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A commentary on

Internally- and externally-driven network
transitions as a basis for automatic and
strategic processes in semantic priming:
theory and experimental validation
by Lerner, I., and Shriki, O. (2014).
Front. Psychol. 5:314. doi: 10.3389/fpsyg.
2014.00314

Semantic priming is the phenomenon
for which presenting a word (“prime”)
to a subject can influence the process-
ing of a second word (“target”), such
as in the “lexical decision task” (is the
target a word or a non-word?) or in
the out-loud pronunciation of the target
word (“naming task”). Performance and
response times are affected by the strength
of the prime-target association (for exam-
ple, “dog” and “cat” are more strongly
associated than “dog” and “goat”), the
delay between prime and target, and other
factors (McNamara, 2005). Lerner and
Shriki (2014) review and provide novel
evidence for a model of semantic priming
that accounts for many of the empirical
findings and makes clear predictions on
two new experiments conducted by the
authors.

The Lerner and Shriki model combines
the idea of distributed coding of concepts
(Masson, 1991, 1995; Plaut, 1995) with
the idea of “latching dynamics” in neu-
ral networks possessing attractor states—
i.e., stable distributed activation patterns
across units (Treves, 2005; Moreno-Bote
et al., 2007). In attractor networks, cor-
related attractors that share units in the
same activation states code for seman-
tically related concepts. These networks
generate priming effects by, e.g., speeding

up the convergence to the attractor state
coding for a target when the latter shares
units with the prime. The ingredient added
by Lerner and Shriki to this modeling
framework is that their network is in
an ever present dynamical regime: the
state of the network does not dwell on
a given attractor concept for long and
tends to jump between attractors due to
short-term synaptic depression. In their
modeling approach, the authors explore
a number of interesting ideas in the
context of semantic priming. In doing
so, they facilitate the convergence of the
dominant connectionist style of modeling
toward a neurobiological understanding of
semantic priming.

First, by introducing latching dynam-
ics between related concepts—one cued by
the prime, the other leading to the target—
their model embraces the idea that neu-
ral representations may be understood not
only in terms of static patterns of neural
activation, but also in terms of tempo-
ral dynamics of those patterns, where the
dynamics can be adjusted to make cor-
rect (or faster) decisions. Recent evidence
suggests that cognitive functions unfold
on a variety of timescales, and so does
the underlying neural activity. For exam-
ple, working memory is dynamic: memo-
rized items are intrinsically unstable and
they may jump in and out of memory
(Amit et al., 2003). The process of making
a sensorimotor decision is also dynamic,
being mediated by the dynamical inte-
gration of sensory evidence by neurons
in parietal and prefrontal cortex (Wang,
2008). This applies to fast decisions (of the
order of hundreds of milliseconds) based
on immediate sensory evidence as well
as to slower decisions (order of minutes)

requiring careful evaluation of previous
decisions and outcomes (Bernacchia et al.,
2011). Finally, even after a decision is
made, the production of the actual move-
ment by motor cortical neurons seems best
explained in the framework of dynami-
cal systems, rather than from the more
classical view of static population coding
(Shenoy et al., 2013). The work of Lerner
and Shriki fits into these lines of evidence
and adds semantic priming to the reper-
toire of phenomena that can be explained
in terms of the complex dynamic behavior
of ensembles of cortical neurons.

Second, the authors introduce a role
for intrinsically generated noise on prim-
ing effects in an original application of
reinforcement learning. Well established
in cortical models of decision-making
(Wang, 2008) and reinforcement learn-
ing (where it allows exploration—see, e.g.,
Sutton and Barto, 1998), the role of neu-
ral noise in semantic priming has not
been explored. In an interesting devel-
opment, the authors introduce the idea
of learning the intrinsic level of noise
by reinforcing faster reaction times, so
as to match the latter’s strong empiri-
cal dependence on expectancy and other
types of context. The authors consider this
as the potential mechanism underlying
controlled processing in semantic prim-
ing. Controlled processes are those modi-
fiable by task demands (whereas automatic
processes reflect the static associations
between targets and primes). A more bio-
logical way of implementing this idea
would be to perturb the membrane con-
ductances of spiking neurons and thus
change the background fluctuations in the
network (Chance et al., 2002). This would
change the response of a population of
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neurons by acting on the variance of the
ongoing activity, rather than on the aver-
age input, in the presence of a priming cue.
By “learning the variance rather than the
mean,” the system would learn to respond
differently in different contexts of the same
task, rather than learning to perform the
task itself—as is more customary. The fea-
sibility of this approach should of course
be tested in a detailed spiking neuron
implementation.

Third, the Lerner and Shriki model
shares some notable features with net-
work models of working memory, bring-
ing the connectionist framework closer to
more biologically plausible cortical mod-
els. Following the connectionist tradition,
however, in the Lerner and Shriki model
the associations are generated ad hoc to
define which pairs of concepts will gen-
erate priming effects. In cortical mod-
els, priming effects depend on learned
values of synaptic strength between neu-
rons coding for the more strongly vs.
less strongly associated concepts (Brunel,
1996; Mongillo et al., 2003). These mod-
els can also maintain multiple items in
working memory (Haarmann and Usher,
2001; Amit et al., 2003), and can accom-
modate “overlapping coding,” i.e., the ran-
dom attribution of the neurons to the
coding of the items in memory, whereby
some neurons are activated by different
concepts coded by different populations
(Curti et al., 2004). However, random
overlap between populations coding for
different concepts cannot contribute to
priming because every concept has equal
overlap with the others, not allowing a
concept to prime some but not all other
concepts. One possible solution to this
problem is to consider learning the over-
lap between populations from the related-
ness among the concepts they code for, as
in recent cortical network models where
“mixed-selectivity” neurons are co-active
during learning the co-occurrences of
related items (Rigotti et al., 2010, 2013;
Bourjaily and Miller, 2011; Lavigne et al.,
2014). Endowing the Lerner and Shriki
model with the ability to learn the seman-
tic associations would take the model even
closer to biological realism.

In conclusion, semantic priming is a
broad area of research and illustrates how
the context in which the given infor-
mation is processed is key to cogni-
tion. The model by Lerner and Shriki
is a welcome attempt at reconciling the
many facets of semantic priming within
a unified (and more biologically plausi-
ble) framework, one that resonates with
several contemporary ideas of how the
brain deals with learning representations
for context-dependent decisions.
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