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One crucial feature of expertise is the ability to spontaneously recognize where and
when knowledge can be applied to simplify task processing. Mental arithmetic is one
domain in which people should start to develop such expert knowledge in primary
school by integrating conceptual knowledge about mathematical principles and procedural
knowledge about shortcuts. If successful, knowledge integration should lead to transfer
between procedurally different shortcuts that are based on the same mathematical
principle and therefore likely are both associated to the respective conceptual knowledge.
Taking commutativity principle as a model case, we tested this conjecture in two
experiments with primary school children. In Experiment 1, we obtained eye tracking
data suggesting that students indeed engaged in search processes when confronted
with mental arithmetic problems to which a formerly feasible shortcut no longer
applied. In Experiment 2, children who were first provided material allowing for one
commutativity-based shortcut later profited from material allowing for a different shortcut
based on the same principle. This was not the case for a control group, who had first
worked on material that allowed for a shortcut not based on commutativity. The results
suggest that spontaneous shortcut usage triggers knowledge about different shortcuts
based on the same principle. This is in line with the notion of adaptive expertise linking
conceptual and procedural knowledge.
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INTRODUCTION
Expertise has various manifestations and could be defined as
consistently superior performance within a specific domain rel-
ative to novices and relative to other domains (Ericsson and
Lehmann, 1996). The development of expertise in real-world
domains involves a complex interplay of changes in perception,
categorization, memory, problem solving, coordination, skilled
action, and other components of human cognition (Palmeri et al.,
2004). Expert’s flexibility has been frequently discussed and there
exist two contradictory perspectives. Research on creativity and
skill acquisition has been used to illustrate that more knowl-
edge can make one less flexible (i.e., Luchins, 1942; Logan, 1988).
However, research on expertise suggested that experts are more
flexible and creative in their thought patterns (see summary in
Bilalić et al., 2008a). Both options might be possible depending on
the expertise level and the problem difficulty. Investigating chess
experts Bilalić et al. (2008a) found that “super experts” were flex-
ible and find the optimal solution first or at least find it quickly
after perceiving a salient but non-optimal solution.

Here, we focus in the domain of mathematics on spon-
taneously spotting and applying shortcuts in arithmetic and
whether with further experience students become increasingly
able to generate rapid adequate actions with less and less effort

(Ericsson, 2008). Mathematic students used significantly larger
numbers of appropriate strategies than adults with less expertise
(Dowker et al., 1996). Experts have to be able to recognize spon-
taneously and without instruction that a specific element of their
knowledgebase can be applied in a specific situation. It would not
suffice if they possessed elaborate conceptual knowledge as well
as procedures to apply it, but needed to wait for someone to tell
them that the knowledge can be applied in the given situation.
This someone would rarely drop by.

In recent years, research in primary school arithmetic has
started to tackle this issue for a domain in which everyone
should acquire elaborate knowledge. Learning about mathemati-
cal principles and procedures should lead to knowledge that can
be applied across a wide range of situations (e.g., Hatano and
Oura, 2003). Given the role of self-guided learning and perfor-
mance in the development of mathematical abilities and concepts,
recent studies have focused on the question how and when chil-
dren spontaneously recognize that an everyday situation can be
tackled by mathematical thinking (Hannula and Lehtinen, 2005;
Hannula et al., 2010; McMullen et al., 2011). Furthermore, chil-
dren should develop the skills necessary to flexibly spot and
apply shortcut strategies spontaneously. It is not sufficient if they
can apply a shortcut when explicitly told to do so. Adaptive
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expertise (Verschaffel et al., 2009) includes to autonomously reg-
ulate whether (a) to solve an arithmetic problem in a standard
way or to (b) search for / apply a shortcut.

Taking the commutativity principle as a model case, past
research has explored how children spontaneously spot and apply
shortcuts that allow saving effort in addition problems by flexibly
changing the order of addends. Wealth of research has shown that
children have at least some understanding of the concept of com-
mutativity before entering school (Baroody and Gannon, 1984;
Resnick, 1992; Cowan and Renton, 1996; Wilkins et al., 2001;
Canobi et al., 2003). After interviewing elementary school chil-
dren how they solved problems with two addends, (Baroody et al.,
1983) report an extensive use of commutativity. During develop-
ment children increasingly integrate conceptual knowledge about
mathematical principles and procedural knowledge about short-
cuts (Haider et al., 2014). Knowledge integration should lead to
transfer between procedurally different shortcuts that are based
on the same mathematical principle and therefore likely both
associated to the respective conceptual knowledge. In a first step,
(Gaschler et al., 2013) provided a correlative study to explore
this idea. They assessed spontaneous usage of two procedurally
different shortcuts that are both based on the commutativity
principle in children of different age. While shortcut usage was
observed from second grade onwards, correlations between the
usage of the two different shortcuts only emerged by grade four.
In the current study we aimed at moving beyond correlational
data. We tested whether being exposed to one commutativity-
based shortcut helps to spot and apply a different shortcut option
based on the same mathematical principle. Note that in a par-
allel line of research, we have observed that instructions do not
seem to do the job. Instructing children to use one specific short-
cut does hinder rather than assist them in spontaneously spotting
and applying a different shortcut based on the same mathemat-
ical principle later on (Godau et al., submitted). Instructions
about specific procedures might corrupt flexibility in shortcut
usage (cf. ErEl and Meiran, 2011). Even when participants knew
that a formerly instructed rule would no longer apply, they
found it difficult to search for different shortcut options (see also
Bilalić et al., 2008a,b; Bilalić and McLeod, 2014). Therefore, in
the current work we focused on spontaneous use of the strate-
gies. We explored whether it is possible to foster the discovery
and application of shortcut strategies by transfer between dif-
ferent non-instructed shortcut strategies that are based on the
same mathematical principle. Note that according to Baroody and
Gannon (1984) understanding of commutativity was not evident
in all those who invented shortcuts, but in all those who compre-
hend addition as a binary rather than as a unary operation. The
unary view would suggest that one number is added to another,
rather than that they are added together.

Specifically, the commutativity principle enables students to
flexibly change the order of addends within a problem. For
instance, given the problem 4 + 7 + 6, it might be easier to cal-
culate (6 + 4) +7 (6 + 4 adds up to 10 which makes it easy to
finally add 7, i.e., “Ten-strategy”). One can also use commutativ-
ity across problems. If, for instance, a student receives the problem
8 + 5 + 7 =?, and then 5 + 7 + 8 =?, he/she can refrain from
calculating the second problem presupposed he / she recognizes

the applicability of the commutativity principle (i.e., “addends-
compare strategy”). Three-addends problems were used, because
we wanted to investigate usage of the commutativity princi-
ple with unfamiliar problems. It is debatable if three-addends
problems imply only the commutativity principle or additionally
also the associativity principle. Associativity is the property that
problems in which terms are decomposed, and recombined in dif-
ferent ways, have the same answer [(a + b) + c = a + (b + c)]. In
the problems we used, children have to change the order of the
addends [a + b + c = (a + c) + b], because otherwise it is not
possible to add a + c first. Commutativity justifies changing the
order or sequence of the operands within an expression while
associativity does not.

In Experiment 1, we used eye tracking to explore how chil-
dren search and apply different commutativity-based shortcuts.
Verschaffel et al. (1994) presented third-graders with three-
addends problems and assessed eye movements combined with
verbal report and found that in 71% of all possible cases com-
mutativity was used. We used a different approach, as we rather
were interested in whether children spontaneously start search
processes when, after a change in the material one shortcut option
is no longer present. The findings suggested that being offered an
opportunity to apply one commutativity-based shortcut can help
to search for and apply a different shortcut based on the same
principle when the first one is no longer feasible. In Experiment 2,
we explored whether transfer from shortcut to shortcut might be
concept specific: on the one hand, it seems plausible that short-
cuts based on the same mathematical principle trigger each other
because they are linked to one-another directly or indirectly (as
they are both linked to the common conceptual knowledge). This
perspective is in line with research suggesting that mathemati-
cal knowledge develops in an iterative fashion, with conceptual
change influencing procedural change and vice versa (Byrnes and
Wasik, 1991; Hiebert and Wearne, 1996; Rittle-Johnson et al.,
2001; Waldmann, 2006). For instance, Canobi (2009) showed
that children’s conceptual advances were predicted by their ini-
tial procedural skills. On the other hand, transfer from shortcut
to shortcut might occur place for motivational reasons unrelated
to the specific shortcut and underlying mathematical principle.
After having experienced that task processing can be simplified
by a shortcut, one might be more apt to search for and apply any
shortcut, as one has learned that attractive shortcut options do
seem to exist in the material provided.

EXPERIMENT 1
In Experiment 1, we used eye tracking in order to explore the fix-
ation patterns reflecting the usage of shortcut strategies. We were
furthermore interested in how fixation patterns reflect how peo-
ple accommodate to being presented with new sets of arithmetic
problems within which the previously feasible shortcut no longer
applies (but instead a different shortcut). To this end, children at
first had to solve problems that could be facilitated by the ten-
strategy (of three addends, the first and the last add up to 10).
After that, they were presented with problems that allowed for
the use of the addends-compare strategy (some problems con-
tained the same addends as their precursor in different order).
Both strategies are based on the commutativity principle.
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METHOD EXPERIMENT 1
Participants
Twenty children participated in Experiment 1 (mean age 8.6
years). They were tested individually in a laboratory at Humboldt-
Universität, Berlin.

Procedure and Materials
Research procedures of these experiments were approved in a
peer review process for applying for public funding (German
Research Foundation, DFG) and were completed with approval of
the Institutional Review Board of the Department of Psychology
at Humboldt-Universität, Berlin. Students were informed about
the content of the study and that data analysis would preserve
anonymity. We ensured written informed consent of the parents.
Children were than tested individually with a 250 Hz video-based
eye tracker (SMI RED 250). Packages of six problems in black
on a gray background were shown on a 22 TFT monitor, with
the student sitting at approximately 50 cm distance. Digits were
approximately 0.5 cm wide and 1 cm tall.

Children started with a five-point calibration. Afterwards the
experimenter showed a single example problem and explained
that the children should utter the result as quickly and as accu-
rately as possible. Children started the main part by working on
two screens with six ten-strategy problems each (first and last
addend add up to 10). They then completed two screens with
addends-compare problems intermixed with baseline problems.
Two of six problems per screen contained identical addends in
different order as the preceding problem (problems listed in the
Supplementary materials). Each problem was presented in one
line and consisted of three different addends between 2 and 9
(maximum result was 24; 0 and 1 were excluded as addends). We
balanced problem size between the addends-compare problems
and the baseline problems so that they were equally difficult for
children unless they used the shortcut (for more details Gaschler
et al., 2013; Haider et al., 2014).

Children were presented the first screen (of two) with six ten-
strategy problems. The experimenter moved the cursor to the
right of the equal sign of the first problem and waited for an
answer. The answer was immediately entered as the time log of
the first key press served to determine the calculation time as
the span from the cursor allocation to the first (i.e., two-digit

results) key press of entering the result for the current problem.
After entering the answer, the experimenter moved the cursor to
the next problem. The entered results remained visible on the
screen while working on the remaining of the six problems of
the package. This was especially important for the work on the
two screens with addends-compare problems later on. If they had
spotted that the addends of a problem were the commuted version
of the preceding problem, that way they were provided with the
opportunity to access the solution they had given on the previous
problem.

RESULTS
The computerized assessment allowed to track solution times
on the level of single problems. As previously mentioned, stu-
dents calculated 12 ten-strategy problems (Screen 1 and 2) and
afterwards worked on yet another 12 problems, four of them
allowed for the addends-compare strategy (Screen 3 and 4).
Figure 1 shows the mean solution times per problem for each
screen. Students were faster on addends-compare problems as
compared to baseline problems. A 2 (screen: first vs. second) × 2
(problem type: addends-compare problem vs. baseline problem)
ANOVA with solution times as dependent variable revealed a sig-
nificant main effect of problem type, [F(1, 19) = 7.46, p = 0.01,
η2

p = 0.28]. Neither the main effect of screen, [F(1, 19) = 1.67,

p = 0.21, η2
p = 0.08], nor the interaction effect were significant,

[F(1, 19) = 0.72, p = 0.41, η2
p = 0.04]. We did not find signifi-

cant effects when repeating the above analyses with error rate as
dependent variable (see Supplementary materials).

The analysis of the eye tracking data suggests that the ten-
strategy and the addends-compare strategy can be identified by
specific fixation patterns. Using the ten-strategy, adding the first
and last addend first to receive the result ten, should be fast and
necessitates little fixation time on the outer numbers. Adding
the middle number afterwards and uttering the result might
therefore result in more fixation time on the middle number rel-
ative to the other numbers. Figure 2 suggests that the percent
fixations falling on the middle vs. outer numbers of the three-
addends problems are distributed in line with this reasoning. The
percentage of fixations on the middle number increased from
the first to the second screen of the ten-strategy problems, as
students presumably discovered the structure of the problems.
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FIGURE 1 | Mean calculation time per arithmetic problem in Experiment 1. Error bars indicate the standard error of the mean.
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FIGURE 2 | Percent fixation frequency on second addend for

ten-strategy and addends-compare strategy booklets. The error bar
displays the standard error of the mean.

When the ten-strategy could no longer be used (first screen with
addends-compare problems), the percent fixations on the middle
digit were low again. Surprisingly, it increased on the second
screen with addends-compare problems. A 2 (screen: first vs. sec-
ond) × 2 (ten-strategy problems vs. addends-compare problems)
ANOVA with percentage of fixations falling on the middle num-
ber as dependent variable revealed a significant main effect for
strategy [F(1, 17) = 6.02, p < 0.05, η2

p = 0.26]. Children fixated
the middle digit more in problems, in which the ten-strategy
could be used compared to problems on the addends-compare
screens. There was also a significant main effect of screen,
[F(1, 17) = 7.91, p = 0.01, η2

p = 0.32], but no interaction, F < 1.
In the ten-strategy problems, addends should be checked

within a line in order to identify shortcut options. In contrast,
for the addends-compare strategy, it is necessary to compare the
addends between the lines. Children should thus not only fix-
ate the addition problem they are currently solving but also the
previous one or the subsequent one in order to check whether
a set of addends repeats. Figure 3 presents the mean differences
between (a) line fixated and (b) line of current problem. If, for
instance, a student during solving a problem was fixating back on
the problem in the line before, this would lead to a value of −1 for
this particular fixation. While the majority of fixations were on
the line of the current problem, some fixations were directed at
previous (negative difference) or subsequent (positive difference)
problems. We focused on comparing the above index of fixation
position between the addends-compare problems and their pre-
ceding problems. Thus, addends are identical and only differ in
order. We found a significant difference in the index of fixation
position for these problems. In line with our assumption, students
were fixating ahead on problems preceding the addends-compare
problems and fixating back, once a set with identical addends was
discovered, [t(18) = 5.44, p < 0.001].

In addition to identifying eye movement patterns that are spe-
cific for the shortcuts we found a significant correlation between
the increase of the fixation on the middle digit in the ten-
strategy problems (Screen 2—Screen 1) and the time benefit on
addends-compare strategy problems r = 0.49, p = 0.05. Thus,

increased usage of the commutativity-based shortcut offered on
Screen 1 and Screen 2 might help in spotting and applying the
other commutativity-based shortcut offered on Screen 3 and 4.

DISCUSSION
Providing children with the opportunity to spontaneously (with-
out instruction or other hints) use one commutativity-based
shortcut might help them to spot and apply another shortcut
based on the same mathematical principle once the first one does
no longer apply. Furthermore, the eye tracking data are in line
with the interpretation that search processes might start once one
shortcut no longer applies. We found that children in some cases
checked addends of subsequent addition problems in advance
(i.e., before uttering the result to the current problem and the
allocation of the cursor to the next problem). Note that this
implies that the accuracy to attribute calculation time to specific
arithmetic problems might be limited in setups in which multi-
ple problems are simultaneously presented. Such arrangements
resemble work on arithmetic problems on worksheets in the
schooling context. Eye tracking or reliance on aggregate measures
from paper-and-pencil versions might both be useful approaches
to this variant of the dilemma of external vs. internal validity.

Experiment 1 provided a first hint in line with the idea that
there might be transfer from one shortcut to another one. This
suggests two different explanations. On the one hand, sponta-
neously spotting and applying shortcuts on Screen 1 and 2 might
affect processing of Screens 3 and 4 on a motivational route.
Participants learn that shortcut options seem to exist and can be
exploited. This would suggest that such transfer could take place
from any easily identifiable shortcut to a second one. On the other
hand, transfer might involve specific mathematical knowledge. It
might first and foremost take place between shortcuts based on
the same mathematical principle. We tried to disentangle these
two perspectives in Experiment 2.

EXPERIMENT 2
This experiment focused on the question if the ten-strategy facil-
itated the usage of the addends-compare shortcut. For this pur-
pose, we compared three conditions: students in the ten-strategy
warm-up condition started with the ten-strategy problems fol-
lowed by problems that allowed for applying the addends-
compare strategy (similar to Experiment 1). In the baseline
warm-up condition, children worked on material with no short-
cut option at all before being transferred to the addends-compare
booklet. The inversion warm-up condition started with inver-
sion problems (e.g., 9 + 2 − 2). Thus, a shortcut not based on
the commutativity principle was offered first. This was impor-
tant in order to test whether all shortcut strategies would alter
the usage of the addends-compare shortcut simply by motivation
children to look for shortcuts. Alternatively, it might be that only
the ten-strategy increases the probability to spot the addends-
compare strategy, as it is the only shortcut strategy, which is
also based on the commutativity principle. It is conceivable that
offering problems with an easy-to-find shortcut option (inversion
or ten-strategy) might lead students to assume that it is worth-
while to search for shortcut options in general in later material.
This could accordingly lead to transfer which is simply based on
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values result from fixations on subsequent problems. Error bars indicate the 95% CI of the comparison of addends-compare problems vs. preceding problems.

the motivation to search for shortcuts. In contrast, a finding of
transfer for the ten-strategy problems but not for the inversion
problems would suggest that indeed triggering the basic principle
of commutativity is important for transfer to occur.

METHOD EXPERIMENT 2
Participants
We tested 153 children at the end of second grade (most of them
were taught in combined classes of first and second grade) and
140 children in third grade. We ensured written informed con-
sent of the parents in collaboration with the schools. Either group
was provided with advance information concerning the content
of the study (calculating mental arithmetic problems) and was
informed that participation was voluntary. Parents and students
were also informed that data analysis would preserve anonymity.
Data were acquired in a classroom setting with paper and pencil.
Gender was balanced as much as possible. Eleven children (sec-
ond grade) and 20 children from the third grade were excluded
by median ± 3 MADs. The MAD is a robust method to detect
outliers by using absolute deviation from the median; for further
information see (Leys et al., 2013). For the descriptive data of the
sample see Table 1.

Procedure and Materials
The arithmetic problems were the same as in Experiment 1 and
are listed in the Supplementary materials. Each problem was
presented in one line and consisted of three different addends
between 2 and 9 (maximum result was 24; 0 and 1 were
excluded as addends). The different types of problems were
presented as a paper pencil test in separate booklets. As depen-
dent variable we measured the number of problems solved in
the booklet that allowed vs. the booklet that did not allow for
the addends-compare strategy. We took care that the amount
of time provided per booklet was not sufficient to solve all
problems so that we could use number of problems solved per
time as a dependent variable (see Table 1 for time provided per
booklet).

Table 1 | Sample data and time provided per booklet in Experiment 2.

Grade Condition/ Outliers N Mean Seconds for

warm-up (female) age (SD) addends-compare

booklets

2 Ten-strategy 4 48 (25) 7.1 (0.69) 240

Baseline 1 49 (26) 7.1 (0.72)

Inversion 6 45 (25) 7.1 (0.62)

3 Ten-strategy 5 41 (24) 8.0 (0.35) 180*

Baseline 7 40 (20) 8.2 (0.71)

Inversion 8 39 (25) 7.8 (0.64)

*We started with 210 s and than reduced it after testing one group of students

in order to avoid ceiling effects.

Experimental conditions differed in the warm-up booklet.
The ten-strategy warm-up started with problems in which chil-
dren could use the ten-strategy. The baseline warm-up conditions
started with addition problems of comparable size, but that did
not include any option for applying the commutativity princi-
ple to solve the problems (e.g., 4 + 3 + 5 or 7 + 6 + 2). A second
control condition, the inversion warm-up condition, started with
problems that allowed for a shortcut, but, importantly, not for
a commutativity-based one. Inversion problems (e.g., 9 + 2 − 2)
allow refraining from calculation by comparing the numbers
involved in the problem mixing addition and subtraction. Thus,
while the ten-strategy and addends-compare strategy are both
based on the same arithmetic principle, inversion and addends-
compare are not. However, on the surface the latter two shortcuts
are similar as they both enables students to avoid calculation alto-
gether (in contrast, the ten-strategy does reduce instead of avoid
calculation demands).

After the warm-up phase, all children worked on five more
booklets. Starting with (1) a booklet, where the addends-compare
strategy could be used, they then were presented (2) a baseline
booklet with no shortcut opportunities, followed by (3) another
booklet, where the addends-compares strategy could be used.
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This second addends-compare booklet was applied as we had
obtained high variability across students as well as large general
practice effects in the first booklets in earlier work (Gaschler et al.,
2013). Booklets 4 and 5 served the purpose to control whether the
induced shortcut is known and would be used (see Table 2). The
children in the ten-strategy warm-up condition received another
booklet with addition problems allowing for the ten-strategy (4)
plus afterwards a matched baseline booklet (5). This was also the
case for children of the control condition with the baseline warm-
up. The children of the inversion warm-up condition worked
for the second time on a booklet with inversion problems (4)
followed by a matched baseline booklet (5).

Students were instructed to solve the problems as quickly and
as correctly as possible. The time for each booklet was fixed and
we counted the number of problems solved and errors. Students
were additionally informed that it would be almost impossible
to solve all problems during the period of time given for each
booklet. As dependent measure we calculated the average time per
problem on addends-compare booklets as compared to baseline
booklets.

RESULTS
After the short warm-up phase, children were still rather slow in
calculating the first set of addends-compare booklets and between
students variability was rather high (see Table 3). On closer exam-
ination, we found that the practice effects were stronger than the
effect of problem type. For further analysis we focused on the sec-
ond addends-compare booklet. We first analyzed the effects of our
different warm-up phases on the addends-compare problems. For
calculating the addends-compare benefit in second graders, we
subtracted for each child the average solution time per problem
in Booklet 3 (addends-compare strategy) from the average time

Table 2 | The order of the booklets in Experiment 2.

Condition/

Warm-up

Booklet 1 Booklet 2 Booklet 3 Booklet 4 Booklet 5

Ten-strategy
Addends-
compare
strategy

Addends-
compare
strategy

Ten-strategy
Baseline Baseline Baseline

Inversion Inversion

per problem in Booklet 2 (baseline). The benefits are depicted
in Figure 4 separately for each of the three conditions in sec-
ond and third graders. In addition, Table 3 presents the average
time per problem for every booklet for the second and third
grade.

For the second graders with the ten-strategy warm-up phase,
we observed a significant benefit on the addends-compare strat-
egy problems compared to baseline problems t(47) = 2.48, p =
0.05. Second graders with the warm-up problems not allow-
ing for any shortcut did not benefit from the addends-compare
booklets relative to the baseline booklets. The inversion prob-
lems group also did not show such a benefit either. Third
graders, however, seemed to use the addends-compare strategy
in every warm-up condition. Each of the three warm-up groups
significantly benefitted from the addends-compare strategy [ten-
strategy: t(40) = 2.64, p = 0.05; baseline: t(39) = 3.71, p = 0.001;
inversion: t(38) = 3.79, p = 0.001]. The time used to solve the
addends-compare strategy problems was shorter than that needed
to calculate the baseline problems.

We calculated a 2 (problem type: baseline vs. addends-
compare booklet) × 3 (warm-up condition: ten-strategy vs.
baseline vs. inversion warm-up) × 2 (grade: second vs. third
grade) mixed ANOVA with mean benefit time as dependent
variable. This ANOVA yield significant main effects of prob-
lem type [F(1, 256) = 14.98, p < 0.001, η2

p = 0.055] and grade

[F(1, 256) = 38.44, p < 0.001, η2
p = 0.131] and a significant three-

way interaction of problem type × warm-up condition × grade
[F(2, 256) = 3.75, p = 0.05, η2

p = 0.028]. We found neither a sig-
nificant main effect for warm-up condition, nor other interaction
effects (see Table 4). The three-way interaction suggests that
the different warm-up phases differentially affected second and
third graders. Whereas the ten-strategy warm-up increased the
probability of applying the addends-compare strategy in second
graders, it did not in third graders. The results suggest that short-
cut to shortcut transfer specific to the underlying mathematical
principle was observed in second graders. Third graders, on the
other hand, maybe spontaneously used the addends-compare
shortcut anyways and thus did not profit from a prior task with a
conceptually related shortcut.

One could argue that second graders did not show trans-
fer from an inversion warm-up to addends-compare prob-
lems, because they did not discover the shortcut option in the

Table 3 | Mean time per problem and standard deviation analyzed for booklet type and grade in Experiment 2.

Grade Condition Warm-up Booklet 1: Booklet 2: Booklet 3: Benefit Booklet 4: Booklet 5:

Addends-compare Baseline Addends-compare (baseline—addends- Same as Baseline (2)

strategy (1) strategy (2) compare strategy (2)) warm-up*

2 Ten-strategy 26.4 (26.8) 28.1 (34.6) 25.2 (23.0) 20.1 (12.0) 5.1 (14.3) 21.9 (22.7) 18.4 (9.2)

Baseline 23.8 (15.2) 28.3 (24.3) 22.9 (13.4) 22.6 (14.6) 0.3 (5.7) 23.0 (18.4) 22.0 (18.3)

Inversion 26.3 (29.0) 28.2 (20.4) 25.0 (19.6) 24.4 (16.6) 0.6 (10.7) 17.8 (24.9) 24.4 (21.7)

3 Ten-strategy 10.4 (3.9) 13.2 (3.3) 13.5 (3.7) 12.4 (3.6) 1.1 (2.7) 11.1 (4.6) 12.3 (5.6)

Baseline 13.9 (7.4) 14.6 (4.5) 15.8 (5.8) 13.3 (2.9) 2.4 (4.2) 13.2 (7.3) 13.4 (5.5)

Inversion 12.3 (10.3) 15.6 (8.1) 15.8 (6.3) 13.4 (4.5) 2.4 (3.9) 5.9 (5.7) 13.1 (8.2)

*See Table 2.
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inversion problems. Our manipulation checks do not support
this alternative explanation. We analyzed the Booklets 4 and 5
(induction shortcut—and respective baseline). The results sug-
gested that students were capable of using the inversion strategy
(see Table 5). For the second graders, a 2 (Booklet 4 vs. 5) × 3
(warm-up condition) ANOVA revealed a significant interaction
effect of both factors, [F(2, 139) = 3.20, p = 0.05, η2

p = 0.044]. It
depended on the warm-up condition, whether the shortcut in
Booklet 4 was used.

For the third graders we also found an interaction effect
of Booklet 4 vs. 5 and warm-up condition, [F(2, 117) = 15.41;
p < 0.001, η2

p = 0.208]. While there was a pronounced inversion
effect, surprisingly, neither baseline warm-up condition nor the
ten-strategy warm-up condition showed a ten-strategy effect in
the booklets administered at the end of the experiment. We did
not find relevant effects when repeating the above analyses with
error rate as dependent variable, but needless to say we found
different error rates in grade two and three (see Supplementary
materials).

DISCUSSION
In Experiment 2, we tested whether it is possible to make stu-
dents to spot and apply a shortcut strategy by first providing
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FIGURE 4 | The mean benefit in seconds of booklets allowing for the

addends-compare strategy compared to baseline booklets for the

three different warm-up conditions (ten-strategy, baseline and

inversion) for the second grade (dark gray) and the third grade (light

gray) in Experiment 2. The error bar displays the 95% confidence interval
of the comparison with zero benefit.

an easy-to-find shortcut strategy based on the same mathemat-
ical principle vs. one based on a different principle. Our findings
suggest that in second graders, transfer was related to the math-
ematical principle rather than to general motivational factors.
There was no indication that second graders were motivated to
search for and apply any shortcuts after being offered the first
one. If the additional conceptual link between the two differ-
ent strategies is the reason for the transfer, this would support
understanding of adaptive expertise as the ability to apply mean-
ingfully learned procedures flexibly and creatively (Hatano and
Oura, 2003). The inversion warm-up phase—an easy-to-find
shortcut that is not based on commutativity—did not lead to
increased usage of the addends-compare strategy. While inver-
sion did not promote transfer, our manipulation check suggested
that inversion was indeed used. This is in line with Robinson and
Dubé (2009) who found that the inversion shortcut is easier to
apply than associativity (which is similar to commutativity). In
both studies (Robinson and Dubé, 2009; Dubé and Robinson,
2010), inversion shortcut use was far more frequent than the
associativity-based strategy. Focusing on commutativity as model
case a limitation of the experiment is that we so far only used one
shortcut not based on commutativity (i.e., inversion) in order to
differentiate between transfer effects based on motivation vs. on
mathematical principles shared by subsequently offered shortcut
options. For instance, it would be interesting to know whether
the current setup can be turned around with inversion usage as
dependent variable and commutativity vs. inversion warm-up as
independent variable (cf. Dowker, 2014). Generalizability beyond
the specific pairing of shortcuts tested here might for instance
depend upon the relative difficulty of shortcuts used as warm-up
and dependent variable.

While the results suggest that second graders profited from
shortcut-to-shortcut transfer based on commutativity, third
graders did not seem to benefit from such extra scaffolding.
Spontaneous usage of the addends-compare strategy was not
improved further by a warm-up condition with a shortcut-option
based on the same mathematical principle. We assume that in
this age group, the concept of commutativity is more developed
so that extra support is less needed. With further experience,
students become increasingly able to rapidly generate adequate
actions with less and less effort (Ericsson, 2008). In line with
these findings, differences between second and third graders in
their mathematical abilities are mirrored in functional changes of
the brain. Rosenberg-Lee et al. (2011) examined the behavioral

Table 4 | Experiment 2: Results of the ANOVA problem type × grade × condition.

F p η2
p

Main effect: Problem type (addends-compare strategy vs. baseline) 14.98 0.00 0.06

Grade 38.44 0.00 0.13

Warm-up condition 0.49 0.61 0.00

Inter action: Problem type (addends-compare strategy) × grade 0.00 0.96 0.00

Problem type (addends-compare strategy) × warm-up condition 1.57 0.21 0.01

Warm-up condition × grade 0.14 0.87 0.00

Problem type (addends-compare strategy) × warm-up condition × grade 3.75 0.02 0.03
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Table 5 | Results of the ANOVA problem type × condition separately for grade 2 and 3.

Grade 2 Grade 3

F p η2
p F p η2

p

Main effect: Problem type (addends-compare strategy) 4.92 0.03 0.03 35.04 0.00 0.23

Warm-up condition 0.23 0.80 0.00 1.95 0.15 0.03

Inter action: Problem type (addends-compare strategy) × warm-up condition 2.97 0.06 0.04 1.73 0.18 0.03

and neurodevelopmental changes between grades 2 and 3 and
found that arithmetic complexity was associated with regions
implicated in domain-general cognitive control but also regions
for numerical arithmetic processing. The results showed that
brain response and connectivity relating to an arithmetic task
significantly change within the narrow 1-year interval.

GENERAL DISCUSSION
We presume that one crucial feature of expertise is the ability
to spontaneously recognize where and when knowledge can be
applied to simplify task processing. In some domains, it is neces-
sary for everyday life to develop this ability. Research of expertise
showed that experts are more flexible and creative in their thought
pattern. For instance, “super experts” were more flexible to find
an optimal solution despite distraction by a non-optimal but
salient solution of a chess problem (Bilalić et al., 2008a). Players
at lower levels of expertise reported that they were looking for a
better solution, but their eye movements showed that they con-
tinued to look at features related to the solution they had already
thought of (Bilalić et al., 2008b). For expertise in object recog-
nition, Harel et al. (2013) developed an interactive framework,
which posits that expertise emerges from multiple interactions
within and between the visual system and other cognitive sys-
tems, such as top-down attention and conceptual memory. The
interplay between these other, multiple cognitive processes and
perception are often not consciously accessible for the experts
themselves (Palmeri et al., 2004).

In some parts of arithmetic, procedural and conceptual knowl-
edge start to develop even before primary school. In the first years
of primary school, integration of different fragments of procedu-
ral and conceptual knowledge should lead to a knowledge base
that allows to spontaneously spot and apply shortcut options
already in primary school. If successful, knowledge integration
should lead to transfer between procedurally different shortcuts
that are based on the same mathematical principle and therefore
likely are both associated to the respective conceptual knowledge.
For the case of commutativity, we tested whether different strate-
gies that are based on the same principle trigger each other via the
concept and so could support flexibility in strategy use. According
to the adaptive expertise metaphor (e.g., Hatano, 1988; Star and
Rittle-Johnson, 2008; Verschaffel et al., 2009) children first of all
need to spontaneously recognize where knowledge can be applied.

Experiment 1 provided first evidence that children who are
provided an opportunity to spontaneously spot and apply one
shortcut might be more inclined to search for and use a sec-
ond shortcut, once the first one no longer applies. This is
in line with the suggestion to differentiate between (a) quick

and accurate routine-based solving from (b) an adaptive use
of solution strategies, which draws upon conceptual under-
standing (Hatano, 1988). Experiment 2 verified that transfer
occurred from one shortcut to another. It furthermore speci-
fied that this transfer effect was not only based on motivation.
While we obtained transfer (at least in second graders) from
one commutativity-based shortcut to another commutativity-
based shortcut, no transfer was observed between inversion
and commutativity. Thus, our results are in line with the view
that links between different elements of procedural knowl-
edge and potentially conceptual knowledge (compare Haider
et al., 2014) are used to spontaneously spot and apply shortcut
options.

Several studies on commutativity have shown that children
have at least some understanding of the concept of commutativity
before entering school (Siegler, 1989; Resnick, 1992; Cowan and
Renton, 1996; Wilkins et al., 2001; Canobi et al., 2003) and already
first graders seem to understand the commutativity principle
(Canobi et al., 2002). We thus focused on triggering the usage of
knowledge rather than knowledge acquisition as such. In primary
school, children should link different strategies based on the same
concept and develop the ability to select an efficient strategy for
the current problem (Verschaffel et al., 2009). As implied by these
authors in the adaptive expertise metaphor, the learner should be
able to spot and apply options for a shortcut independently with-
out having to rely on instruction or explicit cues. In a similar vein,
research on skill acquisition and expertise stresses the importance
of linking perceptual skills and principle-knowledge in order to
be able to spontaneously spot and apply shortcuts (e.g., Gentner
and Toupin, 1986; Koedinger and Anderson, 1990; Haider and
Frensch, 1996; Anderson and Schunn, 2000; Bilalić et al., 2008a;
Frensch and Haider, 2008). Adaptive strategy use can be regarded
as the ability to select procedures that can simplify the solution of
a problem (Selter, 2009). In the end the person should be faster
and/or the solution should be more accurate. Strategy use can
be seen as an indicator for the state of development of a mathe-
matical concept. Adaptive strategy use necessitates shifts between:
(a) calculating problems in the general mode (b) investing some
time and effort to search for shortcut options, and (c) using a
shortcut option. We are interested in factors that can tip the bal-
ance on the exploitation-exploration continuum. Experts know
when to search for a new shortcut strategy and when not, children
have to learn how much time and effort they want to spend for
searching. Teachers etc. cannot sustainably take over the regula-
tion of this dilemma calculating in standard way or flexible change
strategies—they can only help children to calibrate the balance
between flexibility vs. stability (or exploration vs. exploitation).
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We have to acknowledge that the effects of spontaneously using
a shortcut were small in many cases of the current experiments
and the variability across students was large. This is to be expected
when taking into account the difference between competence
and performance (i.e., principle knowledge and application).
Larger estimates of both procedural and conceptual knowledge
have been obtained when knowledge was probed more directly
(Prather and Alibali, 2009). Direct probing, however, does con-
vey to the students that and which shortcut options exist. It
is therefore not suitable when trying to measure the extent
to which knowledge about a mathematical principle is applied
spontaneously (cf. Haider et al., 2014). In addition, Robinson
and Dubé (2012) have suggested that personality characteris-
tics bridge between knowledge and application. They argued
that some children have more positive attitudes toward accepting
strategies that are highly efficient but are novel to their cur-
rent strategy repertoire of algorithmic approaches. In a similar
vein, (Guerrero and Palomaa, 2012) highlighted that some chil-
dren change their strategies during calculation while some do
not. Furthermore, children change their strategies for different
reasons. It is not always the goal to choose the most efficient
strategy (Newton et al., 2010) suggested that flexibility involves
the use of strategies, which are considered the most appropri-
ate for a given problem. They also discussed what “appropriate”
means. It could be the most efficient or the most understand-
able strategy in a given situation. Which strategy in general is
used depends on the problem, the numbers presented and other
contextual, developmental, or personal factors (Newton et al.,
2010; Guerrero and Palomaa, 2012). An U-shaped relationship
between knowledge/understanding and variety of strategy use
suggests that novices as well as experts may use a large vari-
ety of strategies (Siegler and Jenkins, 1989; Dowker et al., 1996).
Experts like mathematic students used large numbers of appro-
priate strategies (Dowker et al., 1996) whereas children (novices)
may use a large variety of appropriate and inappropriate strate-
gies, because they have not yet acquired a small set of well-learned
strategies (Dowker et al., 1996). In contrast to this assumption
Newton et al. (2010) argued that low achieving students might
be particularly appreciative and excited about a focus on multiple
strategies to compare the possible ways to solve the problem and
maximize the accuracy. Although the idea is prominent that an
educational approach for low achieving children should promote
routine mastery of a single well-thought solution strategy for a
given type of problems (e.g.,Woodward and Baxter, 1997; Baxter
et al., 2001). Future work should explore how students at differ-
ent ability levels profit from sequences of problems allowing for
different shortcuts based on the same mathematical principle.

In order to optimize the chances to measure spontaneous (i.e.,
no cues and no instruction) recruitment of knowledge about
the commutativity principle we chose a paper-and-pencil test in
the classroom in Experiment 2. Our informal observations sug-
gest that children taking part in an eye tracking study on mental
arithmetic appreciate that the measurement is (not only) about
whether they solve the problems correctly, but also on how they
solve them. The paper-and-pencil method was closer to usual
test situations in the classroom. Children focused on being fast
and accurate rather than on the fact that someone might be

trying to assess how they solved the problems. Verschaffel et al.
(2009) highlighted the importance of ecological validity for stud-
ies on adaptive expertise. We suggest that trial-by-trial process
measures (as in our eye tracking experiment) and ecologically
valid but less sensitive methods (as in Experiment 2) should be
combined to convey the full picture. For instance, eye tracking
can help to figure out whether increased time demands after a
change in shortcut option reflect prolonged solution times or,
alternatively, a mixture of prolonged solution times plus time
invested in search for alternative shortcut options. Potentially,
learners at different levels of expertise might differ in both the
efficiency in spotting shortcuts as well as in using them. For
instance, third graders might have discovered the options for
the addends-compare shortcut relatively quickly even without a
fitting warm-up condition.

In line with the research on adaptive expertise Verschaffel et al.
(2009) or Star and Rittle-Johnson (2008) defined flexibility in
problem solving as knowledge of multiple strategies and their
relative efficiency. In addition to weighing different strategies
according to their efficiency, students need to weigh the potential
costs and benefits of flexible strategy usage. There are time costs
of switching between strategies, once a shortcut option has been
discovered (Lemaire and Lecacheur, 2010). Luwel et al. (2009)
found longer response times but no reduced accuracy and the
size of these switching costs varied as a function of the associa-
tive strength between a strategy and a particular problem. More
importantly, there is a dilemma between (a) investing time and
attention in order to spot potential shortcut options that might or
might not exist and (b) using processing strategies readily avail-
able (e.g., Jepma and Nieuwenhuis, 2011). Thus, process measures
that provide evidence on when, how and to what extent stu-
dents invest in spotting and applying shortcuts (Haider and Rose,
2007) are necessary in order to better understand the bases of
the transfer effect observed in Experiment 2. To illustrate the
search process, we additionally used eye tracking assessment in
the Experiment 1. On the one hand this is a more specific method
than paper pencil and on the other hand we could measure the
shift of attention. The eye tracking results are in line with the view
of (Robinson and LeFevre, 2012). For discovering new strategies,
children need to shift their attention to the relevant part of the
problem. The eye movement patterns were different for the dif-
ferent shortcut strategies and fit to the points of interests of the
according strategies.
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