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The standard model of early vision claims that orientation and spatial frequency are
encoded with multiple, quasi-independent channels that have fixed spatial frequency
and orientation bandwidths. The standard model was developed using detection and
discrimination data collected from experiments that used deterministic patterns such as
Gabor patches and gratings used as stimuli. However, detection data from experiments
using noise as a stimulus suggests that the visual system may use adjustable-bandwidth,
rather than fixed-bandwidth, channels. In our previous work, we used classification images
as a key piece of evidence against the hypothesis that pattern detection is based on
the responses of channels with an adjustable spatial frequency bandwidth. Here we
tested the hypothesis that channels with adjustable orientation bandwidths are used
to detect two-dimensional, filtered noise targets that varied in orientation bandwidth
and were presented in white noise. Consistent with our previous work that examined
spatial frequency bandwidth, we found that detection thresholds were consistent with
the hypothesis that observers sum information across a broad range of orientations nearly
optimally: absolute efficiency for stimulus detection was 20–30% and approximately
constant across a wide range of orientation bandwidths. Unlike what we found with spatial
frequency bandwidth, the results of our classification image experiment were consistent
with the hypothesis that the orientation bandwidth of internal filters were adjustable. Thus,
for orientation summation, both detection thresholds and classification images support the
adjustable channels hypothesis. Classification images also revealed hallmarks of inhibition
or suppression from uninformative spatial frequencies and/or orientations. This work
highlights the limitations of the standard model of summation for orientation. The standard
model of orientation summation and tuning was chiefly developed with narrow-band
stimuli that were not presented in noise, stimuli that are arguably less naturalistic than
the variable bandwidth stimuli presented in noise used in our experiments. Finally, the
disagreement between the results from our experiments on spatial frequency summation
with the data presented in this paper suggests that orientation may be encoded more
flexibly than spatial frequency channels.
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1. INTRODUCTION
Visual noise has been used to investigate visual processing in a
variety of tasks (Pelli and Farell, 1999). Researchers have used
two-dimensional luminance noise most frequently, but studies
have also used one-dimensional luminance noise (i.e., noise that
is constrained to vary along a single dimension) as well as visual
noise that varies in other ways such as color (Gegenfurtner and
Kiper, 1992), motion (Dakin et al., 2005), orientation (Girshick
et al., 2011), Gaussian spatial windowing or bubbles (Gosselin
and Schyns, 2001), and zero-dimensional noise pedestal incre-
ments (Baker and Meese, 2012). In virtually all of these studies,
the noise was used as a mask and the observer’s task was to ignore
the noise to detect a non-noise target. Comparatively few stud-
ies have used noise as the target stimulus itself. David Green and
colleagues used noise in this way to study the mechanisms under-
lying the detection of auditory signals (Green, 1960a,b; Green and

Swets, 1966), and subsequent studies adopted Green’s approach
to study vision (for examples, see Kersten, 1987; Taylor et al.,
2003, 2004, 2005, 2006, 2009; Levi et al., 2005, 2008). In the cur-
rent study, we use noise targets and noise masks to investigate
orientation selectivity of visual mechanisms.

Data from detection, discrimination, and adaptation exper-
iments using both psychophysical and physiological methods
support the idea that the early stages of visual processing encode
patterns with channels that are tuned to a fixed range of spa-
tial frequency and orientation (Campbell and Kulikowski, 1966;
Campbell et al., 1966; Graham, 1989; Wandell, 1995). This stan-
dard, or back-pocket, model of early visual coding accounts for
a wide range of detection and discrimination data (Klein, 1992;
Watson, 2000). However, despite its many successes, the stan-
dard multiple channels model apparently fails to account for
some experimental results (see Nachmias et al., 1973; Kersten,
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1987; Derrington and Henning, 1989; Perkins and Landy, 1991;
Wandell, 1995; Taylor et al., 2009). One particularly puzzling
result was reported by Kersten (1987), who measured detection
thresholds for a visual noise target embedded in a visual noise
mask. Detection thresholds were measured with noise targets
with different spatial frequency bandwidths. For frequency band-
widths between 1 and 4 octaves, Kersten found that detection
thresholds were proportional to the quarter-root of bandwidth,

crms ∝ BW
1
4 (1)

Interestingly, Kersten showed that detection thresholds for an
ideal observer also were proportional to the quarter-root of band-
width, which implies that absolute efficiency (η), defined as

η =
(

crms (ideal)

crms (observer)

)2

(2)

ought to be constant. Indeed, Kersten found that absolute effi-
ciency was high (≈50%) and approximately constant as the
spatial frequency bandwidth of the noise stimulus was increased
from 0.5 to 4 octaves. Kersten pointed out that this result is sur-
prising because ideal observers integrate information across the
entire spatial frequency bandwidth, whereas human observers are
thought to detect patterns using mechanisms that have band-
widths that are much narrower than four octaves. Hence, the
data suggest that spatial frequency summation is approximately
optimal across a wide bandwidth, and appear to be inconsistent
with a standard model that assumes that patterns are detected
using channels that have a fixed and relatively narrow frequency
bandwidth. Instead, Kersten suggested that the data were consis-
tent with the adjustable channels hypothesis, first proposed by
Green (1960a,b) to explain similar results obtained in an auditory
detection task, which states that human observers detect band-
limited noise using a channel, or combination of channels, with a
frequency bandwidth that is adjusted to match that of the stim-
ulus, and which sums information efficiently across the entire
bandwidth.

Taylor et al. (2009) evaluated the adjustable channels hypoth-
esis by using the classification image technique (Murray, 2011) to
measure the frequencies observers use to detect visual noise that
varied in bandwidth from 0.5 to 6 octaves. Like Kersten (1987),
Taylor et al. found that detection thresholds were proportional to
the quarter-root of bandwidth (Equation 1). However, contrary
to the predictions of the adjustable channels hypothesis, estimates
of the spatial frequency bandwidth of the channel used to detect
visual noise, which was derived from the classification image data,
did not vary with stimulus bandwidth. Furthermore, Taylor et al.
used Monte Carlo simulations to demonstrate that the optimal
spatial frequency summation found in noise detection tasks was,
surprisingly, consistent with the predictions of at least one version
of the standard model (Wilson et al., 1983). In short, Taylor et al.
showed that the apparently anomalous results reported by Kersten
(1987) were consistent with standard models of spatial frequency
summation (Graham, 1989).

In this paper, we follow up on our previous work on spatial fre-
quency summation and investigate orientation summation in two

experiments. The first experiment measures detection thresholds
and absolute efficiency of noise patterns that vary in orientation
bandwidth. The second experiment uses the classification image
technique to estimate the tuning characteristics of the internal fil-
ters used in this noise detection task. To anticipate our results,
we find that orientation summation is, like spatial frequency
summation, nearly optimal across a wide range of bandwidths.
However, unlike what was found with frequency summation, the
classification image results are consistent with the hypothesis that
the orientation bandwidth of the internal filter that mediates
detection is adjusted to match the stimulus.

2. EXPERIMENT 1
2.1. MATERIALS AND METHODS
2.1.1. Observers
The three observers (all female; 23–27 years of age) in this experi-
ment were members of the McMaster University community and
were paid for their participation. Informed consent was obtained
from all participants and the research approved by the McMaster
University research ethics board. All observers were naïve about
the experimental hypotheses, had normal or corrected-to-normal
Snellen acuity and Pelli–Robson contrast sensitivity, and had
extensive practice with this and other visual psychophysical tasks.

2.1.2. Apparatus
Stimuli were generated and displayed using an Apple Macintosh
G4 computer with an ATI Radeon video card running MATLAB
and the Psychophysics and Video toolboxes (Brainard, 1997; Pelli,
1997). The stimulus display was a Sony GDM-F520 monitor set
to a resolution of 1024 × 768 pixels and subtended a visual
angle of 10.8◦ × 8.3◦ at the viewing distance of 2 m. The frame
rate of the display was 75 Hz and the mean luminance 45 cd/m2.
Display luminance was calibrated using a PhotoResearch PR-650
photometer before each session. The results of the calibration
were used to linearize the display for that session, but in general
there was little variability in the display from session to ses-
sion. A Cambridge Research System Bits++ device was used to
achieve fine grained (i.e., 14-bit) control of contrast. A custom
designed button box with an ActiveWire card was used to record
the observer’s responses.

2.1.3. Stimuli
The stimuli were two-dimensional Gaussian white noise patterns
that were spatially filtered digitally with ideal (hard-edged) spa-
tial frequency and orientation filters. The filter had a fixed center
spatial frequency of 5 cy/deg, but depending on the experimen-
tal condition the spatial frequency bandwidth was either one
or two octaves. The center orientation of the filter was hori-
zontal. The two-sided orientation bandwidths were 2◦, 8◦, 16◦,
32◦, 64◦, 128◦, and 180◦. For example, a two-sided orientation
bandwidth filter of 16◦ passed orientations from −8◦ to +8◦.
To prevent edge artifacts, stimulus contrast was modulated on
the screen with a circularly-symmetric Gaussian envelope with a
standard deviation of 1.08◦ of visual angle. A white noise mask
with a contrast variance of 0.32 was used in all conditions to
mask the signal noise. On each trial, a new sample of signal
noise and background noise were generated on each interval on
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every trial. The monitor provided the only illumination in the
testing room.

2.1.4. Procedure
Observers viewed the stimuli binocularly through natural pupils.
A two-interval forced-choice (2-IFC) procedure was used. The
observer was instructed to fixate a high-contrast dot located in the
center of the display. The observer initiated each trial by pressing
the space-bar on the keyboard. After a delay of 50 ms, the fixation
point was removed, then after another 50 ms delay the first stim-
ulus interval appeared. The first stimulus interval was 200 ms in
duration and was followed by a 300 ms blank inter-stimulus inter-
val and then a second 200 ms stimulus interval. The two stimulus
intervals were marked by clearly audible tones, and a high/low
pitched tone indicated whether a response was correct/incorrect.
The observer’s task was to determine which of the two stimulus
intervals contained the target.

Stimulus contrast variance was varied across trials using four
interleaved staircases, two converging on the 71% correct point
of the psychometric function and two on the 84% correct point
(Wetherill and Levitt, 1965). The staircases were stopped when
the observer had completed 75 trials in each staircase. The total
number of trials in each session was 2100 (300 trials per stimulus
bandwidth, and seven stimulus bandwidths/session). Thresholds,
defined as the RMS contrast required to produce 75% correct,
were estimated by fitting a cumulative normal to all the data
collected.

A 3◦ × 3◦ square, drawn with a high-contrast, 2-pixel wide
line, was centered on the fixation point surrounded the stimulus
to reduce spatial uncertainty. The frame remained on the screen
for the entire duration of each trial: it was centered on the fix-
ation point at the start of a trial, and remained visible until the
observer made a response. To reduce adaptation, the square had a
50% probability of being black or white on each trial.

Thresholds were measured with stimuli that had spatial fre-
quency bandwidths of 1 or 2 octaves. Two spatial frequency
bandwidth conditions were run in separate sessions, alternat-
ing with each session, and each observer began with a spatial
frequency bandwidth chosen randomly. In each test session, ori-
entation bandwidths were presented in separate blocks of trials
and the order of bandwidths was randomized. All orientation
bandwidth conditions were completed during a single session.

In addition to the conditions described above, we measured
contrast detection thresholds for a white noise stimulus as con-
trol in a separate session for the same observers. The three
observers completed four white noise detection sessions, each
containing 300 trials. The thresholds from this control condition
were collected after all other conditions in Experiment 1 were
completed.

2.2. RESULTS
Figure 1 shows threshold versus bandwidth (TvB) functions for
three observers in the one and two octave spatial frequency band-
width conditions. We checked for interval effects to determine if
there was a difference in threshold for stimuli presented in the
first and second interval (Yeshurun et al., 2008), but there were
no significant threshold differences between the two intervals.
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FIGURE 1 | Noise detection thresholds versus stimulus bandwidth

expressed in number of spatial frequency components in the stimulus

for three observers in Experiment 1 in the one octave (A) and two

octave (B) spatial frequency conditions. The blue lines are weighted
maximum likelihood fits to the data and the shaded region the 95%
confidence interval for the fit. The fits did not include the data from the
narrowest bandwidth condition.

Each facet of the figure shows the thresholds for an observer (AP,
MB, and NS) versus orientation bandwidth. Two-sided orienta-
tion bandwidth, which varied from 2◦ to 180◦, is expressed as
the number of Fourier components in the stimulus because the
ideal observer’s threshold depends on the number of components,
rather than the orientation bandwidth per se. Figure 1 shows
that detection threshold, when expressed as the logarithm of
RMS contrast, increases with increasing orientation bandwidth.
Each point on the graph corresponds to one of the orientation
bandwidth conditions, the left-most to 2◦ and the right-most to
180◦. There are no statistical differences between the thresholds
in the one and two octave spatial frequency bandwidth con-
ditions. The narrowest bandwidth condition was not included
in the fitting procedure. If stimuli are sufficiently narrow-band
then the TvB function will flatten out, producing what has been
referred to in the literature as the critical-band (Quick et al.,
1976). Characterizing the critical band was not the focus of this
work and thus, we excluded the narrowest bandwidth, but if this
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point was included in the analysis, the TvB function would flat-
ten out and have a shallower slope. Thresholds in all observers
and conditions were well fitted by a power function. Bootstrap
confidence intervals were calculated by simulating 999 fits to the
observer data—the 95% confidence intervals always included 0.25
and ranged from 0.23 to 0.26. Finding a slope 0.25 in is line
with the prediction of the quarter-root law and indicates optimal
summation.

Figures 2A,B show absolute efficiency (Equation 2) as a func-
tion of orientation bandwidth for the two spatial frequency con-
ditions. For spatial frequency summation, absolute efficiency as
high as 50% have been found (Taylor et al., 2009); in this exper-
iment, absolute efficiency was also relatively high, ranging from
20% to 40%. Thresholds for the ideal observer were computed
via simulations that were approximations to a two-dimensional
version of that found in previous work (Kersten, 1987; Taylor
et al., 2009).
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FIGURE 2 | Absolute efficiency for three observers in the one octave

(A) and two octave (B) spatial frequency bandwidth conditions. Unlike
Figure 1, the fits in this plot do include the narrowest bandwidth condition.
Including this point has a large effect on the efficiency versus bandwidth
function for the two-octave spatial frequency condition. Observers are the
most efficient at the detecting this stimulus, perhaps because it is a good
match to a single component channel (Wilson et al., 1983).

Figure 3 is a summary figure of the data in Figure 1 and
shows average detection thresholds in each spatial frequency and
bandwidth condition plotted against the number of frequency
components in the stimulus. The red line in the figure depicts the
prediction of optimal summation for the quarter-root law. The
blue square represents the mean white noise threshold, expressed
in RMS contrast, for the three observers. The white noise thresh-
old data point was not used when the combined data were fit.
Including this data point provides an instructive test as it demon-
strates that the quarter-root law breaks down when the stimulus
includes all frequencies and orientations. Although the quarter-
root law breaks down for white noise, the number of components
required to observe a breakdown of the quarter-root law has yet
to be determined. White noise thresholds suggest that if there
is channel adjustment, there are limits to the adjustment that
remain to be characterized.

The results of Experiment 1 are similar to the results for spa-
tial frequency summation (Kersten, 1987; Taylor et al., 2009)
and auditory noise detection (Green, 1960a,b) in that the TvB
functions have a quarter-root slope, the same slope produced
by an ideal observer. Quarter-root TvB slopes, along with the
high absolute efficiencies we observed, are consistent with the
idea that orientation information is summed optimally. Both
of these findings are necessary but not sufficient to conclude
that noise is detected by adjustable channels. As shown by our
previous work on spatial-frequency summation (Taylor et al.,
2009), it is important to pair estimates of threshold with the
classification image method to characterize the channel used
by observers. Classification images can change the interpreta-
tion of the TvB function substantially; for spatial frequency
classification images lead us to interpret our data as support-
ing a fixed-channel model rather than an adjustable-channel
model.

3. EXPERIMENT 2
In Experiment 2, we measured classification images with orienta-
tion filtered noise in a sub-set of conditions used in Experiment 1.

FIGURE 3 | Threshold vs. bandwidth data re-plotted from Figure 1. Each
symbol represents the average threshold from three observers and the blue
square represents the average threshold for detecting unfiltered white
noise. The red line is the best fitting power function with a quarter- root slope;
the fit was done excluding the threshold measured with white noise.
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3.1. MATERIALS AND METHODS
3.1.1. Observers
The two observers were 28-year old students at McMaster
University who were paid for their participation. Both observers
were unaware of the experimental hypotheses, had normal
Snellen acuity, had extensive practice in psychophysical tasks, and
participated in Experiment 1.

3.1.2. Apparatus
The apparatus was identical to that used in Experiment 1.

3.1.3. Stimuli
The stimuli and noise had the same parameters as those used
in the one octave spatial frequency bandwidth condition in
Experiment 1.

3.1.4. Procedures
The procedure of Experiment 2 was the same as Experiment 1
except that the contrast of the stimulus was held constant at the
75% threshold measured in Experiment 1. There were 2500 trials
per condition or classification image, for a total of 7500 trials per
observer.

3.2. RESULTS
We measured our classification images using a two-interval forced
choice method rather than a yes/no procedure as described by
Abbey et al. (1999) and calculated our classifcation images using
the power spectra of the noise masks, rather than the noise masks
themselves. This produces classifcation images in the power spec-
trum which has been used previously by Solomon (2002). Because
the method is described in detail elsewhere, only a brief descrip-
tion is provided here. On each trial, the power spectrum of the
noise mask in each interval was computed, the difference between
the pair of power spectra calculated, and finally the difference
spectrum was placed into one of four bins based on which interval
contained the signal (1 or 2) and the observer’s response (correct
or incorrect). The difference power spectra were then averaged by
the number of trials in that bin and then the two average spec-
tra computed from correct responses were averaged, as were the
two average spectra computed from incorrect trials. Finally, the
difference between the correct and incorrect averaged spectra was
computed and the resulting classification image was normalized
to have a peak value of one. Classification images calculated using
this procedure are proportional to the linear template applied
to the power spectra (Abbey et al., 1999; Abbey and Eckstein,
2002).

Figure 4 shows the raw classification images for the ideal
observer and two human observers. Each classification image was
computed using the same number of trials. The images represent
spatial frequency as the distance from the center of the image.
Orientation information is represented by sets of pixels in a line
that begins in the center of the image and extends to its edge.
The power spectra have been rotated so that the horizontal and
vertical orientations in the stimulus correspond to the central
horizontal row and vertical column of pixels in the image. The
gray level of each pixel in the classification image represents how
the power of an individual Fourier component is weighted by the

observer when performing the noise detection task. If the pixel
is lighter than median gray, then noise power at that frequency
and orientation is positively correlated with the probability of
a correct response; the lighter the pixel, the higher the correla-
tion. Conversely, for pixels darker than median gray, power at
that frequency and orientation is negatively correlated with the
probability of a correct response.

The classification images shown in Figure 4 are 64 × 64
subsets of the full 512 × 512 power spectra which correspond
to spatial frequencies from DC to approximately 20 cy/deg and
include the spatial frequencies presented in the stimulus. Figure 5
shows classification images that have been smoothed with a 5 ×
5 triangular convolution kernel (equivalent to linear interpola-
tion) to reduce spurious noise in the template that results from a
limited number of trials.

Figures 4, 5 show several important results. First, the human
observers’ classification images resemble those of the ideal
observer, in that they have a narrow bandwidth (as measured by
half-width at half-height) with the smallest stimulus bandwidth
and get larger with increasing stimulus. Bandwidths of the clas-
sification images in the 48◦ and 90◦ conditions were larger than
the bandwidths measured in the 2◦ condition. Also, the classifica-
tion images from human observers have pronounced dark regions
at off-stimulus orientations and frequencies that are not present
in the classification images for the ideal observer. Noise power
at these Fourier components was negatively correlated with the
probability of correctly detecting the signal, an important finding
that will be returned to in the discussion.

3.3. ANALYSIS
To relate the classification images to orientation channels found
in orientation masking experiments (e.g., Govenlock et al., 2009),
the two-dimensional classification images collected in this exper-
iment were collapsed into one-dimensional classification images
as a function of orientation. Values in each classification image
were summed in 1◦ steps across a band spatial frequencies (fil-
ter center-frequency 5 cy/deg and bandwidth of approximately
20 cy/deg) over a 180◦ range of orientations. The resulting val-
ues are plotted in Figure 6. Two features of the data are readily
apparent. First, orientations around 0◦ (i.e., horizontal) had the
strongest influence on observers’ decisions. Second, vertical ori-
entations or other orientations far away from zero had a weaker
influence on decisions that was opposite to that of horizontal
frequencies.

We fit a Difference of Gaussians (DoG) function to our cir-
cularly summed normalized classifcation images. Classification
images were normalized to the peak response. We chose DoG
functions because preliminary analyses indicated that they fitted
the data better than a single Gaussian and because DoG func-
tions have been used previously to model orientation channels
(De Valois et al., 1982; DeValois and DeValois, 1988; Carandini
and Ringach, 1997; Ringach, 1998). We fixed the relative ampli-
tude of the excitatory Gaussian to be twice that of the inhibitory
Gaussian which is consistent with previous physiology (Sceniak
et al., 2001). A DoG function has four free shape parameters—
one for the center/mean and another for the bandwidth/standard
deviation for each of the positive and negative Gaussians that
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FIGURE 4 | Classification images for the ideal observer and two

human observers. Low spatial frequencies are represented by the
pixels in the center of the image and frequency increases with
increasing distance from the center of the image. Horizontal
orientations are represented in the center row of the image and

vertical orientations by the center column. All images were collected
with the same number of trials. The ideal observer’s classification
image also serves as a depiction of filters used to generate the
stimuli because the ideal observer only has access to the information
in the filtered noise stimulus.

comprise the function—but we applied two constraints that were
consistent with previous models of orientation channels (Burr
et al., 1981; Ringach, 1998; Shirazi, 2004). The constraints were
(1) both Gaussian functions were fixed to a common center; and
(2) the bandwidth of the positive Gaussian was set to be narrower
than the bandwidth of the negative Gaussian. Figure 7 shows
the best-fitting (least-squares) parameters and 95% confidence
intervals computed via a percentile bootstrap procedure (Efron
and Tibshirani, 1994). The center orientation of the best-fitting
function did not change as the bandwidth of the stimulus was
increased and was not different from zero, or horizontal (i.e., the
orientation of the signal). The linear increase in the bandwidth for
the negative Gaussian component (60–90◦) was larger than the
linear increase for the positive Gaussian (20–30◦), although the
proportional increase was about the same (i.e., 50%). Inhibitory
mechanisms may be more flexible/adjustable in their responses
than excitatory mechanisms. This hypotheses is supported by the
data in Figure 7, specifically that slope of the red line is larger than
that of the blue line.

4. DISCUSSION
Our classification images support the adjustable channels hypoth-
esis, unlike what was found in spatial frequency summation
experiments (Taylor et al., 2009) using similar methods. This
result implies that, contrary to the assumptions of the standard
model, the mechanisms that produce optimal spatial frequency
and orientation summation differ.

In the data, this point is illustrated by the negative weights in
the classification images for orientation summation that occur at
low spatial frequencies at all orientations but positive weights at
higher spatial frequencies at a range of orientations dependent
upon the signal (see Figure 5). The 1D templates derived from
the 2D classification images also exhibit regions of suppression
at orientations far removed from the center stimulus orientation
(Figure 6), which correspond to the black/dark regions in the
2D classification images. Ideal templates do not show regions of
suppression, thus the negative weights must be the result of psy-
chological process. Furthermore, these negative weights were not
found in spatial frequency summation experiments (Taylor et al.,
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FIGURE 5 | Smoothed classification images for the same conditions

and observers presented in Figure 4. White regions represented
where power in the stimulus is correlated with a correct detection
response, whereas the dark or black regions indicate regions where

incorrect responses are correlated with the stimulus. An important
comparison to note is the difference between human and ideal
observers at off-frequency and off-orientations in the stimulus. See the
text for more detail.

2009), and therefore appear to be specific for orientation summa-
tion. One interpretation of these dark bands is that they reflect the
contribution of inhibitory orientation processing found both psy-
chophysically and physiologically (Ringach, 1998; Ringach et al.,
2002).

The orientation bandwidths of 1D templates measured by the
classification image technique become broader with increasing
stimulus bandwidth (see Figure 5), but the increase in bandwidth
is smaller than the channel adjustment predicted by the ideal
observer. The adjustability of human observers detection mech-
anisms is constrained by some, as yet unknown, process. Perhaps
more complex, non-linear, biologically inspired modeling (Goris
et al., 2013) can capture our results, but this remains to be tested.

A possible explanation for the differences between human
and ideal templates is that human observers perform the detec-
tion task by differencing the power of different spatial frequency
and/or orientation components. The ideal observer knows the
center spatial frequency and orientation exactly; it also knows
the spatial frequency and orientation bandwidth exactly. Human
observers, may not have precise access to these four signal

parameters, even after many thousands of detection trials. Thus,
human observers turn to an alternative strategy, one which we’ll
call a differencing strategy.

In Figure 5 one can see that observers use non-informative
regions of the signal—anywhere the human classification image
differs from the ideal classification image, this is the hallmark
of the use of non-informative information (i.e., noise). Despite
using non-informative information, human efficiency is still rel-
atively high in the current task compared to efficiency in many
other visual tasks (Gold et al., 1999). Why do observers use non-
informative information? One hypothesis is that observers need
to anchor their detection judgements and then compute a dif-
ference based on this perceptual anchor. According to this idea,
observers can only make a detection decision based on the rel-
ative power within two (or perhaps more) regions of the power
spectrum. In our task, the light and dark regions may represent
the portions of the power spectrum that are being compared:
observers may be basing their decisions on the difference between
power at low spatial frequencies (at all orientations) and power
at spatial frequencies and orientations within the signal band. In
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FIGURE 6 | The black dotted lines show the one-dimensional circularly summed classification images for two observers in three conditions. The red
lines show the best difference of Gaussian fits to the empirical data. The x-axis in each sub-figure is orientation, the y -axis the weight of the classification image.

a given interval, if the power in the signal band is high and the
power within the inhibitory region is low, observers will select
that interval as the one that contains the signal. If however, the
power in the inhibitory region is high and the in the signal band
low, the observers will actively choose to not select that stimulus
interval as containing the signal.

What is the functional role of the measured inhibitory mech-
anisms? One possibility, backed up by a great deal of evidence
is that they play a role in contrast gain control (e.g., Watson
and Solomon, 1997; Schwartz and Simoncelli, 2001). An alter-
native idea is that the visual system contains mechanisms that
signal whether a stimulus ought to be considered an edge or
a part of a texture. This hypothesis is inspired by the work on
“end-stopping” found in the motion (Pack et al., 2003) and con-
tour (Heitger et al., 1992) literature. The inhibitory mechanisms
revealed by our classification images might provide a sort of
end-stopping in Fourier space that limits the information that
is combined into an edge or a texture. To be specific, if the ori-
entation bandwidth within a region of visual space, as signalled

by suppressive mechanisms is narrow, then it may be coded as
an edge, but if the orientation content is broadly distributed then
inhibitory mechanisms could provide a signal to sum orientations
(and perhaps frequencies) to extract texture properties.

Work using natural images (Neri, 2014) and textures (Baker
and Meese, 2014) has produced data that are broadly con-
sistent with our results. Neri (2014) found evidence inhibi-
tion/suppression mechanisms when observers detected Gabors in
noise that were either congruent/incongruent with the underlying
orientation of natural scenes. He measured orientation tuning via
the classification image technique and found orientation tuning
and signatures of inhibitory mechanisms similar to those pre-
sented in our results (see Figure 1G). Baker and Meese (2014)
used a contrast increment detection task and reverse correlation
to measure the extent over which information is summed in visual
space. Their reverse correlation results (see their Figures 3G,H)
show the hallmarks of suppression beyond 5◦ of visual angle
from fixation. Taken together the results above and our data
provide converging lines of evidence for the use of inhibitory
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FIGURE 7 | Fitted difference of Gaussian bandwidth parameters for

two observers, AP in circles and MB in triangles. The error bars are 95%
confidence intervals on the fitted parameter obtained via the bootstrap.
Blue symbols are for the positive, or central Gaussian, and the red symbols
the negative or surround Gaussian. R was used to obtain a weighted least
squares fit to the parameters as a function of bandwidth. Both increased by
roughly 50% for both observers as bandwidth was increased from the
narrowest stimulus bandwidth to the widest.

mechanisms that adjust tuning in orientation and visual
space.

5. CONCLUSION
The goal of this paper was to determine if the results we found in
our previous work on spatial frequency summation (Taylor et al.,
2009) extended to orientation summation using visual noise as a
stimulus. We found that detection thresholds in human and ideal
observers were proportional to the quarter-root of the number
of spatial Fourier components in the stimulus. Hence, orienta-
tion summation, like spatial frequency summation, was nearly
optimal across a wide range of bandwidths. However, unlike
what we found with spatial frequency summation, our classifica-
tion image results were inconsistent with a fixed channel model.
Instead, our results suggest that the orientation bandwidth of the
internal filter used to detect our stimuli was adjusted to match
(albeit imperfectly) the orientation bandwidth of the stimulus.
The classification images also show hallmarks of inhibition at
uninformative spatial frequencies and orientations and lead to
the hypotheses that human observers may detect noise stim-
uli by comparing the power in different portions of the power
spectrum.
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