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INTRODUCTION

More than two decades of work in vision posits the existence of dual-learning systems
of category learning. The reflective system uses working memory to develop and
test rules for classifying in an explicit fashion, while the reflexive system operates by
implicitly associating perception with actions that lead to reinforcement. Dual-learning
systems models hypothesize that in learning natural categories, learners initially use the
reflective system and, with practice, transfer control to the reflexive system. The role
of reflective and reflexive systems in auditory category learning and more specifically
in speech category learning has not been systematically examined. In this article, we
describe a neurobiologically constrained dual-learning systems theoretical framework that
is currently being developed in speech category learning and review recent applications
of this framework. Using behavioral and computational modeling approaches, we provide
evidence that speech category learning is predominantly mediated by the reflexive learning
system. In one application, we explore the effects of normal aging on non-speech and
speech category learning. Prominently, we find a large age-related deficit in speech
learning. The computational modeling suggests that older adults are less likely to transition
from simple, reflective, unidimensional rules to more complex, reflexive, multi-dimensional
rules. In a second application, we summarize a recent study examining auditory category
learning in individuals with elevated depressive symptoms. We find a deficit in reflective-
optimal and an enhancement in reflexive-optimal auditory category learning. Interestingly,
individuals with elevated depressive symptoms also show an advantage in learning
speech categories. We end with a brief summary and description of a number of future
directions.

Keywords: dual-learning systems, procedural learning, reflective, reflexive, aging, depression, computational
modeling

a dual-learning systems theoretical framework that is currently

Fast and accurate categorization is fundamental to the survival
of all organisms. The rabbit must categorize a sound as “friend,”
“foe,” or a “gust of wind” to determine whether to approach, run,
or continue with the current behavior. The Emergency Medical
Technician (EMT) must categorize the ausculatory lung sounds
heard through a stethoscope as indicative of “fluid” or “no fluid”
when determining whether to conduct additional tests or inform
the patient that their lungs are clear. The umpire in cricket must
decide if a batsman is “out” or “not out” after weighing auditory
and visual evidence. These are all categorization problems because
there are many information states but only a small number of
courses of action.

The psychological study of category learning is long and rich
(Bruner etal., 1956; Smith and Medin, 1981; Estes, 1994; Ashby
and Maddox, 2005, 2010). Early research focused on single-system
models, whereas recent research focuses on multiple-systems
approaches. Surprisingly, nearly all of this work focused on
the visual domain with little examination of other modalities,
including audition. The overriding aim of this paper is to describe

being developed in the auditory domain. We attempt to pro-
vide a theoretical scaffolding to the emerging field of auditory
cognitive science (Holt and Lotto, 2008). In the next sections,
we provide a brief history of category learning research starting
with single-system approaches and ending with a neurobiologi-
cally inspired dual-learning systems approach. We then examine
the extent to which the dual-learning systems approach is neu-
robiologically viable in the auditory domain. Finally, we develop
the dual-learning systems framework to speech category learning.
Speech category learning involves the mapping of highly variable
acoustic cues to perceptual space, akin to a specific type of cat-
egorization problem (Holt and Lotto, 2010). However, thus far,
speech category learning has been largely viewed as a perceptually
encapsulated process. For example, a rich body of literature has
examined categorical perception (Liberman et al., 1967; Kuhl, 1994,
2004). Categorical perception refers to the percept of invariant
categories in sensory events that are discrete and along a contin-
uum. Early studies argued that categorical perception is specific to
speech and humans (Liberman et al., 1967). Later studies, however,

www.frontiersin.org

July 2014 | Volume 5 | Article 825 | 1


http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Journal/10.3389/fpsyg.2014.00825/abstract
http://community.frontiersin.org/people/u/29744
http://community.frontiersin.org/people/u/162660
http://community.frontiersin.org/people/u/42681
mailto:bchandra@utexas.edu
mailto:maddox@psy.utexas.edu
http://www.frontiersin.org/
http://www.frontiersin.org/Cognitive_Science/archive

Chandrasekaran etal.

Dual-learning systems model of speech learning

unequivocally demonstrated that categorical perception extends
to other non-speech modalities and exists in non-human species
(Kuhl and Miller, 1978; Kuhl, 1985). While the focus on under-
standing the phenomena of categorical perception still continues
(Goldstone and Hendrickson, 2010; Fleming etal., 2013), more
recent efforts in the speech sciences have argued the need to study
speech perception as a categorization problem (Holt and Lotto,
2010), rather than simply a perceptual problem. In contrast to
the auditory domain, a rich prior literature exists in the study of
categorization. A goal therefore is to extend the rich theoretical
understanding of domain-general learning processes involved in
visual category learning literature to speech learning. We conclude
with a brief summary and a description of a number of exciting
lines of future research.

SINGLE SYSTEM VS. MULTIPLE SYSTEMS OF CATEGORY
LEARNING

Category learning has an extensive history in psychology (Bruner
etal., 1956; Smith and Medin, 1981; Nosofsky, 1986b; Estes,
1994; Ashby and Maddox, 2005, 2010). Until the early 1990s,
the focus was on developing and testing single-system mod-
els of category learning. Three classes of single-system models
with multiple instantiations of each were popular during this
era: prototype, exemplar, and decision-bound models. Proto-
type models assume that when asked to assign a stimulus to
one of several categories, the participant responds with the cat-
egory label associated with the most similar prototype (Reed,
1972; Rosch, 1977; Homa etal., 1981; Posner and Petersen, 1990;
Smith and Minda, 1998). Exemplar models assume that when
asked to assign a stimulus to one of several categories, the par-
ticipant performs a global match between the representation of
the presented stimulus and the memory representation of every
exemplar from each contrasting category, selecting the category
label associated with the strongest global match (Medin and
Schaffer, 1978; Estes, 1986; Hintzman, 1986; Nosofsky, 1986a;
Estes, 1994). Decision-bound models assume that the partic-
ipant learns to assign responses to regions of the perceptual
space, and when asked to assign a stimulus to one of sev-
eral categories, the participant determines into which region the
stimulus representation falls and emits the associated response
(Ashby and Townsend, 1986; Ashby and Perrin, 1988; Ashby,
1992; Ashby and Maddox, 1993; Maddox and Ashby, 1993). The
approach taken by many category learning researchers during
this time was to conduct a category learning study and to apply
competing models to the data with the aim of identifying the
model that provided the best account of the data; the implica-
tion being that this “best fitting” model was the correct model
(Maddox and Ashby, 1993; McKinley and Nosofsky, 1995; Smith
and Minda, 1998). Although a dominant and sometimes fruit-
ful approach, three critical observations cast doubt on this as
a viable long-term scientific approach to the study of category
learning.

First, research emerged that suggested that many category
learning models were mathematically equivalent (Nosofsky, 1990,
1991; Ashby and Maddox, 1993). For example, Ashby and
Maddox (1993) (see also Nosofsky, 1990, 1991) showed that pro-
totype, exemplar, and decision-bound models are mathematically

equivalent under a broad range of environmental contexts. Thus,
in spite of the large differences in psychological processing
assumptions across these three classes of models, the models are
often equivalent at the level of the data.

Second, a number of results suggested that human cate-
gory learning is mediated by multiple category-learning systems
(Nosofsky etal., 1994; Ashby etal., 1998; Erickson and Kruschke,
1998; Reber etal., 2003; Love etal., 2004; Ashby and O’Brien,
2005). One of the strongest pieces of evidence comes from an
examination of both of the category structures in Figure 1, and
the learning profiles associated with each category structure. The
stimuli represented in Figure 1B were constructed by rotating the
items in Figure 1A by 45°. Thus, the two spaces are mathematically
equivalent and would be learned to equivalent levels by any stan-
dard clustering algorithm. Despite this equivalence, humans show
very different learning profiles and introspection when asked to
solve these tasks. When faced with the task depicted in Figure 1A,
participants start out near chance and then at some point “get it”
and perform nearly optimal. In other words, participants’ learning
profile is characterized as a step function. In addition, participants
are able to describe the strategy that they used accurately. When
faced with the task depicted in Figure 1B, participants start out at
near chance and then show gradual, incremental learning. Partic-
ipants are unable to describe the strategy that they used accurately
and often say that they went with their “gut” feeling, or “gut reflex.”
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FIGURE 1 | (A) Example of a rule-based category learning task in which
narrow bar width Gabor patches are in category A and wide bar width
Gabor patches are in category B. (B) Example of an information-integration
category learning task in which no verbalizable rule can be used to describe
the strategy that maximizes accuracy.
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This qualitative difference in performance across these struc-
turally equivalent categories led to a number of interesting studies
that revealed strong empirical dissociations between the learning
of these two category structures. Because single-system mod-
els are unable to account simultaneously for more than one or
two of these multiple-system results, the field began to question
the viability of single-system approaches. Brooks and colleagues
suggested one of the earliest multiple-systems approaches, argu-
ing for separate rule-based (RB) and exemplar-based systems
(Brooks, 1978; Allen and Brooks, 1991; Regehr and Brooks,
1993). Since then, a number of purely cognitive multiple-systems
models have been proposed, with nearly all offering some spe-
cific instantiation of Brooks’ RB and exemplar-based systems
(Nosofsky etal., 1994; Erickson and Kruschke, 1998; Love etal.,
2004).

Finally, a plethora of research examining the neural basis of
category learning emerged (Poldrack and Packard, 2003; Nomura
etal.,2007). The existence of the neural data weakens the predictive
power of the purely cognitive models since they are ambivalent
with respect to neuroscience. This revolution opened the door to
a number of new methodological approaches.

A NEUROBIOLOGICALLY BASED DUAL-LEARNING SYSTEMS MODEL
(covis)

One of the theories of category learning that specifies the con-
straints imposed by the underlying neurobiology is the COm-
petition between Verbal and Implicit Systems (COVIS; Ashby
etal., 1998, 2011) model. As we later elaborate, COVIS focuses
exclusively on the visual domain. COVIS postulates two learn-
ing systems, one reflective and one reflexive!. The reflective
system is an explicit learning system in the sense that it for-
mulates and tests specific categorization rules using executive
attention and working memory. The critical neural structures
include prefrontal cortex, anterior cingulate, and anterior cau-
date nucleus (Lombardi etal., 1999; Monchi etal., 2001; Ashby
and Valentin, 2005; Ashby etal., 2005; Filoteo etal., 2005¢; Seger
and Cincotta, 2006; Nomura etal., 2007; Schnyer etal., 2009).
Figure 1A displays a simple two-category, RB problem using Gabor
patches that vary in spatial frequency and spatial orientation as
stimuli.

The strategy that maximizes accuracy is to place low spatial
frequency items into category A and high spatial frequency items
into category B. This strategy is referred to as an RB or reflective
strategy. In contrast, the reflexive system is implicit and proce-
dural and learns to associate stimuli lying in different regions
of perceptual space with specific motor outputs as a result of
reinforcement via trial feedback. Accurate performance in reflex-
ive categorization requires predecisional integration of stimulus
components, and it is therefore often referred to as an information-
integration (II) strategy. Learning in this system does not rely
on working memory and executive attention, and the critical
structures are the posterior caudate, putamen and the supple-
mentary motor area (SMA; Ashby and Waldron, 1999; Maddox

!Recent evidence suggests a third system, referred to as the perceptual-representation
system, can also mediate category learning under certain conditions (Casale and
Ashby, 2008; Zeithamova et al., 2008).

and Filoteo, 2001; Poldrack etal., 2001; Aron etal., 2004; Filo-
teo etal., 2005b; Maddox and Filoteo, 2005; Seger and Cincotta,
2005; Nomura et al., 2007; Seger, 2008; Ashby and Crossley, 2011).
Figure 1B displays a simple two-category problem. The strat-
egy that maximizes accuracy in Figure 1B (unlike the structure
in Figure 1A) is not easily verbalizable, so an II strategy imple-
mented via the reflexive system is most optimal for categorizing
these stimuli.

The COVIS model assumes that the reflective and reflex-
ive learning systems compete throughout category learning. In
humans, there appears to be a bias toward reflective domi-
nance. Individuals explicitly test category rules and adjust the
weight given to that rule depending on its success or failure.
The success or failure of rules is assessed by explicit process-
ing of the feedback. After each trial, utility of a particular rule
is updated. Through this method of hypothesis testing, rele-
vant decision bounds are learned. The explicit nature of the
reflective system requires use of working memory and executive
attention to remember which rules have been used, to process
the success or failure of these decision bounds, and to switch
between rules. COVIS posits that an accurate reflective system
prevents the transfer of control to the striatally mediated reflexive
system (Ashby and Maddox, 2010). Learners will therefore con-
tinue to use reflective system until the reflexive system is more
accurate.

In comparison, during reflexive learning, a striatal unit implic-
itly associates an abstract cortical-motor response with sensory
cells in the sensory association cortex. Learning occurs at cortical—
striatal synapses. Such synaptic plasticity is enhanced by a
dopamine-mediated reinforcement signal. The timing and nature
of feedback in a categorization experiment are crucial to the effec-
tiveness of the reflexive learning system, while working memory
is not critical to learning. Despite the different circuitries, both
the reflective and reflexive learning systems utilize components
within the primary and association sensory regions. For further
details, the reader is referred to previous review papers on the
COVIS model (Ashby and Maddox, 2010; Ashby etal., 2011). See
Table 1 for a summary of properties of the reflective and reflexive
systems.

The dual-learning systems approach in general, and COVIS in
particular, has gained broad support with evidence from behav-
ioral studies conducted in a variety of areas. These include:
healthy adult humans (Ashby and Maddox, 2005, 2010; Grimm
and Maddox, 2013; Ashby, 2014; Smith etal.,2014), human
children, and older adults (Ridderinkhof etal.,, 2002; Filo-
teo and Maddox, 2004; Filoteo etal,, 2005a; Racine etal,
2006; Minda etal., 2008; Maddox etal., 2010; Huang-Pollock
etal.,, 2011; Gorlick etal., 2012), non-human animals (Smith
etal., 2004, 2010, 2011, 2012a,b), various neuropsycholog-
ical patient groups (Knowlton and Squire, 1993; Knowl-
ton etal, 1994; Squire and Knowlton, 1995; Knowlton,
1999; Keri, 2003; Filoteo et al., 2005b; Filoteo and Maddox, 2007),
as well as using brain imaging techniques such as fMRI
(Poldrack etal., 1999, 2001; Cincotta and Seger, 2000, 2007;
Poldrack and Packard, 2003; Aron etal., 2004; Poldrack and
Rodriguez, 2004; Shohamy etal., 2004; Seger and Cincotta, 2005;
Seger and Cincotta, 2006; Nomura et al., 2007; Nomura and Reber,
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Table 1 | Summary of the main properties of the reflective and reflexive systems.

Learning system

Reflexive

Reflective

Description Explicit and verbalizable

Neurobiology Prefrontal cortex; anterior cingulate; head of the
caudate nucleus; hippocampus

Mechanism Operates by formulating and testing categorization

rules
Working memory/PFC dependence
memory
Feedback characteristic

not critical

Dependent on executive attention and working

Benefits from rich, explicit feedback. Feedback timing

Implicit and non-verbalizable

Putamen, body, and tail of the caudate nucleus;
premotor cortex

Operates by implicitly associating perception with
actions that lead to reinforcements.

Not dependent on working memory and executive
attention; dependent on striatum

Benefits from minimally informative feedback.

Feedback timing is critical

2008; Seger, 2008; Helie etal., 2010; Seger and Miller, 2010;
Waldschmidt and Ashby, 2011) and EEG (Folstein and Van Petten,
2004).

TOWARD AN AUDITORY VERSION OF COVIS

NEUROANATOMY

A major focus of this article is to examine the application of
the dual-learning systems model to the auditory domain. Pre-
vious studies have shown similarities in the organization of the
two major sensory domains. In vision, an organizing principle is
retinotopy; in audition, topographical organization by frequency
(“tonotopy”) has been demonstrated along the auditory pathway.
Functionally distinct dorsal and ventral cortical streams are seen
both in vision and audition (Romanski etal., 1999; Marois et al.,
2000; Rauschecker and Scott, 2009). However, there are some
critical differences between the two domains as well. A signif-
icant amount of auditory signal processing occurs well before
signals reach the auditory midbrain. The visual pathway lacks
functional processing centers at the level of the brainstem. The
auditory system is subserved by massive efferent (feedback) con-
nectivity that yields substantial top-down control of the lower
level auditory centers. In contrast, the efferent connectivity of
the visual system is less massive. Functionally, the auditory sys-
tem is constantly “on” (even when we are asleep) and therefore
metabolically more expensive. In monkeys, auditory working
memory is less robust and more susceptible to “rewriting” than
visual working memory (Scott etal., 2012). In humans, there is
a marked difference in recognition memory for visual and audi-
tory objects. The memory for visual images is far greater than for
auditory objects (Cohen etal., 2009). Despite these differences,
a direct comparison of the two modalities has been challeng-
ing due to methodological difficulties in matching the sensory
and cognitive load imposed by auditory and visual stimuli. A
recent behavioral and computational modeling study matched
auditory and visual stimuli on stimulus complexity (static or
moving gabor patches vs. moving ripple stimuli) and showed
processing similarities between the two modalities in a short-
term memory task (Visscher etal., 2007). This study suggests that

memory processes are not modality specific. Given inconsistent
findings about commonalities/differences between audition and
vision, an important question is whether the neural circuitry
underlying the dual-learning systems has a parallel in the auditory
domain.

The bidirectional connectivity among primary, secondary
auditory cortices, and the prefrontal cortex is well established
(Rauschecker and Scott, 2009). This connectivity forms a clear
basis for a functional reflective auditory system. In contrast, rela-
tively little is known about the functional role of the corticostriatal
connectivity in audition. In the next few paragraphs, we review
the existing work from animal and human models that argue
for a reflexive auditory system. Retrograde tracing experiments
in animal models show direct connectivity from the auditory
thalamus and auditory cortex to the striatum (LeDoux etal,
1991) In cats, auditory cortical projections to the striatum is
tonotopic (Reale and Imig, 1983). Retrograde anatomical label-
ing studies in primates show that the primary and association
auditory cortices are bi-directionally connected to the dorsolat-
eral prefrontal cortex and form many-to-one projections to the
striatum (Petrides and Pandya, 1988; Yeterian and Pandya, 1998;
Figure 2).

The connections from the primary auditory cortex to the stria-
tum are relatively sparse. In contrast, connections from the belt
region, which surrounds the primary auditory cortex, to the cau-
date and putamen are more dense (Yeterian and Pandya, 1998).
Examining responsivity in the striatum to auditory stimulation
using c-fos induction, Arnauld etal. (1996) showed dense Fos-
IR within the caudal striatum, and relatively sparse labeling in
the rostral striatum. This is in contrast to visual stimulation,
which resulted in Fos-IR within the rostral striatum (Arnauld
etal,, 1996). Despite retrograde labeling studies showing dif-
fuse corticostriatal connectivity patterns, the projections from
the auditory system largely converge on to the caudal portion
of the striatum (Arnauld etal., 1996). While the previous stud-
ies have all examined the corticostriatal projection, there is
some evidence for a backprojection from the striatum to the
auditory cortex via the pallidum. The functional role of this
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FIGURE 2 | Neuroanatomy in support of the (A) reflective, and (B)
reflexive auditory category learning systems. Primary and secondary
auditory cortices are directly connected to the reflective (A) and reflexive
(B) learning systems. Adapted from Petrides and Pandya (1988) and
Yeterian and Pandya (1998).

backprojection is unclear (Parent and Hazrati, 1995). From a
functional perspective, a recent study showed that decisions on
auditory stimuli are functionally determined by corticostriatal
connections in rats. Optogenetic stimulation of the corticostri-
atal neurons biased the animal’s choice (Znamenskiy and Zador,
2013). In humans, a resting-state connectivity study demonstrated
functional connectivity between the putamen and the auditory
association area. Connectivity is more robust between the audi-
tory cortex and the putamen relative to the caudate (Di Martino
etal., 2008).

Despite the fundamental differences between auditory and
visual perception, the brain regions associated with auditory
processing are interconnected with the brain regions associated
with reflective and reflexive category learning. This connectiv-
ity is a good indication that the neurobiology associated with
the COVIS model is plausible in both the auditory and visual
domains. We next need to determine whether processing in these
auditory analogs of reflective and reflexive category learning sys-
tems behave in a manner similar to those associated with reflective
and reflexive visual category learning. Ultimately, we should
approach this with all of the same tools that have been used in
the visual domain. This includes behavioral dissociation studies,
lifespan research, brain imaging techniques (fMRI, EEG), and neu-
ropsychological patient groups. Our group has made headway
using some of these approaches and that work will be reviewed
here.

REFLECTIVE AND REFLEXIVE AUDITORY LEARNING SYSTEMS

Now that we have established that the neurobiology is in place
to support a dual-learning systems approach to auditory cat-
egory learning, we review the empirical evidence in support
of dual-learning systems using auditory category learning tasks.
The most rigorous tests of dual-learning systems require the use
of artificial categories for which the experimenter controls the
optimal strategy and constructs one reflective-optimal and one
reflexive-optimal task. Figure 3A displays a highly verbalizable
reflective-optimal category learning problem that uses tones that
vary in duration and frequency as stimuli: short, low-frequency
tones are in category A; short, high-frequency tones are in cat-
egory B; long, low-frequency tones are in category C; and long,
high-frequency tones are in category D. In our pilot experiments,
learners were able to easily verbalize their strategies for the four
categories. The broken lines denote the decision boundaries that
maximize accuracy.

Figure 3B displays a reflexive-optimal category learning prob-
lem that is constructed by rotating the Figure 3A stimulus
space by 45°. The broken lines denote the decision bound-
aries that maximize accuracy. In this case, no simple verbal
description exists to describe this strategy. As a proof of con-
cept, we examined reflective-optimal and reflexive-optimal cat-
egory learning in the visual domain and compared it with
reflective-optimal and reflexive-optimal category learning in the
auditory domain. Importantly, the category structures remained
the same across the visual and auditory applications; only
the specific dimensions changed. Participants showed simi-
lar learning profiles across the visual and auditory versions
of the reflective-optimal and reflexive-optimal tasks, suggest-
ing that similar mechanisms were in place. As a more rigor-
ous test of the dual-learning systems approach, we examined
whether individual differences in working memory capacity were
predictive of individual differences in reflective-optimal and
reflexive-optimal non-speech auditory category learning. Two
lines of work in the visual domain suggest that this should
matter. First, a number of researchers (Waldron and Ashby,
2001; Maddox et al., 2004; Zeithamova and Maddox, 2006, 2007;
Filoteo etal., 2010) have shown that reflective-optimal visual
category learning was impaired when participants were asked
to perform a demanding working-memory dual task, whereas
reflexive-optimal visual category learning was not affected. Sec-
ond, and more directly (DeCaro etal., 2008; Tharp and Pick-
ering, 2009; however, see Lewandowsky etal., 2012) showed
that increases in working memory capacity were associated
with enhanced reflective-optimal visual category learning but
did not lead to advantages in reflexive-optimal visual category
learning.

We tested this latter result directly in non-speech auditory
reflective-optimal and reflexive-optimal category learning. Again,
the hypothesis was that working memory would be significantly
related to reflective but not reflexive processing. We had 28
young adults (18-35 years) complete the Figure 3A reflective-
optimal non-speech auditory category learning task, and 30 young
adults (18-35 years) complete Figure 3B reflexive-optimal non-
speech auditory category learning task. Working memory capacity
was assessed using the digit span portion of the Wechsler Adult
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FIGURE 3 | Artificial category structures: (A) rule-based, reflective-optimal and (B) information-integration, reflexive-optimal used to study
dissociations between reflective and reflexive auditory category learning systems.

Intelligence Scale, 4th edition (WAIS-IV; Wechsler, 2008). In the
backward span task, numbers were read at a rate of one num-
ber per second with a monotone voice to avoid highlighting any
one part of the string of numbers. Participants were required to
repeat the string of numbers presented to them backwards and
were scored on the sum of correct strings correctly repeated.
In the forward span task, participants were required to repeat
strings of numbers presented to them and were scored on the
sum of strings correctly repeated. A composite span was created
by adding the forward and backward spans for each partici-
pant. Figures 4A,B display scatterplots of the working memory
capacity and reflective-optimal (Figure 4A) or reflexive-optimal
(Figure 4B) scores.

The solid line denotes the best fitting line. As predicted, working
memory capacity was significantly positively related to reflective-
optimal performance, as indexed by performance on the final
block (r = 0.393, p = 0.028), but was not significantly related
to reflexive-optimal performance (r = —0.069, p > 0.05). This is
consistent with COVIS prediction that working memory capac-
ity is critical for learning reflective-optimal category structures,
but not for learning reflexive-optimal category structures (Mad-
dox and Ashby, 2004; Ashby and Maddox, 2005, 2010). In the next
section, we review recent studies applying the COVIS model to
speech category learning

REFLECTIVE AND REFLEXIVE AUDITORY SYSTEMS IN SPEECH
LEARNING

One advantage of extending COVIS to the auditory domain is that
it allows the exploration of natural category learning problems.
Speech perception can be likened to a categorization problem,
in which, multidimensional and highly variable acoustic signals
are needed to be parsed into discrete phonological representa-
tions. One exciting possibility is that dual-learning systems may
underlie speech category learning, which is one of the most dif-
ficult human category learning problems. The ability to learn

and understand (categorize) speech sounds, either as a first or
second language, is a critical skill at which humans are remark-
ably adept. In fact, as anyone who has experience with the
speech recognition systems associated with many “smart” phones
knows, the human ability to understand speech far out weights
that of even the most sophisticated computer algorithm. The
multidimensional and highly variable characteristics of speech
signals make speech learning a “difficult” categorization prob-
lem, especially for individuals learning novel speech categories
in adulthood.

Previous research has theorized several reasons for difficul-
ties in the acquisition of second language (L2) speech cate-
gories. These difficulties have been interference caused by existing
speech categories, as well as interference due to a “warping”
of auditory-perceptual space by prior experience with native
speech categories (Flege, 1999; Francis and Nusbaum, 2002;
Kilpatrick etal., 2003; Francis etal., 2008). Although difficult,
adults can acquire L2 speech categories. Laboratory training
paradigms ubiquitously utilize trial-by-trial feedback and high-
variability (multiple speakers) training to teach L2 speech cat-
egories (Lively etal., 1993; Bradlow etal., 1999; Tricomi etal,,
2006; Zhang etal., 2009; Lim and Holt, 2011). Feedback is
thought to enhance learning by reducing errors, and multiple-
speaker training results in learners refocusing their attention
to cues that are relevant for distinguishing speech categories
and/or reducing attention to irrelevant cues (Bradlow and Bent,
2008). Although unsupervised training results in some amount
of speech learning in adults, the addition of feedback results
in substantially larger learning gains (McClelland etal., 2002;
Vallabha and McClelland, 2007; Goudbeek etal., 2008). Studies
have also examined the role of high-variability (multiple-speaker)
training in speech learning. While much of this research has
focused on the mechanics of the perceptual system in speech
learning, much less is known about the role of the dual-learning
systems, which previous studies suggest is critical to learning

Frontiers in Psychology | Cognitive Science

July 2014 | Volume 5 | Article 825 | 6


http://www.frontiersin.org/Cognitive_Science/
http://www.frontiersin.org/Cognitive_Science/archive

Chandrasekaran etal.

Dual-learning systems model of speech learning

A 18 B 18
Reflective-optimal ° Reflexive-optimal

L 16 ° s *
3 ° o0 oo
(2]
3 14 e o o
3 ° meo o
a
% 12
~ o ae
&
% 10 [ ] ® o
] [ I ] [ ]
2
(o} 8 o

8 T T T T 6 T T T T

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Final block accuracy Final block accuracy
FIGURE 4 | (A) Rule-based, reflective-optimal auditory category learning is positively related to working memory span. (B) Information-integration,
reflexive-optimal auditory category learning is not significantly related to working memory span.

reflective-optimal and reflexive-optimal category structures. This
leads us to an important question: are speech categories simi-
lar to reflective-optimal category structures or reflexive-optimal
category structures?

Speech categories typically are difficult to verbalize, have
multiple dimensions, and are highly variable. Generating and
testing hypotheses for categories involving multiple dimensions
is resource-intensive. Since the reflective system is dependent
on working memory and attention, generating rules/hypotheses
for multiple dimensions may not be efficient. Furthermore, the
redundancy and variability of cues available during speech percep-
tion prevents a simple one-to-one mapping of cues to categories.
These suggest that reflexive learning may be most optimal for
speech categories. Our hypothesis is therefore that speech learn-
ing is reflexive-optimal. During natural visual category learning,
the dual-learning systems framework assumes that the reflective
and reflexive learning systems compete throughout learning for
control (Ashby and Maddox, 2011). Early in category learning,
the dual-learning systems model assumes that learners are mostly
reflective. They actively test a number of hypotheses and use feed-
back to validate or invalidate rules. With practice, learners switch
to the more automatic, reflexive learning system if the output of
this system is more accurate than the reflective system. In line
with dual-learning systems predictions, we propose that learning
speech category structures is reflexive-optimal and that success-
ful learners may initially use reflective strategies but eventually
switch to the more optimal (reflexive) learning system. We have
conducted a series of experiments to test this hypothesis. In the
next section, we will briefly discuss the major points from these
studies.

APPLICATION 1: 1S SPEECH LEARNING REFLECTIVE- OR
REFLEXIVE-OPTIMAL? CHANDRASEKARAN ET AL. (2014)
As outlined above, our working hypothesis is that speech cat-
egories are optimally learned by the reflexive learning system
(Chandrasekaran etal., 2014). This is because speech categories

are often difficult to verbalize and utilize acoustic cues that are
multidimensional, highly redundant, and variable across speak-
ers (Gandour, 1983; Holt and Lotto, 2008, 2010). Creating
rules for such complex category structures may not be opti-
mal, since generating and testing rules that involve multiple
dimensions is resource intensive. Chandrasekaran etal. (2014)
utilized the dissociation logic developed to test COVIS and train-
ing manipulations on trial-by-trial feedback (Experiments 1 and
2) and speaker variability (Experiment 3) to examine the rela-
tive contribution of the reflective and reflexive learning systems
to speech learning success. The reflective and reflexive learning
systems have been shown to respond differentially to various
training manipulations. For example, delaying the presentation
of feedback impairs learning in the reflexive system, but not
in the reflective system (Maddox etal., 2003; Maddox and Ing,
2005). This is because the reflexive system is critically depen-
dent on dopamine-mediated stimulus-response implicit reward
learning. Delaying feedback interferes with dopamine release,
reducing the effectiveness of the association of stimulus-response
with reward. Also, rich, informational, “full” feedback that pro-
vides the correctness of the response on each trial as well as
information about which category was present speeds learn-
ing in the reflective system (Maddox etal., 2008) relative to
“minimal” feedback that provides only the correctness of the
response on each trial. Full feedback promotes the generation
and testing of rules that are critical to reflective learning but
disrupts the transfer of control to the reflexive system (Mad-
dox etal., 2008). Previous studies have used these timing and
feedback manipulations to dissociate the learning systems in arti-
ficial visual category learning, but not in natural speech category
learning.

Experiment 1 determined the extent to which the immediacy
of feedback (immediate vs. delayed) impacts tone category learn-
ing. Experiment 2 determined the extent to which the information
content of feedback (full versus minimal feedback) impacts tone
category learning (Figure 5). Immediate feedback is critical for
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FIGURE 5 | Experimental procedures from Chandrasekaran etal. (2014). In Experiments 1-3, we examined the effects of reflexive (top panel) or reflective
(bottom panel) training manipulations on tone category learning success.

the reflexive system but not the reflective system (Maddox etal.,
2003), while full feedback selectively speeds reflective learning but
impairs reflexive learning (Maddox etal., 2008). Based on our
working hypothesis, we predicted that feedback manipulations
that targeted the reflexive learning system (immediate or minimal
feedback) would enhance learning relative to those that target the
reflective learning system (delayed or full feedback).

While dual-learning systems models of visual category learning
make specific predictions about feedback processing, they offer no
clear prediction about the impact of speaker variability on cat-
egory learning success. While multi-speaker training is argued
to be advantageous in generalizing to speech produced by novel
speakers, the role of the order of speaker presentation, if any, has
not been systematically examined in previous research. Within
the framework of the dual-learning systems, we predicted that
systematically blocked speaker presentation (i.e., presenting all
stimuli from one speaker) will promote reflective learning, whereas
a randomly mixed-speaker presentation will enhance reflexive
learning. Our logic here is that blocked speaker presentation pro-
motes faster hypothesis testing and validation, and is therefore
less resource intensive for the reflective system than is the mixed-
speaker condition. Also, the mixed-speaker presentation does not
allow learners to predict the next speaker in advance, disrupt-
ing the immediate testing of speaker-specific rules. Therefore, our
prediction is that learners are more likely to associate speaker-
invariant acoustic cues with implicit reward than speaker-variant
cues. Based on the hypothesis that speech learning is optimally
learned by the reflexive learning system, we predicted enhanced
learning in the mixed-speaker condition, relative to the blocked
speaker condition.

SPEECH CATEGORY LEARNING TASK

To study L2 speech category learning, we utilized naturally
produced Mandarin tone categories, which are non-native to
monolingual English speakers. Mandarin Chinese has four tone
categories [ma' “mother” [T1], ma® “hemp” [T2], ma’ “horse”
[T3], ma* “scold” [T4]), described phonetically as high level, low
rising, low dipping, and high falling, respectively (Figure 6A).
Native English speakers find it particularly difficult to learn tone
categories (Wang et al., 2003). However, previous studies also show
that short-term laboratory training can enhance tone identifi-
cation and discrimination in native English speakers, although
such training paradigms have typically resulted in significant
inter-individual differences in learning success (Perrachione et al.,
2011).

A number of dimensions (e.g., pitch height, pitch direc-
tion) may serve as cues to tone categorization. The relative
perceptual saliency of these dimensions is influenced by the
presence or absence of pitch patterns in a language’s tonal
inventory (Gandour, 1978, 1983) as well as by the occurrence
of abstract rules in a listeners’ phonological system (Hume
and Johnson, 2001). Multidimensional scaling studies on tone
perception converge on two primary dimensions that under-
lie the tone space: labeled pitch height and pitch direction
(Figure 6).

In Figure 7A, we plot the 80 stimuli used in our experi-
ments (five consonant—vowel segments X four speakers X four
tones) along two dimensions [pitch height: average fundamental
frequency (x-axis) and pitch direction: slope (y-axis)]. A visual
inspection of this space supports our hypothesis that speech cat-
egory learning is reflexive-optimal (similar to the structure in
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FIGURE 6 | (A) Sample fundamental frequency contours of four Mandarin
tones (T1: high-level; T2: low-rising; T3: low-dipping; T4: high-falling)
produced by a male native Mandarin speaker. (B) The four tones plotted in a
two-dimensional perceptual space (x-axis: pitch height, y-axis: pitch
direction). Pitch height (dimension 1) and pitch direction (dimension 2) are
major cues used to distinguish the tone categories.

Figure 3B). That is, category separation is greatest when the
dimensions (pitch height and direction) are integrated in a manner
that is not easily verbalizable.

RESULTS FROM CHANDRASEKARAN ET AL. (2014)

Figure 8 summarizes the results from the three experiments.
In all cases, the training manipulation hypothesized to enhance
reflexive learning led to better long-term Mandarin tone learn-
ing than the training manipulation hypothesized to enhance
reflective learning. Taken together, these data provide strong sup-
port for the prediction that natural speech category learning is
reflexive-optimal.

APPLICATION 2: COMPUTATIONAL MODELS AS A WINDOW
ONTO COGNITIVE PROCESSING: A REANALYSIS OF
CHANDRASEKARAN ET AL. (2014)

Chandrasekaran etal. (2014) relied on behavioral measures of
accuracy to determine whether L2 speech category learning was
reflective-optimal or reflexive-optimal. Although a good starting
point, one weakness of accuracy-based measures is that the same
accuracy rate can often be achieved by using qualitatively differ-
ent strategies (e.g., reflective or reflexive). Within the domain
of category learning, computational models can be utilized that
address this shortcoming and can provide important insights into
the nature of the strategy (reflective/reflexive) that an individual is
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FIGURE 7 | (A) Scatterplot of all stimuli from the Mandarin tone category learning experiment. (B) Scatterplot of male-speaker stimuli. (C) Scatterplot of
female-speaker stimuli. Stimulus dimensions (pitch height and pitch direction) were normalized between 0 and 1.
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FIGURE 8 | Category learning curves across reflexive vs. reflective
conditions in all three experiments from Chandrasekaran etal.
(2014): (A) Experiment 1: feedback delay (immediate vs. delayed);
(B) Experiment 2: feedback information (minimal vs. full);

(C) Experiment 3: speaker variability (mixed vs. blocked). Plotted in
solid bold lines are the proportions of correct responses across
participants within each condition over the course of learning. The black
lines denote the reflexive conditions and the red, the reflective
conditions. For purposes of visualization of trial-by-trial data, each point
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in the line denotes the average number of correct responses in a
sliding 80-trial window. For trials preceding the 80th trial, cumulative
averages were used. Plotted in thin lines are the ranges of standard
error of the averages used in the sliding windows. Visual assessment of
the learning curves suggest that both conditions result in equivalent
degrees of category learning toward the earlier phase of experiment,
but that the reflexive condition leads to greater learning than does the
reflective condition toward the later phase of the experiment. This
pattern is consistent across all three experiments.

applying in a given task. We predict that individuals in the imme-
diate feedback, minimal feedback, and mixed-speaker conditions
will utilize reflexive strategies to a greater degree than individuals
in the delayed feedback, rich informational feedback, and blocked
speaker conditions.

To test this hypothesis, we applied a series of decision-bound
models developed by Maddox and Chandrasekaran (in press) on
a block-by-block basis at the individual participant level. This was
due to problems with interpreting fits to aggregate data (Estes,
1956; Ashby etal., 1994; Maddox, 1999). We assume that the two-
dimensional space (pitch height vs. pitch direction) displayed in
Figure 7A accurately describes the perceptual representation of
the stimuli. Based on the results from our earlier work (Maddox
and Chandrasekaran, in press), we also assumed that partici-
pants applied category learning strategies separately to the male
(Figure 7B) and female (Figure 7C) perceptual spaces. Note
that, as long as the major dimensions are known, these modeling
procedures can be applied to any type of speech category struc-
ture. This offers an exciting new approach to the study of speech
categorization.

MODEL DETAILS
Here we provide a brief description of each model. More details
are available in numerous previous publications (e.g., Ashby and

Maddox, 1993; Maddox and Ashby, 1993; Maddox and Chan-
drasekaran, in press). Each model assumes that decision bounds
were used to classify stimuli into each of the four Mandarin
tone categories (T1, T2, T3, or T4). The model-based approach
involves applying three classes of models, with multiple instan-
tiations possible within a class. The first class is computational
models of the reflexive procedural learning system. This is instan-
tiated with the Striatal Pattern Classifier (SPC; Ashby and Waldron,
1999; Maddox etal., 2002b). The SPC is a computational model
whose processing is consistent with what is known about the
neurobiology of the procedural-based category learning system
thought to underlie II classification performance (Ashby etal.,
1998; Maddox et al., 2002a; Seger and Cincotta, 2005; Ashby and
Ennis, 2006; Nomura etal., 2007). The second class is reflec-
tive, RB and instantiate hypothesis-testing strategies, such as the
application of unidimensional or conjunctive rules. These are
verbalizable strategies. The third model is a random respon-
der model that assumes that the participant guesses on each
trial. The model parameters were estimated using maximum
likelihood procedures (Wickens, 1982; Ashby, 1992) and models
were compared using Akaike weights (Wagenmakers and Far-
rell, 2004). These detailed analyses are available in the original
manuscript. We provide the specifics of each model in the next
section.
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Striatal pattern classifiers

The SPC assumes that stimuli are represented perceptually in
higher level auditory areas, such as the superior temporal gyrus.
Because of the massive many-to-one (approximately 10,000-to-1)
convergence of afferents from the primary and secondary sen-
sory cortices to the striatum (Wilson, 1995; Ashby and Ennis,
2006), a low-resolution map of perceptual space is represented
among the striatal units. Within the auditory domain, it is well
known that there are direct projections from secondary audi-
tory areas such as superior temporal gyrus and supratemporal
plane to the caudate (Hikosaka etal., 1989; Arnauld etal., 1996;
Yeterian and Pandya, 1998). During feedback-based learning, the
striatal units become associated with one of the category labels
so that, after learning is complete, a category response label is
associated with each of a number of different regions of percep-
tual space. In effect, the striatum learns to associate a response
with clumps of cells in the auditory cortex. It is important to be
clear that the SPC is a computational model that is inspired by
what is known about the neurobiology of the striatum. Because
of this fact, the striatal “units” are hypothetical and could be
interpreted within the language of other computational models
(e.g., as “prototypes” in a multiple prototype model like SUS-
TAIN; Love etal., 2004). In addition, we do not model learning
in the SPC in the sense that we do not update association weights
between units and category labels. Learning models have been
proposed (Ashby and Maddox, 2011) but are not utilized here due
to their complexity. The SPC assumes that there is one striatal
“unit” in the pitch height—pitch direction space for each cate-
gory, and a single “noise” parameter that represents the noise
associated with the placement of the striatal units. Responses
from a hypothetical participant using the SPC are displayed in
Figure 9A.

Conjunctive rule-based model

A conjunctive RB model that assumes that the participant sets
two criteria along the pitch direction dimension and one crite-
rion along the pitch height dimension was also applied to the
data. The model assumes that the two criteria along the pitch
direction dimension are used to separate the stimuli into those
that are of low, medium, or high pitch direction. Low pitch
direction items are classified into tone category 4 (T4) and high
pitch direction items are classified into tone category 2 (T2).
If an item is classified as having medium pitch direction, then
the pitch height dimension is examined. The single criterion
along the pitch height dimension is used to separate the stim-
uli into low and high pitch height. Stimuli that have medium pitch
direction and low pitch height are classified into tone category
3 (T3) and medium pitch direction items of high pitch height
are classified into tone category 1 (T1). Responses from a hypo-
thetical participant using a conjunctive strategy are displayed in
Figure 9B.

Unidimensional rule-based model

A unidimensional height RB model that assumes that the partici-
pant sets three criteria along the pitch height dimension was also
applied to the data. The model assumes that the three criteria
along the pitch height dimension are used to separate the stimuli

into those that are of low, medium-low, medium-high or high
pitch height, with each of these being associated with one of the
four tone categories. Notice that this model completely ignores
the pitch direction dimension. Although 24 versions of the model
are possible given four category labels, some are highly unrealis-
tic [e.g., a model that assumes that tone category 1 (T1) was the
lowest in pitch height]. We examined the eight most reasonable
variants of the model.

A unidimensional direction RB model that assumes that the
participant sets three criteria along the pitch direction dimension
was also applied to the data. The model assumes that the three cri-
teria along the pitch direction dimension are used to separate the
stimuli into those that are of low, medium-low, medium-high, or
high pitch direction with each of these being associated with one
of the tone categories. Notice that this model completely ignores
the pitch height dimension. Although 24 versions of the model
are possible given four category labels, many are highly unrealis-
tic. We examined the two most reasonable variants of the model.
Responses from a hypothetical participant using a unidimen-
sional strategy along pitch height are displayed in Figure 9C, and
responses from a hypothetical participant using a uni-dimensional
strategy along pitch direction are displayed in Figure 9D.

Random responder model

The random responder model assumes a fixed probability of
responding tone 1, tone 2, tone 3, and tone 4 but allows for
response biases. The model has three free parameters to denote
the predicted probability of responding “1,” “2,” or “3” with the
probability of responding “4” equal to one minus the sum for the
other three categories.

MODEL RESULTS

As outlined in Application 1, we found better learning when
feedback was immediate relative to delayed, when feedback was
minimal relative to informationally rich, and when speaker pre-
sentation was mixed as opposed to blocked. We assumed that
these performance advantages were due to better utilization of the
reflexive system. As a test of this hypothesis, we fit the models
outlined above to the data from the published study, focusing on
the final block. In line with our predictions, we found that 53% of
participant’s final block data in the immediate feedback condition
was best fit by the SPC, whereas only 43% of participant’s final
block data in the delayed feedback condition was best fit by the
SPC. Analogously, we found that 53% of participant’s final block
data in the minimal feedback condition was best fit by the SPC
whereas only 42% of participant’s final block data in the informa-
tionally rich feedback condition was best fit by the SPC. Finally,
and again in support of our hypothesis, we found that 67% of
participant’s final block data in the mixed-speaker condition was
best fit by the SPC whereas only 50% of participant’s final block
data in the blocked speaker condition was best fit by the SPC.

APPLICATION 3: INDIVIDUAL DIFFERENCES IN SPEECH
CATEGORY LEARNING

SPEECH CATEGORY LEARNING ACROSS THE LIFESPAN

One of our first applications of the dual-learning systems approach
in the auditory domain was to examine the effect of normal aging
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boundaries that separate response regions from a hypothetical Uni-Dimensional Direction models as applied to the female-speaker
participant using a version of the (A) Striatal Pattern Classifier, (B) stimuli shown in Figure 7C.

on category learning. Little is known about the learning systems
that mediate successful auditory and speech categorization across
the lifespan. Normal aging is associated with some deficiencies in
reflective and reflexive category learning within the visual domain
(Ashby etal., 2003; Maddox etal., 2010), but these have not been
explored in the auditory domain. Particularly, previous stud-
ies have demonstrated age-related declines in working memory
and prefrontal function that may disproportionally impact learn-
ing reflective category structures (Daigneault and Braun, 1993;
West, 1996; Clapp etal., 2011). We used experimental and com-
putational modeling approaches to examine the extent to which
dual-learning systems mediate speech learning in younger and
older adults (Maddox et al., 2013). We used the same task outlined
in Applications 1 and 2. We did have to make a minor change to get
reasonable learning within a single session, and that was to include
only one male and one female speaker instead of two male and two
female speakers. This change led to only small differences in pre-
dicted accuracy across the reflective-conjunctive model and the
reflexive-SPC model. However, reflective unidimensional models
predicted poor accuracy.

We found an age-related deficit in overall performance that is
displayed in Figure 10A. Figure 10B displays the proportion of
older and younger adults whose final block of data was best fit
by a multi-dimensional model (conjunctive or SPC) or a unidi-
mensional model. Whereas approximately 70% of younger adults
were using a multi-dimensional model, only about 30% of older
adults were using a multi-dimensional model. Thus, older adults
generally perseverated on unidimensional rules when the optimal
strategy was to focus on both dimensions. The perseveration on
simple unidimensional rules is likely due to a deficit in the reflec-
tive learning system. However, due to the fact that we could not
separate conjunctive and SPC models, we cannot make a def-
inite conclusion regarding a reflective learning deficit in older
adults. This result mirrored previous results in the visual domain,
where older adults were slower to transition from RB to proce-
dural rules (Maddox etal., 2010). Next, we examined the final
block accuracy rates for older and younger adults as a function
of strategy type (Figure 10C). Interestingly, younger adults who
used multi-dimensional strategies were more accurate than older
adults who used multi-dimensional strategies. However, older and
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FIGURE 10 | (A) Overall accuracy across older adults (OA) and younger adults
(YA), (B) final block proportion of multi-dimensional [Striatal Pattern Classifier
(SPC)/conjunctive rule-based (CJ)] and uni-dimensional (UD) models, and

(C) final block accuracy for each model type by age group from Maddox et al.
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(2013). In this particular experiment'’s stimulus set, SPC and CJ model fits
were effectively inseparable, and so have been collapsed in this analysis.
Older adults use a greater proportion of simple unidimensional rules, likely
due to a deficit in the reflective learning system.

younger adults who used unidimensional strategies yielded about
the same (low) accuracy rates. Taken together, these data sug-
gest that younger adults are more likely than older adults to shift
from suboptimal uni-dimensional to optimal multi-dimensional
strategies, and even when older adults do shift to optimal multi-
dimensional strategies, they use these less accurately than younger
adults.

INFLUENCE OF DEPRESSIVE SYMPTOMS ON SPEECH CATEGORY
LEARNING

A second application of the dual-learning systems approach in the
auditory domain was to examine the effect of elevated depres-
sive symptoms on category learning (Maddox et al., 2014). Little is
known about the learning systems that mediate successful auditory
and speech categorization in individuals with elevated depressive
symptoms. Previous studies have shown that individuals with ele-
vated depressive symptoms show deficits in reflective processing
(Beevers, 2005; Carver etal., 2009; Beevers etal., 2012; Mad-
dox etal., 2012; Blanco etal., 2013), and because of the deficit
in frontally mediated processes, like working memory and cog-
nitive flexibility, we would predict impaired performance on
auditory reflective-optimal tasks. We exploited this finding to
test critical predictions of the dual-learning systems model in
audition. Because the reflective and reflexive systems are dis-
sociable and competitive, we predicted that elevated depressive
symptoms would lead to reflective-optimal learning deficits but

reflexive-optimal learning advantages. Because natural speech cat-
egory learning is reflexive in nature, we made the prediction
that elevated depressive symptoms would lead to superior speech
learning. In support of our predictions, individuals with ele-
vated depressive symptoms showed a deficit in reflective-optimal
auditory category learning, but an advantage in reflexive-optimal
auditory category learning. In addition, using the same stimuli
in Figure 7, we found that individuals with elevated depressive
symptoms showed an advantage in learning a non-native speech
category structure. Computational modeling suggested that the
elevated depressive symptom advantage was due to faster, more
accurate, and more frequent use of reflexive category learning
strategies in individuals with elevated depressive symptoms.

SUMMARY AND FUTURE DIRECTIONS

Auditory category learning has been traditionally viewed as a
perceptually encapsulated process. In contrast, the dual-learning
systems theoretical approach tackles learning from an auditory-
cognitive categorization perspective. This is an important step
toward assessing domain-general influences on auditory and
speech processing. Popular dual-learning systems models in vision
have been cautious about extending this model beyond vision
because the neurobiological plausibility of dual-learning systems
in audition has not been extensively studied. Here we argue that
the reflective and reflexive learning systems are neurobiologi-
cally viable in audition. Moreover, behavioral and computational
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modeling work clearly demonstrates a functional role for these
systems in learning a variety of auditory categories. From a
practical standpoint, understanding the role of the dual-learning
systems may inform language pedagogy. Extant auditory training
programs for language and music pedagogy may be subopti-
mal because the dynamics of feedback provided are arbitrary
and do not target the learning system that is optimal for learn-
ing a particular auditory category structure. Our experiments
clearly establish the optimal set of feedback characteristics for
a broad range of auditory category problems. These training
procedures can be easily incorporated into existing auditory
training programs and language software, and may have a sig-
nificant theoretical and practical impact on language and music

pedagogy.
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