an object was associated to no particular context or
emotion by more than 75% of the raters. Fifty-one of the selected
images came from the Shenhav et al. (2013) database, and our
affective and contextual ratings for these images closely matched
theirs.

Control of low-level features
Stimuli thus consisted of 72 grayscaled object images of 256 × 256
pixels presented on a mid-gray background. The images sub-
tended 6 × 6◦ of visual angle. Median object width was equal
to 237 pixels. To target our investigation on stored internal rep-
resentations and get rid of a potential interaction between the
visual input and the representation, spatial frequency content and
luminance were equalized across stimuli using the SHINE toolbox
(Willenbockel et al., 2010a). Resulting images had a RMS contrast
of 0.075. We reduced the undesired impact of psycho-linguistic

FIGURE 1 | Example images for each of the four categories of objects.

factors, such as word length and lexical frequency, on response
times by transforming these into z-scores for every object. For
example, we computed the mean and standard deviation of the
RTs of the correct positive trials in which the electric chair was
presented, and we used these statistics to transform those RTs into
z-scores. We did the same for all the other objects. As a result,
the means and standard deviations of the RTs associated with
every word were strictly identical, and all RT variations due to
differences between the words were eliminated.

Sampling
SF content of the images properly padded was extracted via Fast
Fourier Transform (FFT) and randomly filtered at each trial,
according to the SF Bubbles method (Willenbockel et al., 2010b).
In short, each spatial frequency filter was created by first generat-
ing a random vector of 10,240 elements consisting of 20 ones (the
number of bubbles) among zeros. Second, the resulting vector was
convolved with a Gaussian kernel that had a standard deviation of
1.8. Third, the vector was log transformed so that the SF sampling
approximately fit the SF sensitivity of the human visual system
(see De Valois and De Valois, 1990). The resulting sampling vector
contained 256 elements representing each spatial frequency from
0.5 to 128 cycles per image. To create the two-dimensional spatial
frequency filtered images, vectors were rotated about their origins
and dot-multiplied with the FFT amplitudes (see Willenbockel
et al., 2010b, for methodological details). Thus, several SF band-
widths were revealed in each stimulus; and objects were presented
several times with different SF bandwidths revealed every time
(Figure 2).

PROCEDURE
After they had completed a short questionnaire for general infor-
mation (age, sex, education, language, etc.), participants sat
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FIGURE 2 | Examples of stimuli presented in the experiment. These are generated by applying random filters to a base image.

comfortably in front of a computer monitor, in a dim-lighted
room. Participants did two 500-trial blocks, with a short break
in between. Each trial began with a central fixation cross last-
ing 300 ms, followed by a blank screen for 100 ms, the SF-filtered

random object image for 300 ms, a central fixation cross for
300 ms, a blank screen for 100 ms, and finally a matching or
mismatching object name that remained on the screen until the
participant had answered or for a maximum of 1000 ms. Subjects
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were asked to indicate with a keyboard key press as accurately
and rapidly as possible whether or not the name matched the
object depicted in the image. This picture-name verification task
was chosen because it imposes a specific level of categorization
to subjects (we chose the basic-level) without focusing attention
explicitly on either affective or contextual value of the object.
Name and object matched on half the trials.

SPATIAL FREQUENCY DATA ANALYSIS
To determine the spatial frequencies that contributed most to fast
object recognition for each condition, we performed least-square
multiple linear regressions between RTs and corresponding sam-
pling vectors. Only correct positive trials (i.e., when the name
matched the object, and the participant answered correctly) were
included in the analysis. RTs were first z-scored for every object to
minimize undesired sources of variability pertaining to psycho-
linguistic factors such as word length and lexical frequency (see
Stimuli: Control of low-level features). They were further z-scored
for each condition in each subject’s session to diminish variabil-
ity due to task learning. Trials associated with z-scores over 3 or
below 3 were discarded (<1.8% of trials).

We call the resulting vectors of regression coefficients classifi-
cation vectors. We first contrasted the classification vector for all
objects against zero to examine what were the spatial frequencies
used in general, regardless of affective or contextual values. We
then contrasted the classification vectors for all emotional objects
and all neutral objects, and the ones for all contextual objects and
all non-contextual objects, to assess the main effects of contextual
and affective values. Next, we examined if there was an interaction
between these two dimensions. To do so, we contrasted classifica-
tion vectors of all four subcategories of objects by applying the
following formula:

(A1B1 − A1B2) − (A2B1 − A2B2) ,

where A represents emotional value, B represents contextual
value, and the number represents the level of the variable. We
finally investigated the simple effects by comparing the conditions
pairwise. The statistical significance of the resulting classifica-
tion vectors was assessed by applying the Cluster test (Chauvin
et al., 2005). Given an arbitrary z-score threshold, this test gives
a cluster size above which the specified p-value is satisfied. We
used this test rather than the Pixel test (Chauvin et al., 2005)
because it is in general more sensitive, allowing us to detect
weaker but more diffuse signals. Here, we used a threshold of ±3
(p < 0.05, two-tailed). We report the size k of the significant
cluster and its maximum Z-score Zmax. We implemented the
Cluster tests as bootstraps (Efron and Tibshirani, 1993); that is,
we repeated all regressions 10,000 times pairing the sampling
vectors with transformed RTs randomly selected in the observed
transformed RT distribution. This resulted in 10,000 random
classification vectors per condition. We used these random clas-
sification vectors to transform the elements of the observed
classification vectors into z-scores and estimate their p-values.
We corrected p-values for multiple comparisons in the pairwise
comparisons by implementing Hochberg’s step-up procedure
(Hochberg, 1988).

RESULTS
EFFECTS OF CONDITION AND SPATIAL FREQUENCIES ON ACCURACY
The mean accuracy was 87.49% (SD = 7.63). To analyse possible
effects of condition on accuracy, without taking SFs into account,
we first conducted a 2 (Context: non-contextual or contextual) ×
2 (Emotion: neutral or emotional) repeated-measures ANOVA on
mean accuracies per participant. There was an effect of contextual
value [F(1, 46) = 39.83, p < 0.001, η2

p = 0.46]: non-contextual
objects (M = 81.92%; SD = 9.21) were recognized more eas-
ily than contextual ones (M = 77.19%; SD = 10.96). There also
was an effect of emotional value [F(1, 46) = 6.31, p < 0.05, η2

p =
0.12]: neutral objects (M = 80.30%; SD = 9.48) were recog-
nized slightly more easily than emotional objects (M = 78.81%;
SD = 10.49).

There was an interaction between emotional and contextual
values [F(1, 46) = 53.04, p < 0.001, η2

p = 0.53]. This interaction
was decomposed into simple effects. First, there was an effect of
emotion on non-contextual objects [F(1, 46) = 49.63, p < 0.001,
η2

p = 0.52]. Non-contextual neutral objects (M = 85.58%; SD =
7.94) were recognized more easily than non-contextual emotional
objects (M = 78.26%; SD = 11.49). Second, there was an effect
of emotion on contextual objects as well [F(1, 46) = 20.87, p <

0.001, η2
p = 0.31]. Contextual emotional objects (M = 79.36%;

SD = 10.31) were recognized more easily than neutral contextual
objects (M = 75.02%; SD = 12.45).

Accuracy did not correlate significantly with the presentation
of any SF.

EFFECT OF CONDITION ON RESPONSE TIMES
The mean RT for correct positive trials was 623 ms (SD = 83). To
analyse possible effects of condition on RTs, without taking SFs
into account, we conducted a 2 (Context: non-contextual or con-
textual) × 2 (Emotion: neutral or emotional) repeated-measures
ANOVA on − log (x + 1)-transformed RT means per participant
(Ratcliff, 1993). Aberrant scores (over 2 s) were excluded from the
analysis. There was an effect of contextual value on RTs [F(1, 46) =
161.29, p < 0.001, η2

p = 0.78] whereby non-contextual objects

(Md1 = 596 ms; SD = 60) were recognized faster than contextual
ones (Md = 537 ms; SD = 67). There was no effect of emotional
value [F(1, 46) < 1].

There also was an interaction between emotional value and
contextual value [F(1, 46) = 18.46, p < 0.001, η2

p = 0.29]. This
interaction was decomposed into simple effects. First, there was
an effect of emotion on non-contextual objects [F(1, 46) = 12.53,
p < 0.001, η2

p = 0.21]. Non-contextual neutral objects (Md =
532 ms; SD = 57) were identified faster than non-contextual
emotional objects (Md = 548 ms; SD = 68). There also was an
effect of emotion on contextual objects [F(1, 46) = 10.15, p <

0.01, η2
p = 0.18]. Contextual emotional objects (Md = 579 ms;

SD = 64) were identified faster than contextual neutral ones
(Md = 609 ms; SD = 80).

1Median reaction times are given, since the ANOVA was performed on log
transformed values. Given that the mean log values wouldn’t be readily inter-
pretable and that the median values don’t change with a log transformation,
we made this choice for purposes of clarity and transparency.

www.frontiersin.org May 2014 | Volume 5 | Article 512 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Caplette et al. Object recognition

EFFECT OF SPATIAL FREQUENCIES ON RESPONSE TIME
To determine the spatial frequencies that contributed most to
fast object recognition for each condition, we performed least-
square multiple linear regressions between z-scored transformed
RTs (see Methods: Spatial Frequency Data Analysis) and corre-
sponding sampling vectors for correct positive trials. All object
categories confounded, SFs between 13.71 and 24.31 cycles per
object width (cpo) correlated negatively with RTs (peak at
19.45 cpo, Zmax = 3.94, k = 23, p < 0.01; Figure 3A). In other
words, RTs were consistently reduced with the presentation of
SFs within these boundaries. To examine a possible effect of emo-
tional value, we contrasted classification vectors for all emotional
objects and all neutral objects. There was no significant difference
(p > 0.05). Similarly, there was no significant difference between
non-contextual and contextual objects (p > 0.05).

We then examined the interaction between affective and
contextual values (see Methods: Spatial frequency data analy-
sis). We found a significant interaction for SFs between 5.52
and 6.69 cpo (peak at 6.02 cpo, Zmax = 3.29, k = 3, p < 0.05;
Figure 3B).

We subsequently decomposed the interaction into simple
effects. There was a significant effect of contextual value on
neutral objects between 15.25 and 19.20 cpo; these SFs were cor-
related more negatively with RTs for contextual neutral objects
than for non-contextual neutral objects (peak at 18.98 cpo,
Zmax = 3.36, k = 9, p < 0.05, corrected for multiple compar-
isons; Figure 3C). However, the interaction was not significant
for these SFs, making this effect difficult to interpret. There

also was an effect of contextual value for emotional objects: SFs
between 4.86 and 6.56 cpo correlated more positively with RTs for
contextual emotional objects than for non-contextual emotional
objects (peak at 5.56 cpo, Zmax = 3.75, k = 4, p < 0.05, corrected
for multiple comparisons; Figure 3D). Moreover, there was an
effect of emotional value on contextual objects: SFs between 4.86
and 6.09 cpo correlated more positively with RTs for contex-
tual emotional objects than for contextual neutral objects (peak
at 5.56 cpo, Zmax = 3.21, k = 3, p < 0.05, corrected for multi-
ple comparisons; Figure 3E). Finally, we observed no significant
difference between non-contextual neutral and non-contextual
emotional objects (p > 0.05). The interaction thus seems to be
caused by the significant effect of contextual value on emotional
but not on neutral objects, combined with the significant effect of
emotional value on contextual but not on non-contextual objects.

DISCUSSION
GENERAL SPATIAL FREQUENCY USE
A few studies have examined the effect of specific SF band filter-
ing during name-picture verification tasks, similar to ours. Collin
and McMullen (2005) reported that low-pass filtering objects had
little impact on basic-level verification (e.g., verify the “cat” cate-
gory instead of the “animal” category at the superordinate level
or the “Siamese” category at the subordinate level), suggesting
that basic-level categorization does not especially rely on LSFs.
Furthermore, Harel and Bentin (2009) reported that basic-level
categorization was equally impaired by removal of either HSFs
or LSFs, thus suggesting that neither of these bands is especially

FIGURE 3 | Group classification vectors depicting the correlations

between SFs and RTs for different conditions. Higher z-scores indicate a
negative correlation (SFs leading to shorter RTs) while lower z-scores indicate
a positive correlation (SFs leading to longer RTs). Highlighted gray areas are
significant (p < 0.05). See text for details. (A) All objects together. (B) The

vector depicting potential interactions between both variables, obtained by
contrasting the contrasts of contextual value for both levels of emotional value.
(C) Non-contextual neutral (green) objects and contextual neutral (blue)
objects. (D) Contextual emotional (green) and non-contextual emotional (blue)
objects. (E) Contextual emotional (green) and contextual neutral (blue) objects.
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useful for recognition at the basic level. However, Harel and
Bentin’s cutoff for HSFs was especially high (65 cpo, or 6.5 cpd),
thus preserving only very fine information typically not use-
ful for object recognition. A large band of intermediate spatial
frequencies was not explored in these studies.

An important aspect of our study is that instead of applying fil-
ters with fixed arbitrary cut-offs, we randomly sampled the entire
SF spectrum. This allowed us to overcome the need of selecting
arbitrary SF bands to evaluate. Indeed, there is no consensus in
the literature about what consists of LSFs or HSFs: this seems to
be more understood as a relative measure for SF bands inside a
given study. Cut-offs for LSFs in the literature vary from 5 cpo
(Boutet et al., 2003) to 15 cpo (Alorda et al., 2007). Similarly, cut-
offs for HSFs vary from 20 cpo (Boutet et al., 2003) to 65 cpo
(Harel and Bentin, 2009). When cut-offs are translated into cycles
per degree (cpd), acknowledging that the diagnostic SFs may vary
according to viewing distance, the discrepancy is even larger: cut-
offs for LSFs vary from less than 0.4 cpd (Boutet et al., 2003) to
more than 2.4 cpd (Alorda et al., 2007) and cut-offs for HSFs vary
from 1.4 cpd (Boutet et al., 2003) to 6.5 cpd (Harel and Bentin,
2009). Quite interestingly, we note that some SFs (between 1.4
and 2.4 cpd) may be included either in LSFs or HSFs.

Our random sampling of the entire SF spectrum allowed us to
evaluate the use of SFs considered as neither low nor high by most
previous studies. Using this unbiased experimental approach, we
found that intermediate SFs between about 14 and 24 cpo (2.3–
4 cpd) are associated with fast RTs for basic-level verification. This
suggests that objects are processed particularly rapidly through
these SFs. Although this interpretation is the most straightfor-
ward, it is also possible that object processing was at least partly
completed before the presentation of the words and, therefore,
that the RTs reflect remnants of object processing rather than
object processing per se.

Another unique aspect of our study is the fact that we equal-
ized SF content of the object images prior to their sampling.
This allows us to interpret results more confidently in terms of
content of internal representations. Indeed, if SF content is not
normalized among stimuli, results most likely reflect an interac-
tion of the stored representation with the information available
in the stimulus. Unfortunately, few studies have applied this pro-
cedure. As a notable exception, Willenbockel et al. (2010b) did
equalize SF spectrum and randomly sample SFs in a face recog-
nition task. Results revealed that SFs peaking at approximately
9 and 13 cycles/face (equivalent to 1.4 and 2 cpd, i.e., SFs that
may be categorized as LSFs, HSFs, or most often neither of these)
were most correlated with fast and accurate face identification.
Although these SFs specific for images of faces are likely to differ
from the SF content of object representations, they are an addi-
tional indicator that, as in the present study, intermediate SFs
rather than LSFs occupy the greatest place in our representation
of the world. It is plausible that stored representations consist of
mostly these SFs because they are part of the intermediate band
of SFs to which we are naturally most sensitive (e.g., Watson and
Ahumada, 2005).

INTERACTION BETWEEN AFFECTIVE AND CONTEXTUAL VALUES
No main effect of contextual or affective value was observed in
the SFs correlating with the objects’ fast identification. However,

we found a significant interaction between affective and contex-
tual values for SFs centered on 6 cpo (or 1 cpd). This indicates
that these LSFs, those usually associated with the magnocellular
pathway (Derrington and Lennie, 1984), are sensitive in a non-
linear manner to a combination of the visual object’s intrinsic
properties.

When testing the simple effects, we observed that affective
value elicited a significant difference in the use of these SFs in con-
textual objects: they led to longer RTs for contextual emotional
objects than for contextual neutral ones. This is not in accordance
with the general effect of affective value usually reported in the
literature (i.e., LSFs leading to faster RTs, e.g., Mermillod et al.,
2010); however, our result is due to an interaction between affec-
tive and contextual values and is therefore difficult to compare to
those of other studies. Moreover, our stimuli were equalized in
their SF content and always comprised several randomly sampled
SF bandwidths at the same time, whereas in studies using filters
with fixed cut-offs, only some specific band of LSFs or HSFs is
shown at a time.

SFs near 6 cpo (or 1 cpd) also led to longer RTs for contextual
emotional objects than for non-contextual emotional objects. The
effect of contextual value on SF content of object representations
had not been tested before but it had been often proposed that
rapidly extracted LSFs are sufficient to activate representations
associated with an object (Bar, 2004; Fenske et al., 2006). Our data
suggest that these presumed/hypothetical associative representa-
tions do not speed up the object’s recognition. Why we observed
this modulation only for emotional objects is not clear, but sev-
eral interactions between affective and contextual processing have
already been reported and could possibly explain the discrepancy
(Storbeck and Clore, 2005; Brunyé et al., 2013; Shenhav et al.,
2013). For example, affective value might influence the extent to
which we associate a particular object to other objects (Bar, 2009;
Shenhav et al., 2013).

CONCLUSION
The main findings of the present study are (i) that the SF content
of object representations in general are in an intermediate band
between 14 and 24 cpo (2.3–4 cpd), and (ii) that intrinsic high-
level categorical properties of an object influence the SF content
of its internally stored representation, more precisely that affec-
tive and contextual values interact in their modulation of the SF
content of object representations.

According to predictive accounts of brain function (e.g., Rao
and Ballard, 1999; Bar, 2003; Friston, 2003, 2010; Friston et al.,
2006), our mind constantly generates predictions about our envi-
ronment, and our understanding of a sensory input is based both
on the available sensory information and on prior beliefs stored
as internal representations (see Knill and Pouget, 2004). In this
study, we investigated precisely the SF content of these stored
representations, and its potential flexible modulation by affective
and contextual properties of the stimulus. Our results reveal that
stored representations of visual objects are composed of interme-
diate SFs that are often left over in studies using filters with fixed
arbitrary cut-offs. Furthermore, we observed a modulation of this
SF content by affective and contextual intrinsic values of the visual
object, suggesting its flexibility and thus the multiplicity of visual
recognition systems.
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Our study cannot however address directly the issue of tempo-
ral dynamics of visual object recognition. While we observed that
some SFs are more useful to identify some objects, we cannot con-
clude that these are extracted first. Further studies should address
these issues and their links to potential initiation of top-down
mechanisms.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fpsyg.2014.

00512/abstract
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