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Both in philosophy and in psychology, human rationality has traditionally been studied from
an “individualistic” perspective. Recently, social epistemologists have drawn attention to
the fact that epistemic interactions among agents also give rise to important questions
concerning rationality. In previous work, we have used a formal model to assess the risk
that a particular type of social-epistemic interactions lead agents with initially consistent
belief states into inconsistent belief states. Here, we continue this work by investigating
the dynamics to which these interactions may give rise in the population as a whole.
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1. INTRODUCTION
This paper aims to show the importance of a social perspec-
tive in the study of human rationality. While, as will be seen,
the work we present relies on computer simulations, we believe
it may inspire further empirical research by social scientists.
Computer simulations, such as those to be presented, form a
bridge between normative models and descriptive results. The
simulations depend on a theoretical model with various param-
eters. Some combinations of the parameters may be optimal
for the attainment of one or more norms, whereas other com-
binations of parameters may give a good approximation to
an epistemic group of real people. If the model parameters
can be linked to variables in the real world, this may enable
us to give practical advice for increasing rationality in social
settings.

In previous work, we studied a formal model of a type of epis-
temic interactions in which agents whose belief states are in some
sense close together compromise by settling on a kind of “averag-
ing” belief state. We showed that compromising in this way carries
the risk of leading agents with initially consistent belief states to
become inconsistent. Although it was shown in the same paper
how this risk could be minimized, it might nonetheless be consid-
ered as a reason for banishing the designated kind of interactions.
Here, we continue the previous work by investigating the dynam-
ics of a population as a whole to which epistemic compromising
may give rise. We pay special attention to the conditions under
which such compromising may lead to a consensus among the
members of a population. This is intended to shed new light on
the question of whether it is at all rational to interact epistemically
in the said kind of way.

2. THEORETICAL BACKGROUND
In their study of human rationality, philosophers as well as
psychologists of reasoning have tended to focus on individual
thinkers in isolation from their social environment. Which beliefs
an individual ought to hold and how an individual ought to
change his beliefs have traditionally been regarded as questions
that are independent of which beliefs other individuals hold or
how other individuals change their beliefs. This is at least some-
what surprising, given that we are so obviously members of a
community of individuals who pursue by and large the same
epistemic goals, who frequently engage in common activities to
gather new evidence, who constantly exchange information, who
often (have to) rely on the words of others, who regularly seek
each other’s advice in epistemic matters, and who sometimes put
great effort into trying to influence one another’s opinions. In
fact, we see these kinds of behavior not just in everyday life, but
also, and even especially, in the practice of science, which many
regard as producing the—in some sense—best and most valuable
knowledge. Doubtlessly, there are more and less rational ways of
engaging in these various activities, and it would seem part of the
business of philosophy, as well as of that of psychology, to sort out
which are which.

At least in philosophy, there is a growing awareness that the
general neglect of the group level in studying human rational-
ity has created a serious gap in our understanding indeed, and
philosophers have begun to correct this lacuna1 . Their efforts

1Psychologists have recently begun to explore connections between rationality
and argumentation, which can also be regarded as an appreciation of the fact
that the social bears on questions of rationality. For a particularly noteworthy
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have given rise to a field now commonly known as “social epis-
temology” (Goldman, 1999). Questions addressed so far by social
epistemologists concern the possibility of testimonial justification
(in particular, the question of whether we are justified in holding a
belief on the basis of another person’s testimony; see Douven and
Cuypers, 2009, Fricker, 1987, and Lackey, 1999), the rationality
(or otherwise) of aligning our opinions on a given matter with
those of experts on the matter (Gaifman, 1986; van Fraassen,
1989, Ch. 8; Goldman, 2001), and the effect on our beliefs that
the discovery of peer disagreement should have (that is, the ques-
tion of whether we can rationally stick with our belief after the
discovery that someone who we regard as a peer holds a contrary
belief; see, for instance, Douven, 2009, 2010, and Elga, 2007).

The popularity of social epistemology being on the rise, it is
easily missed that we still do not know whether, on balance, the
possible benefits of social-epistemic interactions outweigh their
possible costs. Indeed, various philosophers and also sociologists
have enthusiastically reported about the “wisdom of the crowds,”
in the context of which it has been asserted that the aggregated
opinions of a group of laypeople is often closer to the truth than
the opinions of individual experts (Surowiecki, 2004). Such asser-
tions might make one forget that crowds can be wildly erratic and
irrational, too. We know how the crowd responded when, in his
Sportpalast speech in February 1943, the Nazi minister of propa-
ganda Joseph Goebbels asked whether it wanted total war. There
was little wisdom in that response2.

In trying to give cost–benefit analyses of diverse types of social
epistemic interactions, and also for related purposes, a number
of social epistemologists have recently started using computer
simulations for studying communities of epistemically interact-
ing artificial agents, where the agents typically adapt their beliefs
(fully or partially) on the basis of information about the beliefs of
other agents in the community. It has been argued that, insofar
as these methods capture central aspects of the epistemic interac-
tions between real agents, they give important information about
the conduciveness of these interactions to the achievement of our
epistemic goals as well as about the costs that may come with the
interactions.

By far the most research on rationality is concerned either
with developing an experimentally informed descriptive model
of actual human thinking or with developing a theoretical-
ly-oriented normative model of idealized human thinking. We
present a study that nominally falls in the first category, in that we
study opinion dynamics with the help of computer experiments
concerning epistemically interacting agents. But it would be more
accurate to say that our study falls somewhere on the contin-
uum between descriptive and normative work. The agents that
we model are inspired by particular aspects of human thinking
(such as the observation that humans have opinions on multi-
ple topics, some of which are logically independent, and some of
which are logically connected) and human epistemic interaction

contribution in this vein, see Mercier and Sperber (2011), which argues that
reasoning evolved primarily for argumentative purposes. See in this connec-
tion various of the contributions to the 2012 Thinking & Reasoning special
issue on argumentation.
2See Andler (2012) for a critical discussion of the wisdom of the crowds idea.

(most notably, that in practice we allow others’ beliefs to influ-
ence our own as well as try to make our beliefs influence those
of others), but—as will emerge—they clearly lack other char-
acteristics of human thinking. So, it is not a purely descriptive
study. The agents in the simulations do follow a prescribed way
of revising their opinions and never fail to adhere to it, but they
are still non-ideal thinkers; for example, they may come to believe
an inconsistency without realizing this. Hence, it is not a purely
normative model either.

As mentioned in the introduction, we here continue work that
we have started elsewhere (Douven, 2010; Douven and Riegler,
2010, and especially Wenmackers et al., 2012). Specifically, we
present a formal model for studying a community of agents that
update their belief states by “averaging” (in a certain well-defined
sense) over the belief states of agents that are close enough to
their own belief state (where “close enough” will also receive a
precise definition). In Wenmackers et al. (2012), we studied the
question of how probable it is that averaging (in the designated
way, yet to be specified) over others’ belief states leads one into a
state of inconsistency. Here, we investigate the opinion dynamics
in a more global way: we consider the entire epistemic space (not
just those situations in which some or all of the agents arrive at
an inconsistency) and we do not restrict the dynamics to a single
step (although it turns out that for the examples we consider, all of
the dynamics plays out in just two steps). This approach gives us
new insights into the previously obtained results and it allows us
to visualize the process that the community as a whole undergoes
as a result of the updates by its members. As stated in the intro-
duction, we will be especially interested in the conditions under
which the social-updating process leads to a consensus among the
members of the community (including consensus on the incon-
sistent theory)3. We will give a brief summary at the end of each
section. For a quick overview of the article, the reader may skip
forward to these paragraphs of key points.

3. THE MODEL
The most widely known formal model for studying the effects
of epistemic interactions on the belief states of individual agents

3In our previous work, we concentrated on the possibility of ending up at the
inconsistent theory, because believing a contradiction is generally considered
as irrational. As a referee remarked, if the entire epistemic community ends
up at the tautological theory, which represents a complete lack of knowledge
about the world, this may also be considered as a vicious result—although not
irrational per se. Since the current study does not focus on a particular result,
but represents the dynamics in general, our results concerning the probabili-
ties of ending up at the inconsistent theory are equally informative about the
probabilities of ending up at the tautological theory. Specifically, for reasons
of symmetry, the probabilities of arriving at a consensus on the tautological
theory are identical to those for arriving at the inconsistent theory. In our pre-
vious work (Wenmackers et al., 2012), we only calculated the probability for
one agent or the entire community to update to the inconsistent theory start-
ing from a population in which no agent held this opinion, but we would have
obtained the same probability values for one agent or all agents to update to
the tautological theory starting from a population in which no agent held this
opinion. Still, this inversion is less well motivated: starting out with the tau-
tological theory is not necessarily a bad thing; some agents in the community
may initially lack any evidence about the world and try to arrive at a more
informative theory through social updating.
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is probably the model developed in Hegselmann and Krause
(2002, 2005, 2006), which now generally goes by the name
of “Hegselmann–Krause model” (“HK model,” for short). This
model has received attention from researchers from various quar-
ters, including philosophers, mathematicians, social scientists,
and physicists (see, e.g., Deffuant et al., 2000; Dittmer, 2001;
Weisbuch et al., 2002). It has also been used mainly to investigate
descriptive questions, such as the question under which condi-
tions the opinions of interacting agents are likely to polarize and
under which conditions these opinions are likely to converge, but
it has been used to investigate some normative issues as well (see
Riegler and Douven, 2009; Douven, 2010). We consider a variant
of the HK model. First, we present our general framework. In the
course of this section, we present two examples. (Some readers
may find it beneficial to consult the examples 3.1 and 3.2 prior to
reading the more abstract setup.)

The basic version of the HK model assumes communities of
agents that are trying to determine the value τ of some unspeci-
fied parameter by repeatedly and simultaneously averaging over
the opinions of those agents that are within their so-called
Bounded Confidence Interval (BCI)4. One agent is in a second
agent’s BCI—or, as we shall sometimes say, following Douven
(2010), is a second agent’s (epistemic) peer—precisely if the abso-
lute difference between their opinions about the value of τ does
not exceed some given threshold value ε. Hegselmann and Krause
also study a model in which the agents take into account evidence
about τ that they receive “directly from the world.” More exactly,
in this model the opinion of agent xi after the (u + 1)-th update
is given by

xi(u + 1) = α
1

|Xi(u)|
∑

j ∈ Xi(u)

xj(u) + (1 − α)τ, (HK)

where xi(u) is the opinion of agent xi after the u-th update, whose
peers (agents within the BCI after the u-th update) form the
set Xi(u) := {

j : |xi(u) − xj(u)| � ε
}

, and α ∈ [0, 1] is the rela-
tive importance of the social-updating process as compared to
evidence-gathering. In the basic version of the HK model, without
evidence-gathering, α = 1.

It is a limitation of the HK model that it considers only agents
whose belief states consist, at any given point in time, of just one
value. In Riegler and Douven (2009), an extension of the HK
model was proposed that allows agents to have richer belief states
in that they have beliefs on different aspects of the world. In other
words, each agent holds a theory about the world, where a theory
consists of a set of propositions expressible in the agent’s language.
A theory may be consistent or inconsistent: if no world can sat-
isfy all the agent’s beliefs—for instance, as when an agent believes

4To forestall misunderstanding, it is worth mentioning that the word
“Bounded” in “Bounded Confidence Interval” refers to the fact that the confi-
dence intervals in the HK model have a lower and upper bound; in particular,
the word is not meant to suggest any connection with Simon’s notion of
bounded rationality (see, e.g., Simon, 1955). The closest connection in the
psychological literature is with the notion of confirmation bias, inasmuch as
the BCI encompasses those agents whose opinions could be said to confirm to
some extent one’s own opinion.

that snow is white and also believes that snow is not white—then
the agent holds an inconsistent theory about the world; otherwise
the theory is consistent. Note that consistency does not guaran-
tee truth: it may happen that some world or worlds satisfy all the
agent’s belief, but that the actual world does not. However, incon-
sistency does guarantee falsity: if a theory is true of no world—no
world satisfies all of the agent’s beliefs—then a fortiori it is not
true of the actual world. Agents’ belief states are supposed to
be closed under (classical) logical derivability, meaning that any
proposition expressible in the agent’s language that follows log-
ically from the agent’s theory ipso facto belongs to that theory.
As a result, the theory an agent holds can be represented by the
strongest proposition it implies.

Given M atomic propositions, there are wM = 2M possible
worlds that we can distinguish between. In turn, this means that
there are tM = 2wM theories about the world, exactly one of
which represents the inconsistent theory, in which all the pos-
sible worlds have been ruled out by the agent. There is also
exactly one tautology, the theory in which all possible worlds
are left as epistemic possibilities for the agent. Note also that, by
assuming some ordering of the possible worlds, the belief state of
each agent can be represented by a bit string, where a 1-bit (0-
bit) at the n-th location indicates that world number n (in the
given ordering of worlds) is deemed possible (impossible) by the
agent5.

In this model, agents revise their theory of the world by tak-
ing into account the theories held by certain other agents in the
community, comparable to how the agents in the HK model
update. However, now the BCI is defined in a slightly more com-
plicated way. To quantify the distance between two theories, the
so-called Hamming distance δ between the corresponding bit
strings is used: this distance is given by the number of locations
in which these strings differ. The BCI is then defined by placing
a threshold value D for δ, meaning that in updating the agents
take into account the belief state of another agent if, and only
if, the Hamming distance between (the bit string representing)
the agent’s own theory and (the bit string representing) the other
agent’s theory is smaller than or equal to D. An example may help
to make this less abstract.

Example 3.1. Consider an interpreted propositional language L
with just two atomic propositions, p, expressing that snow is
white, and q, expressing that grass is green. Then there are 22 pos-
sible worlds: the world in which p and q both hold, the world
in which p holds but q does not, the world in which q holds
but p does not, and the world in which neither p nor q holds.
Let these worlds be ordered in this way, so that the world in
which both p and q hold is world number 1, and so on. Then
the 16 theories that can be formulated in L can be coded as 4-
digit strings. For example, the string 1111 codes the tautology:
the actual world corresponds to one of the four possible worlds;
the string 0000 codes the inconsistent theory: the actual world
corresponds to none of the four possible worlds; and 1100 codes

5To avoid later disappointment, we note already at this juncture that, while we
are introducing a general framework for representing theories, our own later
investigations of this framework will focus on the M = 1 case.
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the theory according to which snow is white and grass may or
may not be green. Finally, if one agent holds the theory 1100
and another agent holds the theory 1001 (the theory according to
which the world is such that either snow is white and grass is green
or snow is not white and grass is not green), then the Hamming
distance δ between their theories (that is, between the bit strings
representing these theories) equals 2, given that they differ in the
second and fourth bit and coincide otherwise. ♦

The update rule for theories in this model—so, basically the
analog of (HK)—is a bitwise operation in two steps: (1) averaging
and (2) rounding. In step (1), for each bit of the theory, a straight
average is taken of the corresponding bit of those agents that are
within the agent’s BCI (note that this includes the agent himself).
In general, the result is a value in the interval [0, 1] rather than
just a 0 or 1. Hence the need for step (2): in case the average is
greater than 1/2, the corresponding bit is updated to 1; in case
the average is less than 1/2, the corresponding bit is updated to 0;
and in case the average is exactly equal to 1/2, the corresponding
bit keeps its initial value.

More formally, the n-th bit of the bit string representation of
agent xi’s belief state after the (u + 1)-th update as determined by
the extended HK update rule is

xi(u + 1)[n] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 1
|Xi(u)|

∑
j ∈ Xi(u) xj(u)[n] > 1

2 ,

0 if 1
|Xi(u)|

∑
j ∈ Xi(u) xj(u)[n] < 1

2 ,

xi(u)[n] otherwise,
(EHK)

with the set of peers of agent i after the u-th update now Xi(u) :={
j : δ

(
xi(u), xj(u)

)
� D

}
. Actually, in Riegler and Douven (2009)

the agents also obtained evidence from the world, more or less
as in one of the versions of the HK model. However, in our
Wenmackers et al. (2012) we considered only the more basic
(EHK), as we will do here. In Wenmackers et al. (2012) and also
in the present paper, it is assumed that the agents update their
beliefs simultaneously and repeatedly, at discrete time intervals.
We again give an example.

Example 3.2. Consider a community of nine agents that share
our earlier language L. Let the bit string representations of their
initial belief states be

1. 1100
2. 1101
3. 0001

4. 1000
5. 1101
6. 0001

7. 0000
8. 1101
9. 0001

Assume that D = 1. Then, for instance, the set of peers of agent
1 is initially (after 0 updates): X1(0) = {1, 2, 4, 5, 8}. Agent 1 will
update his theory to x1(1) = 1101, given that all agents in X1(0)
deem the first world possible, and hence x1(1)[1] = 1; all but one
of the peers deem the second world possible, so x1(1)[2] = 1;
all peers deem the third world impossible, so x1(1)[3] = 0; and
although x1 initially deems the fourth world impossible, all other
agents in X1(0) deem that world possible, and so x1(1)[4] = 1. ♦

In Wenmackers et al. (2012), we computed the probability for
an agent with a consistent belief state to arrive at an inconsistent
belief state after a single update via (EHK). Except for the trivial
cases with N = 2 or D = 0, we found that the probability of
this event happening is always higher than zero, but lower than
2%. Moreover, we formulated some practical suggestions to
avoid arriving at the inconsistent theory. For instance, it was
shown that including more independent properties (increasing
M) lowers the probability. Also, the members of even-numbered
groups of agents (N even) have a lower probability of updating to
the inconsistent theory than have the members of odd-numbered
groups of comparable size. And the BCI was shown to play an
important role, too: low threshold values D (narrow BCIs) result
in low dynamicity, so the probability of any change in belief state
is low, so a fortiori the probability of arriving at an inconsistency
is low; very high bounds of confidence (D close to 2M) were also
shown to decrease the chance of updating to the inconsistent
theory.

The mere possibility of arriving at an inconsistent theory—
even though it has a low probability—might be thought to
discredit EHK. But this would be to overlook that the update
rule can have compensating advantages. The extension of the
HK model that was studied in Riegler and Douven (2009) was
in that paper shown to offer a clear advantage over “individual-
istic” updating in cases where the agents received evidence that
is to some extent noisy (as evidence typically is); in such cases,
the social updating led agents to approach the true theory more
closely in a shorter time span. That already the simpler update
rule (EHK) may offer advantages can be seen by considering agent
number 7 in Example 3.2. This agent initially holds the inconsis-
tent theory but after updating comes to hold a consistent theory.
(One easily verifies that X7(0) = {3, 4, 6, 7, 9} and that averaging-
and-rounding over the corresponding belief states results in a
consistent belief state, to wit, x7(1) = 0001.) However, to give
a more systematic answer to the question of which advantages
updating via (EHK) may have, more must be known about the
properties of this update rule.

To take further steps toward determining which properties
(EHK) has, beyond the ones presented in Wenmackers et al.
(2012), the remainder of this paper considers this update rule
again as used by a group of N agents whose belief states are theo-
ries of the world concerning M binary properties. However, now
we focus our attention on the process of updating via (EHK)
repeatedly. We achieve this by investigating the structure of the
“belief space” as a whole. Due to the update rule, and starting out
from a particular belief state (or theory of the world), some belief
states can be reached in a single step, whereas other belief states
can only be reached via intermediate steps, or cannot be reached
at all. So, perhaps a larger portion of the agents will reach the
inconsistent theory after repeated updating. On the other hand,
agents that start out from the inconsistent theory may leave it
afterwards (as just seen). A priori, it is not clear whether the prob-
ability of reaching the inconsistent theory after a single time step
is an under- or an overestimation of the probability of reaching
the inconsistent theory in general. It is good to keep in mind that,
ultimately, we are not interested in estimating this probability for
the model per se. Rather, we aim to identify useful parameters
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to lower the probability of arriving at inconsistencies in actual
human thinking, or to escape them once they have occurred.

Our investigations in the following focus on the case in which
there is only one binary property that the agents consider to form
their theory about the world (i.e., M = 1). In this case, there is
one proposition, which can be true or false, so there are two pos-
sible worlds. There are four theories: 00 (the inconsistent theory),
01, 10, and 11 (the tautology). The Hamming distance between
two different theories is either 1 (between 00 and 01, between 00
and 10, between 01 and 11, and between 10 and 11) or 2 (between
00 and 11 and between 01 and 10). It may be argued that study-
ing M = 1 defeats the original purpose of modeling agents that
hold theories. After all, we introduced theories of the world as a
means to study agents with rich belief sets. If there is only one
binary property of interest to the agents, it seems overly compli-
cated to consider theories. Nevertheless, M = 1 is an important
case from the theoretical viewpoint, because the relevant dynam-
ics can be represented in three dimensions, whereas higher values
of M correspond to higher-dimensional spaces, which makes it
harder to visualize them. Moreover, some of the conclusions that
can be reached for the M = 1 toy model do generalize to the
higher-dimensional case. We give a brief, qualitative discussion
of the general case at the end of this article.

3.1. KEY POINTS
We model a group of N agents. Their opinions concern M binary
properties of the world. There are tM = 2M possible worlds (or
combinations of the properties being true or false in the world).
Each agent holds a theory about the world, which can be rep-
resented as a string of tM bits, where zero means that the agent
has ruled out the corresponding possible world. There are 2tM

such theories. Agents consider as epistemic peers those agents
who currently hold a “sufficiently similar” theory, which means
that the number of bits that are different between the agent’s own
theory and that of a potential peer is less than a certain thresh-
old, called the bound of confidence D. Agents adjust their theory
by averaging over the theories held by their peers. We study the
resulting opinion dynamics.

4. OPINION-PROFILE SPACE
Our goal is to investigate how the opinions in the population as a
whole change over time due to the iterated application of (EHK)
by the individual agents. To achieve this, we first need to iden-
tify the relevant belief space, by which we mean the phase space
in which we can represent the opinion dynamics of the entire
group of agents. An opinion profile is a vector −→n that specifies how
many agents in the entire population occupy each of the belief
states (at a given point in time). In general, −→n has tM compo-
nents, which sum to N. (Unlike Example 3.2, the opinion profile is
anonymous, so it does not keep track of which agent holds which
theory.) The relevant belief space is what we will call the “opinion
profile space” (OPS), in which each point represents a possible
opinion profile. For M = 1, opinion profiles have four compo-
nents, 〈n00, n01, n10, n11〉, which can be represented in a three-
dimensional tetrahedron. For a representation of the tetrahedral
OPS with two (N = 2) or three agents (N = 3), see Figure 1.

To elaborate, if there are two agents (N = 2), then there are ten
different opinion profiles. In other words, the OPS consists of ten
points, which are shown at the left-hand side of Figure 1. Four
of these ten opinion profiles represent a consensus: 〈0, 0, 0, 2〉,
in which the two agents agree on theory 11; 〈0, 0, 2, 0〉, in which
the two agents agree on theory 10; 〈0, 2, 0, 0〉, in which the two
agents agree on theory 01; and 〈2, 0, 0, 0〉, in which the two agents
agree on theory 00. The remaining six points in the OPS represent
opinion profiles in which each agent holds a different position:
〈0, 0, 1, 1〉, in which one agents holds theory 11 and the other
holds 10; 〈0, 1, 0, 1〉, in which one agents holds theory 11 and
the other holds 01; and so on. Thus, in the case with M = 1 and
N = 2, the only points that can be occupied in the OPS are the
four vertices of a tetrahedron (consensus) and the six midpoints
of the edges (disagreement).

If there are three agents (N = 3), then there are twenty dif-
ferent opinion profiles, corresponding to an OPS that consists of
twenty points, as can be seen on the right-hand side of Figure 1.
There are still four possible opinion profiles that represent a
consensus—〈0, 0, 0, 3〉, 〈0, 0, 3, 0〉, 〈0, 3, 0, 0〉, and 〈3, 0, 0, 0〉—
corresponding to the vertices of the tetrahedral OPS. There are

FIGURE 1 | The belief space or opinion-profile space (OPS) for the

theories in a language with one atomic proposition (M = 1) can be

visualized as a discrete grid in a tetrahedral volume. The number of grid
points depends on the population size. The OPS of a population of two

agents is shown at the left (N = 2), while that of three agents is shown at the
right (N = 3). The grid points are indicated by colored dots and are labeled by
their opinion-profile coordinates between angle brackets. (For N = 3, only the
four vertices and the opinion profiles located in the front face are labeled.)
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twelve profiles in which two agents agree and the third one does
not: two on each of the six edges in the OPS. And there are four
ways in which all of the agents can disagree with each other; these
opinion profiles each correspond to a point on one of the four
faces of the OPS.

For any fixed number of N agents (and some number M
of propositions) the opinion profile space is discrete and con-
tains (N + tM − 1)!

N!(tM − 1)! points (this is the (hyper-)tetrahedral number of
order N + 1 in tM − 1 dimensions, or the multiset coefficient of
choosing N times with repetition out of tM options). If there are
four or more agents, then the points in the OPS also occupy the
interior volume of the tetrahedron. (For four agents, this concerns
only the central point 〈1, 1, 1, 1〉).

In principle, the OPS for any particular N can be computed by
hand: for each possible opinion profile, one can determine each
agent’s peer group and apply the two-step update rule. In practice,
however, a computer is required to assist in these computations,
since the aforementioned number of opinion profiles in the OPS
grows rapidly with N. To this end, we have written a program in
Object Pascal. Instead of iterating the process for each opinion
profile until it reaches a fixed point, we instructed the program
to link up opinion profiles that reach a fixed point, via interme-
diate opinion profiles. In section 5, we will show how to abstract
from the number of agents in the population (by looking at the
opinion density instead of the opinion profile), but first we intro-
duce the dynamics on the OPS brought about by social updating
via (EHK).

4.1. RESULTS: DYNAMICS ON THE OPINION PROFILE SPACE
We view the OPS equipped with the two-step social update rule
(EHK) (with N agents and a threshold value D) as a discrete
dynamical system. Even before we look at the results, we can give
a qualitative description of the dynamics. For any value of D, cer-
tain opinion profiles will act as fixed points. Populations that start
out with an opinion profile outside a fixed point may be driven
either toward a certain fixed point (“sink,” or stable equilibrium,
or attractor) or away from it (“source” or unstable equilibrium).
All unstable points that are attracted toward a particular sink
belong to the “basin” of this sink.

The lower the threshold D, the more fixed points we expect
to find in the OPS. In the case with D = 0, there is no dynamics
at all: the agents do not take into account any other opinions, so
there is no process of social updating, and all the points in the
OPS act as fixed points. (Since there is no dynamics, we cannot
classify the points as sources or sinks; rather, this is a case of indif-
ferent equilibrium.) As the BCI increases, an growing number of
other opinions may be taken into account and fewer opinion pro-
files are fixed points. When the BCI is maximal (i.e., D = tM),
the dominant sources and sinks are revealed. Opinion profiles in
which the agents all agree on the same theory are sinks.

We will represent the dynamics on the OPS by arrows that
point from an initial opinion profile toward the corresponding
final state. For the sake of illustration, we consider populations
in which none of the agents hold theory 01, so that we can limit
ourselves to one face of the OPS. First, suppose that there are just
two agents. In this case, there is no dynamics, irrespective of the
value for D. (After all, when the average is exactly equal to 1/2,

the corresponding bit keeps its initial value. Hence, an agent can
never be swayed by a single peer and vice versa.) This situation is
illustrated in Figure 2: all the opinion profiles are fixed points, so
there are no arrows connecting any of them.

If there are three agents, then for D = 1 and D = 2 there is
some dynamics: Figure 3 shows us that the consensus positions
(at the vertices) act as sinks. For D = 1, there is a certain asym-
metry in the face of the OPS that we are considering: there are
two opinion profiles that move toward the consensus position at
〈0, 3, 0, 0〉, but only one opinion profile each that moves toward
the consensus positions at 〈3, 0, 0, 0〉 and 〈0, 0, 0, 3〉. To under-
stand why not all directions in the tetrahedron are equivalent,
we have to remember that there are two pairs of theories that
have a larger Hamming distance between them than the other six
pairs, one pair being 00 and 11, the other pair being 01 and 10.
Therefore, also the two edges connecting opinion profiles corre-
sponding to a consensus on such a pair of “more distant” theories
are qualitatively different from the other six edges. In Figure 4, the
two edges connecting consensus on “more distant” theories are
indicated by a double line, whereas the four other edges are repre-
sented by a single line. Since each face has two “single” edges and
one “double” edge, the analysis of each of the four faces is equiva-
lent. The right-hand side of Figure 4 also illustrates that the four
vertices are equivalent in the sense that they all attract two other
opinion profiles (for D = 1). The asymmetry between the edges
of a single face that appeared for D = 1 is absent for D = 2, where
each sink attracts two other points (at least on the face that we are
considering; it attracts three points in total). The explanation for
this restoration of symmetry is that, with the maximal value for

FIGURE 2 | Opinion dynamics for theories in a language with one

atomic proposition (M = 1) and a population consisting of two agents

(N = 2). One face of the OPS is shown. Irrespective of the value of the
threshold D (D is equal to 0, 1, or 2), all opinion profiles are fixed points
(including the ones not shown).
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FIGURE 3 | Opinion dynamics for theories in a language with one

atomic proposition (M = 1) and a population consisting of three

agents (N = 3). One face of the OPS is shown. For D = 0 (left), there
is no dynamics; all opinion profiles are fixed points. For D = 1 (middle),
the three vertices act as sinks, but the points on the lower “double”

edge (connecting profiles with a consensus on “more distant”
theories—see the main text for details) show a different dynamics than
those on the two “single” edges. For D = 2 (right), the three vertices
act as sinks, and the asymmetry between points on the edges is
removed.

FIGURE 4 | Opinion dynamics for theories in a language with one atomic

proposition (M = 1) and a population consisting of three agents (N = 3)

for D = 1. On the left-hand side, all the faces of the tetrahedral OPS are
shown side by side. The face from Figure 3 is shown in white, the others in
gray. Observe that the outer edges and their vertices are shown multiply: the

leftmost diagonal edge is equal to the rightmost diagonal edge, and the left
horizontal edge at the top (bottom) is the mirror image of to right horizontal
edge at the top (bottom). On the right-hand side, the tetrahedral OPS is
shown. This three-dimensional view allows us to verify that each vertex
attracts two other opinion profiles.

D, even agents that hold maximally different theories regard each
other as peers. So, unlike for D < 2, they do influence each other
in updating their belief states. The point at the middle of the face,
〈1, 0, 1, 1〉, is a non-attracting fixed point (source).

Figure 5 shows the opinion dynamics for a population of four
agents. Although there are more points in this OPS, the results are
comparable to those for N = 3: there is no dynamics for D = 0,
and there is an asymmetry for D = 1 that is absent for D = 2. The
three vertices are sinks and each of the three points at the middle
of an edge is a source.

So far, we have considered the opinion dynamics for a fixed
number of agents in the population. If we continue the above
analysis for ever larger population sizes, predictable patterns
appear, such as (for D > 0):

• The vertices act as sinks, but the number of points attracted to
them depends on the BCI.

• If the number of agents is even, the midpoint of the edges is
accessible and acts as a source (for other points on the edge).

• If the number of agents is a multiple of three, the midpoint of
each of the faces is accessible and acts as a source (for D = 1).

• If the number of agents is a multiple of four, the midpoint of
the entire tetrahedron is accessible and acts as a source.

This suggests a different way of studying the opinion dynamics:
instead of considering populations with a particular population
size, one can consider populations in general and ask, for each
possible opinion, which fraction of a population holds the opinion
(this will be called the density the opinion has in the population).
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FIGURE 5 | Opinion dynamics for theories in a language with one atomic proposition (M = 1) and a population consisting of four agents (N = 4). We
show the same face of the OPS for D = 0 (left), D = 1 (middle), and D = 2 (right).

This in turn allows one to derive the above rules immediately,
without the need for considering a large number of different pop-
ulation sizes. With the density-based information, one can still
draw conclusions for particular population sizes. For instance,
if 100% of the agents hold the same opinion, that represents a
consensus (point at a vertex), which can occur in populations
with any number of agents (N = 1, 2, 3, . . .). And if 50% of the
agents hold one theory and 50% hold the other theory, there
is a tie between two theories (midpoint of an edge); this can
occur only in even-numbered populations (N = 2, 4, 6, . . .). In
the next section, we consider such opinion densities. But first,
we give a probabilistic interpretation concerning the results of the
dynamics on the OPS.

4.2. PROBABILISTIC INTERPRETATION OF THE OPS
We can give a probabilistic interpretation of the previous results.
For instance, we may be interested in the probability that the
agents in the population reach a consensus on a particular the-
ory. If we assume that each initial opinion profile is equally likely
(uniform prior probability), then the probability of reaching con-
sensus on a particular theory is equal to the number of opinion
profiles in the basin of this consensus position divided by the
total number of points in the OPS. (For a non-uniform prior
probability, we may compute a similar fraction based on weighted
sums).

For M = 1 and N = 2, there are 10 points in the OPS and
there is no dynamics, so the only way the population can end
up in a consensus is by already starting out from that opinion
profile. Hence, the probability of reaching consensus on a partic-
ular theory is 1/10. (The total probability of reaching a consensus
is 4/10.) For N = 3, there are 20 points in the OPS. For D = 0,
there is no dynamics, so the probability of reaching consensus
on a particular theory is 1/20. (The total probability of reaching
a consensus is 4/20, or 1/5.) For D = 1, two additional opinion
profiles evolve toward each consensus position, so each basin con-
sists of three points and the probability of reaching consensus
on a particular theory is 3/20. (The total probability of reaching
a consensus is 12/20, or 3/5.) For D = 2, each basin consists of

four points and the probability of reaching consensus on a par-
ticular theory is 4/20, or 1/5. (The total probability of reaching a
consensus is 16/20, or 4/5.) Given the nature of our update rule
(EHK), it is not surprising that we find larger BCIs (larger val-
ues for D) to correspond with higher probabilities of reaching
a consensus.

In our previous paper (Wenmackers et al., 2012), we only con-
sidered the probability that an agent, who starts from a consistent
theory, updates to the inconsistent theory. For M = 1, this prob-
ability is zero. In general, there are (N + tM − 2)!

N!(tM − 2)! opinion profiles
in which no agent adheres to the inconsistent theory (i.e., the
(hyper-)tetrahedral number of order N + 1 in tM − 2 dimen-
sions, or the multiset coefficient of choosing N times with repeti-
tion out of tM − 1 options). For M = 1, these inconsistency-free
opinion profiles are represented on a single face of the tetrahedral
OPS—the face which has as its vertices each consensus on one
of three consistent theories—and none of these evolve to consen-
sus on the inconsistent theory. To investigate the phenomenon
of consistent-to-inconsistent updating, we have to consider cases
with larger values of M, as we did in our previous study (in which
we assumed a uniform prior, not over all anonymous opinion
profiles, but over the non-anonymous opinion profiles in which
no agent adheres to the inconsistent theory).

4.3. KEY POINTS
An (anonymous) opinion profile specifies the number of agents
that holds each of the theories. So, an opinion profile consists
of 2tM numbers that add up to N, the total number of agents in
the population. We consider the space of all possible opinion pro-
files, the OPS. The dynamics on this space shows the group-level
or aggregate effect of the individual updating by the rule intro-
duced in the previous section. Some opinion profiles act as fixed
points: once the population reaches such a state, there is no fur-
ther dynamics. Consensus positions are stable fixed points, which
“attract” nearby opinion profiles; equally balanced (or polarized)
opinion profiles are unstable fixed points, which “push away”
nearby opinion profiles. By counting states in the OPS and assign-
ing priors probabilities to initial opinion profiles, we can give a
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probabilistic interpretation to the results. The analysis in terms of
an OPS requires the choice of a particular population size, N; in
the next section, we follow a slightly different approach that does
not require this.

5. OPINION DENSITY SPACE
To simplify the analysis, we leave the number N of agents open
and represent all possible opinion profiles (for arbitrary N) simul-
taneously, using the opinion density space (ODS). For a given

opinion profile −→n , the corresponding opinion density
−→
d can be

found via normalization, that is, division by the number N of

agents:
−→
d = −→n /N. Like −→n ,

−→
d is a vector with tM components.

We represented the components of a particular opinion profile −→n
between angle brackets, 〈. . .〉; although confusion is unlikely, we

will represent the components of an opinion density
−→
d between

round brackets, ( . . . ). The opinion density coordinates can be
viewed as barycentric coordinates, specifying which fraction of the
agents adheres to each theory6.

Another way of looking at the transition from OPS to ODS is
as follows: we can track the dynamics for a large set of different
population sizes and represent the accumulated data in a single
tetrahedral grid. In the limit where we combine the OPSs for all
(infinitely many) finite population sizes, this accumulative OPS
becomes continuous instead of a discrete grid. Hence, the ODS is
a continuous space in tM − 1 dimensions. (There are tM compo-
nents of the opinion density vector, which are fractions that sum
to 1, so there remain tM − 1 degrees of freedom).

To visualize the ODS, we have written an additional pro-
gram in Object Pascal. Although the ODS represents a continu-
ous space, numerical methods require it to be discretized, such
that the program only encounters density vectors which have
four rational indices. By multiplying the four rational indices
of an opinion profile by their least common denominator, we
compute an opinion profile that is representative of that den-
sity. The evolution of this profile is computed as before. The
numerical result is indicated by means of colors (as explained
below).

6The notion of barycentric coordinates, which comes from geometry, may
need some introduction. We first introduce the concept of a simplex. A two-
dimensional simplex is a triangle: a figure with three vertices. In three
dimensions, a simplex is a tetrahedron: a figure with four vertices. In gen-
eral, in k dimensions, a simplex is a figure with k + 1 vertices. The ODS is a
simplex with 2tM = 4 vertices. Hence, for the simplest case with M = 1, we
are dealing with a tetrahedral ODS in k = 2tM − 1 = 3 dimensions. To indi-
cate a particular point inside a k-dimensional simplex, one can use k Euclidean
coordinates (belonging to k orthogonal axes), but for many applications it is
more natural to use barycentric coordinates. The word “barycenter” refers to
the center of mass, and barycentric coordinates indicate how much a point
“gravitates” toward each of the vertices of the simplex. Since a k dimensional
simplex has k + 1 vertices, it also has k + 1 barycentric coordinates, but since
those coordinates are fractions that sum to unity, there are only k degrees of
freedom. In three dimensions, a barycentric plot indicates the ratios of four
quantities. The geometric center of a k-dimensional simplex is characterized
by k + 1 barycentric coordinates that are all equal to 1/(k + 1). In general,
points inside the (hyper-)volume of the simplex have barycentric coordinates
that are all strictly positive. Points with one barycentric coordinate equal to
unity and all the others equal to zero indicate a vertex position.

5.1. RESULTS: DYNAMICS ON THE OPINION DENSITY SPACE
We consider the ODS equipped with (EHK) as update rule (for
particular values of D) as a continuous dynamical system.

As before, we focus on the case with M = 1. In this case, opin-
ion densities have four digits, which are fractions that sum to 1,
so there remain three degrees of freedom. Hence, these opin-
ion densities can be represented using barycentric coordinates
in a three-dimensional tetrahedron (inside the volume as well as
on the surface). At the four vertices of the tetrahedral ODS for
M = 1, we find the opinion profiles that have all their weight
concentrated on a single theory, corresponding to populations in
which all the agents agree on the same theory (consensus). On the
edges of the tetrahedron, we find populations in which only two
of the four theories are represented (the other two having den-
sity zero). On the faces of the tetrahedron, we find populations
in which one of the four theories is not represented. Inside the
volume of the tetrahedron, in each population there is at least
one agent for each theory, so none of the density components
is zero.

Also similar as before, we only represent a single face of
the tetrahedral ODS: the triangle with vertices at (0, 0, 0, 1),
(0, 0, 1, 0), and (1, 0, 0, 0), with the “double” edge at the bottom.
Within this triangle, all opinion profiles have zero density at the
second position: there are no agents that hold the theory 01.

For each position in the chosen triangle, we compute the
(normalized) opinion profile that it will ultimately evolve to.
We represent this by a color. Specifically, the color (R, G, B)
(with R, G, B ∈ {0, . . . , 255}) indicates that the opinion profile
at that position will evolve to the opinion profile with barycen-
tric coordinates equal to (G/255, 0, B/255, R/255). For instance,
the redder a point, the larger the fraction of agents that will
finally adhere to the inconsistent theory, 00. The results depend
on the threshold value D and are presented at the left-hand side
of Figure 6. For each point, we also indicate after how many steps
the final state is reached. We represent this with a gray-scale on
the right-hand side of Figure 6.

The results for D = 0 are trivial: the agents do not
take the opinions of others into account, so there is no dynamics.
On the right-hand side of Figure 6, we see that all the positions
have the color corresponding to the initial opinion profile. At the
left-hand side of Figure 6, we see that zero steps are required to
reach the final state. Both observations confirm that all opinion
profiles are fixed points. Because there is no dynamics, it is a
situation of indifferent equilibrium. (This image is still helpful,
because—due to the absence of dynamics—each point in it is col-
ored based on its own coordinates, which can be used as a key to
interpret the representation of the results with dynamics.)

The results for D = 2, the maximal threshold value in the case
of M = 1, do show dynamics. In the colored image, we see clear
evidence that a “double” edge of the tetrahedron was positioned at
the bottom: it leads to a bilateral symmetry of the pattern. There
are six fixed points. The three consensus positions at the vertices
are fixed points, which act as sinks for large portions of the face.
The three positions halfway along the edges are fixed points as
well. Those on the “single” edges each attract opinion profiles
from a line in the triangle; the fixed point on the “double” edge
acts as a sink. The gray-scale image confirms these findings: the
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FIGURE 6 | Opinion dynamics for M = 1: one face of the opinion

density space (ODS). On the left-hand side, each position in the ODS is
colored depending on its final state (see main text for details); smaller
features are indicated with white ellipses and arrows. On the right-hand
side, each position in the ODS is given a gray-scale value depending on

how many rounds of updating are required for it to reach its final state;
smaller features are indicated with ellipses (purple for zero, orange for
one, and blue for two). The value of the BCI threshold is varied: top row
D = 0 (minimal), middle row D = 1 (intermediate), and bottom row D = 2
(maximal).
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six fixed points do not require any iterations, whereas the others
settle after just one update.

Intermediate values for D tend to lead to more complex and
interesting behavior. This general trend holds up even for M =
1, although there is only one intermediate value: D = 1. The
bilateral symmetry (and lack of additional symmetry), already
observed for D = 2, is present here, too, but both the color and
the gray-scale image show further features. There are fewer fixed
points than for D = 0, but more than for D = 2: there is a kite-
shaped region of fixed points (indifferent equilibrium), and the
“double” edge consists of fixed points, all of which act as sinks
for a line in the triangle. Moreover, this is the only case with
M = 1 for which some initial opinion profiles require two rounds
of updating to arrive at the final state.

Recall that for a fixed number of agents, not all points of the
continuous ODS are accessible. Once you have computed the
opinion dynamics for the ODS, you can use the results to con-
struct the dynamics on an OPS for a fixed number of agents, N,
by locating a density that is accessible for the N of interest and
using the color of that point to determine to which opinion pro-
file it will evolve. (In fact, the results on OPSs in the previous
figures do already use the same color convention as that used for
the ODS).

5.2. PROBABILISTIC INTERPRETATION OF THE ODS
Similarly to the discussion of the OPS results, we also give a prob-
abilistic interpretation of the results concerning the ODS. If we
assume that each initial opinion profile is equally likely (uniform
prior probability), then the probability of reaching consensus on
a particular theory is equal to the volume of the basin associ-
ated with this consensus position divided by the total volume
of the OPS. At least, this fraction expresses the limit probability
associated with an infinite population size, in which the relative
importance of special points (unstable equilibria) is vanishingly
small.

In Figure 7, we illustrate the four basins associated with the
four consensus positions in the ODS of M = 1 and D = 2. Each
basin has the same shape with five faces: two equilateral trian-
gles and one rhombus that face the exterior of the ODS and two
isosceles right triangles that face the interior of the ODS (see
also Supplementary Material). The four basins have one com-
mon edge (at the interior, where the isosceles right triangles meet)
that connects the midpoints of the two “double edges” of the
tetrahedral ODS.

Since the four basins have the same shape and size and together
fill the entire volume of the ODS, they each correspond to a rel-
ative volume of 1/4. Under the assumption of a uniform prior,
the limit of the probability of arriving at a particular consensus
for exceedingly large populations is 1/4 (M = 1 and D = 2). For
maximal D, the limit probability of arriving at some consensus
is 1. Under these conditions, the unstable equilibria on the edges
of the basins are isolated points, lines, or areas, which have zero
volume and thus zero probability.

In particular, in the infinite population limit there is a prob-
ability of 1/4 of arriving at the inconsistent theory. However, if
we only consider opinion densities where the inconsistent theory
initially has zero density (which are all represented at the a single

FIGURE 7 | Shape of the basins in the opinion density space (ODS) for

M = 1 and D = 2. Left-hand side: three-dimensional view of ODS with the
face shown in previous figures turned toward the right. Right-hand side:
exploded view of the same ODS, showing the four basins separately. Each
basin has the same shape (with five faces: one rhombus, two equilateral
triangles, and—facing the interior of the ODS—two isosceles right
triangles) and a volume that occupies one quarter of the tetrahedral ODS.

face of the ODS), the probability of evolving to an opinion profile
with a non-zero density at the inconsistent theory (let alone unit
density at this position) is zero (at least for M = 1).

5.3. KEY POINTS
Whereas the discrete OPS depends on a particular population
size, N, the continuous ODS represents the density of theories in
populations of arbitrary size. By considering volumes in the ODS
and assigning a prior probability distribution to initial opinion
profiles, we can give a probabilistic interpretation to the results,
which serve as a good approximation for very large population
sizes, but does not apply to small groups. We observe that even if
special points (such as stable fixed points) make up a small por-
tion of the ODS, these points tend to be represented in small
populations (causing the dynamics to end after few rounds of
updating).

6. GENERAL DISCUSSION
Due to social updating, an agent who starts out with a consis-
tent theory about the world may arrive at the inconsistent theory.
Even if maintaining consistency at all times is too demanding for
non-ideal beings to qualify as a necessary condition for rational-
ity (Cherniak, 1986), it is presumably something that rational
beings should aim for. This may suggest that social updating is
a vice, from the perspective of rationality. However, in our first
study (Wenmackers et al., 2012) we computed the probability
for an agent to update to the inconsistent theory and found it
to be non-zero, but relatively small (lower than 2%); moreover,
it can be made arbitrarily low by strategically varying the model
parameters.

Our current study of the opinion dynamics on the belief space
reveals another virtue of the social updating process: even if
an agent starts out at the inconsistent theory, the agent’s opin-
ion may change—to one of the consistent theories—due to the
social update rule. This could already be seen on the basis of
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Example 3.2, but the results depicted in Figure 6 give more sys-
tematic information in this respect: except for the rightmost edge
and its two vertices, all the opinion profiles in the presented face
of the tetrahedron contain at least one agent who starts out at
the inconsistent theory. Nevertheless, when there is any dynamics
at all, many of these opinion profiles evolve to different profiles,
some of which have no agents at the inconsistent theory. This is
true, in particular, for all the opinion profiles in the blue and green
areas, which act as basins for consensus positions on consistent
theories.

We have given a probabilistic interpretation of the results on
the belief space (OPS and ODS). We have seen that in the limit for
an infinite population size and for large BCIs (D = wM), the rel-
ative importance of unstable equilibria vanishes. For M = 1 and
D = 2, the probability of arriving at a population-wide consensus
on some theory is unity. In particular, the probability of arriving
at a population-wide consensus on the inconsistent theory is 1/4.
Once the agents reach consensus on the inconsistent theory, there
will be no further dynamics, because all consensus positions are
fixed points. Hence, this result may be regarded as a worst case.
However, this case study is highly unrealistic for (at least) three
reasons.

First, the assumption of a uniform prior on the opinion pro-
files does not apply to real cases. Observe that if the agents
were to pick out their initial theory at random, the distribution
of initial anonymous opinion profiles would be higher around
the center of the belief space. (For larger populations, there are
more combinations of individual theories that lead to an anony-
mous opinion profile, in which all theories are represented almost
evenly.) More importantly, however, we do not expect the agents
to adopt an initial theory at random but rather to possess some
prior knowledge, such that the distribution of their initial the-
ories is clustered around the true theory (which is necessarily a
consistent one). Hence we also expect a preferential position of
the opinion profiles in a region around consensus on the true
theory. For this reason, investigation of a more complex model,
based on a variant of our current update rule (EHK), but includ-
ing evidence-gathering as well as social updating, is high on our
to-do list.

Second, in many practical situations relevant population sizes
tend to be small (just think of the last meeting you attended),
such that the infinite population limit does not apply well to
them. In smaller populations, the relative importance of unstable
equilibria (which do not lead to consensus) is more pronounced.

Third, modeling belief states as theories of the world only has
practical relevance when M > 1, for which the relative size of
the basins associated with consensus positions decreases rapidly
(as 1/tM).

For all these reasons, we estimate the probability of arriving
at a consensus on the inconsistent theory to be very small in a
realistic setting—in any case well below 1/4.

The mechanism for social updating may also be criticized
in the following way. If agents’ belief states are theories, their
beliefs are closed under the consequence relation. So, illustrat-
ing with theories for the case of M = 1 (cf. Example 3.2), an
agent whose belief state is characterized by the string 1100 is
supposed to believe also the propositions coded as 1110, 1101,

and 1111. This is not reflected in our current update rule (EHK)
and suggests an asymmetric composition of the peer group: for
M = 1 and D = 1, an agent A with theory 1111 and an agent
B with theory 1100 are not each other’s peers according to our
current model. However, agent B also ought to believe A’s the-
ory, but not vice versa. We may now suggest an alternative way
of determining an agent’s peer group: by taking into account also
those agents that hold a theory which is within distance D of at
least one of the consequences of the first agent’s theory. Doing
so would help to protect agents against updating to the incon-
sistent theory. However, it also introduces a preference for less
informative theories, so it may hamper the agents’ chances of
finding the (strongest) true theory. Hence, this is a case where
different epistemic goals (rationality versus finding the truth)
are in direct conflict with each other and selecting the optimal
normative model seems to require meta-norms of rationality.

In our previous work (Wenmackers et al., 2012), we have con-
sidered the probability of arriving at an opinion profile in which
at least one agent adheres to the inconsistent theory, starting out
from an opinion profile without any such agent (and assum-
ing a uniform prior over these anonymous profiles). We found
this probability to be zero for M = 1. This finding is confirmed
in the current study. Nevertheless, by studying the dynamical
space in general, we have observed certain trends that help to
explain the previously obtained results for the probability of
consistent-to-inconsistent updating.

For M = 2, the probability that an agent will arrive at the
inconsistent theory, in a population where none have adopted
this theory, is non-zero (provided that D > 0 and N > 2). In
our previous work, we observed that this probability decreases
when more independent issues are considered (that is, when M
increases beyond 2). We are now in a better position to explain
the—essentially combinatorial—mechanism behind this finding.
Although we have not presented cross-sections for the higher-
dimensional case, we can give a qualitative discussion of cases
with M > 1. As M increases, the belief space becomes higher-
dimensional (tM − 1) and the basin that is attracted by the
sink corresponding to consensus on the inconsistency becomes
a smaller fraction of its total (hyper-)volume (equal to 1/tM for
D = wM). This corresponds to the observation in our previous
study that the probability of updating to the inconsistent the-
ory is lowered by forming theories over more independent issues
(higher M). For a larger number of agents (higher N), the dimen-
sions of the belief space remain the same, but the opinion profile
has access to more points of this space. As a result, the probability
of consensus on the inconsistent theory is lower, too; this is in line
with the earlier findings as well.

For belief spaces with a fixed number of agents (with M = 1
and D > 0), we observed that if the number of agents is even,
the midpoint of the edges is accessible and acts as a source (in
respect to other points on the edge). This is confirmed by our
study of the ODS: the midpoint of an edge belongs to a line sepa-
rating two or three basins. In the ODS, it also becomes clear that
the midpoint on a “single” edge acts as a sink for points from
the line between this midpoint and the midpoint of a “double”
edge (half of the line for D = 1, all of it for D = 2). Moreover, if
the number of agents is a multiple of four, the midpoint of the
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entire tetrahedron is accessible and acts as a source. In contrast, if
the number of agents is a multiple of three, the midpoint of each
of the faces is accessible and acts as a source (for D = 1). So, in
the case of an even number of agents, there are more fixed points
than in the case of an odd number of agents. Taken together, these
effects explain the “even–odd wobble” in our previous study: the
observation that agents have a lower probability of updating to
the inconsistent theory in an even-numbered population than in
an odd-numbered population of similar size.

Moreover, for fixed M, there is a limited number of these spe-
cial points, whereas the total number of accessible points in the
belief space rises fast when the number of agents, N, increases.
Consequently, the number of these special points as compared
to the total number of opinion profiles in the hyper-volume
decreases when N increases, which explains the attenuation of
the wobble for larger populations. If we consider (a face of) the
ODS for M = 1 and D > 0 (cf. Figure 6), we see that the major-
ity of opinion densities belong to some basin that is attracted
to a sink. However, most of the points that are accessible in the
OPS for a relatively small population size do not belong to these
basins. Hence, small populations have a relatively high probabil-
ity of producing delicately balanced opinion profiles, which tend
to act as unstable equilibria (sources) and do not lead to full
consensus.

Additionally, as the number M of propositions increases, the
dimensionality of the belief space increases, as does the absolute
number of these special points, but their number as compared to
the possible points in the hyper-volume decreases. This explains
the earlier observed decrease in the maximal probability of updat-
ing to the inconsistent theory as M increases.

While the model studied in this paper is idealized in several
respects, it is not completely unrealistic. Even if real agents do
not generally compromise with their peers exactly in the way our
artificial agents do, real agents do tend to influence each other’s
belief states, whether consciously or not. Idealized models can
give information about such processes, much in the way in which
the Ideal Gas Law gives information about the behavior of real
gases. Also, there are several ways to make the model more realis-
tic, for instance, as indicated earlier, by providing the agents with
direct evidence about the truth, which in our model could be
added as a driving force, directed toward a particular theory, or—
equivalently—as an external potential directed toward one of the
vertices of the ODS, corresponding to consensus on a theory with
exactly one non-zero bit.

But even in its present, idealized form, the model we have stud-
ied demonstrates that there may be issues of rationality specifi-
cally arising from the way or ways we interact epistemically with
fellow inquirers. We will be content if this sways some traditional
(“individualistic”) epistemologists as well as some psychologists
to take the social level into consideration in their studies of ratio-
nality. For the latter group, we note that already the current model
suggests a number of seemingly worthwhile empirical studies,
focusing on how real people influence one another’s belief states,
on which factors determine whether people regard someone as
their peer (in the technical sense used here), and on whether
whatever epistemic interactions take place in reality tend to aid
the achievement of people’s epistemic goals.
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