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The sub-lexical conversion of graphemes-to-phonemes (GPC) during reading has been
investigated extensively with behavioral measures, as well as event-related potentials
(ERPs). Most research utilizes silent reading (e.g., lexical decision task) for which
phonological activation is not a necessity. However, recent research employed reading
aloud to capture sub-lexical GPC.The masked priming paradigm avoids strategic processing
and is therefore well suitable for capturing sub-lexical processing instead of lexical effects.
By employing ERPs, the on-line time course of sub-lexical GPC can be observed before the
overt response. ERPs have revealed that besides phonological activation, as revealed by
behavioral studies, there is also early orthographic activation.This review describes studies
in one’s native language, in one’s second language, and in a cross-language situation. We
discuss the implications the ERP results have on different (computational) models. First, the
ERP results show that computational models should assume an early locus of the GPC.
Second, cross-language studies reveal that the phonological representations from both
languages of a bilingual become activated automatically and the phonology belonging to the
context is selected rapidly. Therefore, it is important to extend the scope of computational
models of reading (aloud) to multiple lexicons.
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Reading aloud is executed without much conscious thought,
though it requires complex underlying processing for correct
execution. The process can be divided into three general steps.
The first step is visual word recognition. This step consti-
tutes the identification of letter features followed by letter and
grapheme identification, which finally results in the identifi-
cation of the whole word (e.g., Ferrand and Grainger, 1992;
Grainger and Ferrand, 1994; Frost, 1998; Carreiras et al., 2005;
Grainger, 2008). The second step is the conversion of the ortho-
graphic representation into a phonological representation (i.e.,
grapheme-to-phoneme-conversion; GPC). The final step concerns
the actual overt production of the printed word, the conversion of
the orthographic or phonological representation into a phonetic
code that activates the corresponding articulatory-motor program
(Browman and Goldstein, 1988).

The goals of this review are: (1) to give insight into the
time course of sub-lexical activation of orthography and phonol-
ogy during reading aloud, (2) identify the locus of GPC, and
(3) to propose how ERP results can inform computational
models. This topic has mostly been investigated with the lex-
ical decision task (LDT) combined with the masked priming
paradigm (e.g., Carreiras et al., 2005; Grainger and Holcomb,
2009). In masked priming, a visible target stimulus is preceded
by the brief presentation of a prime stimulus to avoid strate-
gic processing (Forster, 1998). It is assumed that the sub-lexical
segments of the masked prime are activated. When the target
is presented and segments match, they are pre-activated and

brain activity reaches a specified threshold faster (Horemans
and Schiller, 2004). However, LDT (i.e., deciding whether stim-
uli are words or non-words) is strongly influenced by lexical
factors such as word frequency, familiarity, and neighborhood
size (Balota et al., 2004). Therefore, it cannot be ascertained
that sub-lexical GPC is captured. When reading aloud is com-
bined with masked priming the lexical effects are minimized.
This mini-review focuses mainly on the latter research to cap-
ture sub-lexical GPC. It also focuses on electrophysiological
measures to demonstrate the online time course of the GPC pro-
cess before the endpoint of processing (captured by behavioral
data).

Below, the computational models that simulate reading (aloud)
will be described. Next, behavioral and event-related potentials
(ERPs) studies revealing the underlying processes of reading aloud
are discussed. Lastly, we discuss how well the models account for
the behavioral and ERP findings in the literature.

MODELING THE READING PROCESS
Models of reading can be distinguished based on the locus of the
GPC process: early or late. However, the early models modulate
GPC rules in slightly different manners. For instance, according
to the dual-route cascaded (DRC) model, in the lexical route, the
phonology of a written word is retrieved as a whole (parallel) from
the mental lexicon. In the non-lexical route, graphemes are trans-
ferred one by one (serial) into corresponding sound codes (i.e.,
phonemes) on the basis of GPC rules. From beginning-to-end of
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a word1, a rule is found for translating each letter into a phoneme
(e.g., <c> is pronounced as /s/ when the following letter is a front
vowel like <e, i, y>, and pronounced as /k/ when the following
letter is a back vowel, like <o, a>). Non-word reading can only
be simulated by the non-lexical route because non-words do not
have a lexical entry. Irregular words (e.g., pint) can only generate
a correct pronunciation in the lexical route (i.e., correct /paınt)
as the non-lexical route follows standard GPC rules (i.e., incor-
rect /pínt/). This causes competition between the routes, which
slows down processing for irregular compared to regular words
that have matching pronunciations for both routes (see Figure 1;
Coltheart et al., 2001; Mousikou et al., 2010). Evidence for serial
processes comes from the beginning-to-end nature of the reg-
ularity effect, which demonstrates longer naming latencies for
irregular words that have exceptional spelling early in the word
(e.g., pint) compared to late in the word (e.g., debris; Coltheart
and Rastle, 1994; Rastle and Coltheart, 1999). Additional evidence
comes from position dependency of the masked onset priming
effect (MOPE) for onset-related but not offset-related prime-
target pairs (Forster and Davis, 1991; Kinoshita, 2000; Schiller,
2004).

Another dual-route computational model, the connection-
ist dual process [CDP(+)+] model, has taken the lexical route
from the DRC model. However, the non-lexical route is not
rule based like the DRC model, but instead a simple two-
layer network is employed. In this network the input layer
represents the written word and the output layer represents
the phonological representation belonging to the written word.
The network is trained on grapheme-phoneme correspondences,
through a graphemic buffer, which means not only single let-
ters but also multi-letter graphemes are represented (e.g., longer
graphemes are preferred over shorter: <kn> over <k> to read
knife; context sensitivity for <c> in carpet; Perry et al., 2007,
2010). The correct pronunciation is chosen in the phonological

1Most alphabetic scripts have a writing system from left-to-right, but most Semitic
and Indo-European languages, like Persian, are written from right-to-left.

output buffer where the pronunciations of both routes come
together (i.e., lexical route /paınt/; non-lexical route /pınt/; see
Figure 1).

The triangle model suggests orthography can be linked to
phonology directly or mediated by semantics. Similar to the
CDP++ model, in the triangle model orthographic input units
are converted to phonological output units through hidden units
during a training period. After the conversion of each word,
the phonological output is compared to the phonological target
word. Based on error for the output units, weights are updated to
reduce the error. Thus, irregular GPC correspondences are learned
through consistency (Harm and Seidenberg, 2004; see Figure 1).

The MOPE is believed to reflect the GPC process. Models
assuming an early locus of GPC suggest that a MOPE will only
be present for low-frequency words and the effect will disap-
pear when applying a lexical decision or conditional naming task
(i.e., only naming real words while they are intermixed with non-
words; Forster and Davis, 1991; Coltheart et al., 2001; Kinoshita
and Woollams, 2002). However, this idea is not unchallenged;
the speech-planning account has suggested a later locus of GPC,
namely during the segment-to-frame association part of speech-
planning (Kinoshita, 2000; Kinoshita and Woollams, 2002). This
process involves the retrieval of a word’s phonological segments
and combining them with the metrical frame of a word (e.g.,
number of syllables and stress pattern) to create the speech plan
necessary for speech production (Levelt et al., 1999). The MOPE
is explained by a conflict from mismatching onset phonemes
between prime and target holding up the segment-to-frame asso-
ciation process. Other behavioral data, like the regularity effect,
can also be explained by a hold up in the segment-to-frame
association process (Kinoshita, 2000; Kinoshita and Woollams,
2002).

The models described above only address reading in
one language. However, next to within-language priming,
cross-language phonological priming reflects fast and auto-
matic activation of both the first (L1) and second lan-
guage (L2) GPC rules (Dijkstra and van Heuven, 2002). The

FIGURE 1 | Schematic representations of computational models of reading (aloud) and speech production.
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bilingual interactive activation (BIA) model (Dijkstra and van
Heuven, 2002) can explain L2–L1 cross-language priming effects
because it assumes a single lexicon in which words from the dif-
ferent languages a bilingual speaks are simultaneously activated
and interconnected (i.e., language non-specific selection) but can
also mutually inhibit each other. This is necessary because when
bilinguals speak in one language, they must inhibit words from
the non-target language to avoid interference. Current research
supports the notion that at the lexical level, our languages are
represented together (i.e., non-selectively), which is supported
by research showing cross-language competition and language
switching costs (see Figure 1; Dijkstra and van Heuven, 2002).
However, is it only the lexical level where all languages are repre-
sented collectively or does it extend to the sub-lexical orthographic
and phonological level?

BEHAVIORAL FINDINGS
Models of reading suggest different loci of GPC: sub-lexical or
during speech preparation. Facilitation for shared onset seg-
ments (i.e., called MOPE in priming paradigms) during reading
aloud tasks (i.e., word naming; e.g., Forster and Davis, 1991;
Kinoshita, 2000, 2003; Kinoshita and Woollams, 2002; Schiller,
2004, 2007, 2008; Malouf and Kinoshita, 2007), implicit priming
studies (e.g., Meyer, 1991; Damian and Bowers, 2003; Alario et al.,
2007), picture–word interference (PWI) tasks (e.g., Schriefers
et al., 1990; Meyer and Schriefers, 1991), and color–object pic-
ture naming tasks (Damian and Dumay, 2007, 2009), but not
during LDT (Forster and Davis, 1991; Grainger and Ferrand,
1996; Carreiras et al., 2005) or conditional naming (Kinoshita
and Woollams, 2002) could suggest that GPC facilitation effect
occurs during speech preparation as this step is not necessary
for non-production tasks (speech-planning account; Kinoshita,
2000; Kinoshita and Woollams, 2002). However, models assum-
ing an early locus of GPC can explain the absence of a MOPE
during LDT by means of an overall slowdown during the
lexical decision process which dissolves any earlier facilitation
effects.

In a similar manner, opaque Persian words (i.e., words con-
taining short vowels not marked in the spelling; e.g., /solh/ ;
peace), just as English irregular words (e.g., pint), require lex-
ical knowledge to be read aloud correctly (Baluch and Besner,
1991) and do not show a MOPE (Timmer et al., 2012). The
conflict between the incorrect pronunciation (i.e., /pínt/) in the
non-lexical route and the correct pronunciation (i.e., /paınt/)
in the lexical route slows down processing and dissolves earlier
facilitation effects, like the MOPE, according to the DRC model
(Coltheart et al., 2001; Mousikou et al., 2010). For transparent Per-
sian words (i.e., words containing long vowels which are marked;
e.g., /sot/; voice) there is no competition between routes,
and no slowdown occurs, therefore revealing a MOPE just like
regular English words do. The speech-planning account explains
these effects by a holdup during the segment-to-frame-association
of speech-planning. For example, conditional naming (i.e., only
naming words but not non-words) latencies are slower than when
all words are named. The time criterion is set at a point in
time that is appropriate for the type of words to be named cor-
rectly. A later time criterion could also be adopted for irregular

words. The later time criterion for irregular words could dis-
solve the effect of matching onset segments (Kinoshita, 2000;
Kinoshita and Woollams, 2002). Thus, these behavioral results
cannot differentiate between the different accounts on the locus
of the MOPE. One way to investigate whether GPC has an early
(DRC and CDP++) or late (speech-planning account) locus is by
employing an electrophysiological measure that can determine the
time-course on the millisecond from target presentation to overt
production.

Furthermore, behavioral results suggest that the MOPE, reflect-
ing GPC, is phonological in nature; words that match on
orthography (but not phonology; e.g., circle – CARPET), show
similar response latencies compared to an unrelated prime-target
pair (e.g., powder – CARPET). However, response latencies are
faster when phonology, rather than orthography, is matched
(e.g., kernel – CARPET) compared to the unrelated condition
(e.g., Schiller, 2007; Mousikou et al., 2010; Timmer and Schiller,
2012; Timmer et al., 2012). The above literature demonstrat-
ing segmental priming (MOPE) employed alphabetic languages.
Syllabic languages (e.g., Mandarin and Chinese), however, only
show facilitation with full syllable overlap during reading aloud
(Verdonschot et al., 2011), implicit priming (Chen et al., 2002),
PWI (Wong and Chen, 2008, 2009), and color–object naming
(Qu et al., 2012). This difference may be due to the writing
system (i.e., each character represents a syllable) or syllable
structure (i.e., simpler in syllabic languages; Davenport et al.,
2010).

Above, we have interpreted the findings in light of L1 research.
However, the phonological MOPE presents not only in one’s
L1 but also in one’s L2 (Timmer and Schiller, 2012), and even
in cross-language contexts (Jouravlev et al., 2014; Timmer et al.,
2014a,b). For example, an L2 (English) prime that was phono-
logically related to the onset of an L1 (Dutch) target (e.g., phone
– FIETS) revealed faster response latencies compared to an unre-
lated condition (e.g., pain – FIETS). These results suggest that both
L1 and L2 phonology become rapidly activated from a masked
prime while performing a task in the L1. In addition, under cer-
tain circumstances Mandarin–English bilinguals reveal segmental,
instead of only syllabic, priming during Mandarin reading due
to their knowledge of an alphabetic language (Verdonschot et al.,
2013).

ELECTROPHYSIOLOGICAL TIME COURSE
The measure of ERPs provides empirical answers to the locus
of the MOPE by providing an on-line time course of the read-
ing process. The visual word recognition literature (LDT) has
associated the N250 ERP component with sub-lexical GPC (e.g.,
Grainger et al., 2006; Holcomb and Grainger, 2006; Carreiras
et al., 2009; Grainger and Holcomb, 2009; Midgley et al., 2009;
for an overview see Grainger and Holcomb, 2009). However, that
LDT promotes lexical processing. In addition, large prime-target
overlap has often been used (e.g., conal – CANAL or brane –
BRAIN) which also promotes top-down processing and cannot
suggest sub-lexical processing. Therefore, studies using reading
aloud and only segmental onset overlap provide stronger evi-
dence for the time course of sub-lexical GPC, presenting itself
as a negative ERP component between 80 ms and up to 200 ms
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after target presentation (Timmer and Schiller, 2012; Timmer
et al., 2012). The peak occurred around 150 ms during read-
ing instead of 250 ms during LDT. The reading aloud literature
is in line, though slightly earlier, with a meta-analysis of word
naming, proposing that the GPC process occurs approximately
150–330 ms after target presentation and not a late locus of GPC
during speech preparation, as proposed by the speech-planning
account (Kinoshita, 2000; Kinoshita and Woollams, 2002), within
the 330–600 ms time window (Indefrey and Levelt, 2004; Indefrey,
2011).

Even stronger support for the early locus of GPC comes from
the presence of phonological priming for both transparent and
opaque Persian words in the 80–160 ms time window, though
only transparent words showed a MOPE behaviorally. During the
300–480 ms time window, phonological activation is only found
for transparent Persian words (Timmer et al., 2012; Figure 2). This

supports the DRC, CDP ++, and triangle models where GPC takes
place early during the non-lexical route. When the two routes come
together, in the output buffer, the multiple pronunciation options
for Persian opaque words slow down processing and eliminate the
MOPE for opaque words in both the ERPs and the behavioral
results. Just like opaque words (Timmer et al., 2012), irregu-
lar words (Kinoshita and Woollams, 2002) and unpronounceable
strings of consonant (Dimitropoulou et al., 2010) do not show a
MOPE behaviorally. Based on the behavioral absence of a MOPE
for opaque words but its presence in the early ERPs we would also
expect early ERP effects for irregular words and unpronounceable
non-words in possible future endeavors.

Further, behavioral data demonstrated phonological, but not
orthographic facilitation, suggesting that the MOPE is phonolog-
ical in nature. However, ERPs revealed both orthographic and
phonological activation during the N250 component without an

FIGURE 2 | Averaged stimulus-locked event-related potential (ERP)

waveforms during a masked priming paradigm demonstrate the online

time course of grapheme-to-phoneme-conversion (GPC) during reading

aloud. Transparent words (i.e., words with marked vowels) are represented
by black lines and opaque words (i.e., words with vowels not marked) by gray
lines. For both word types, more negative amplitudes for phoneme-mismatch
(O−P−; e.g., respectively, /ta:b/ “swing” – /sot/ “voice” and
/ta:b/ “swing” – /sot/ “voice”; dashed lines) than phoneme-match
(O−P+; e.g., /sa:l/ “year” – /sot/ “voice” and /sa:l/ “year” –
/sot/ “voice”; solid lines) conditions in the 80–160 ms time window

demonstrate phonological priming. This supports an early locus of GPC for
both word types. During the 300–480 ms time window, this effect is only
continued for the transparent words. This later time window might reflect
processing in the output buffer. The multiple pronunciation options for Persian
opaque words slow down processing and eliminate the masked onset
priming effect (MOPE) for opaque words in both the ERPs and the behavioral
results. To conclude, ERPs demonstrate that in spite of the discrepancy in
behavioral measures all word types have an early GPC. (A 20 Hz filter was
applied for the clarity of the waveforms.) This Figure has been published
before in Timmer et al. (2012).
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amplitude or latency difference in onset. This suggests automatic
and rapid GPC during reading aloud (Timmer and Schiller, 2012;
Timmer et al., 2012). Phonological activation has a frontal dis-
tribution which is in line with an fMRI meta-analysis showing
more left inferior parietal activation for pseudo- than words indi-
cating more effortful processing during the non-lexical route for
pseudo-words (Taylor et al., 2013). In contrast, LDT literature
usually shows phonological activation (250–350 or 350–450 ms)
after orthographic activation (150–250 ms; Grainger et al., 2006;
Carreiras et al., 2009). Later phonological activation for LDT
could occur because retrieving phonological codes during silent
reading is non-essential. Another possibility is that the large
prime-target overlap strengthened lexical phonological effects.
Interestingly, behavioral research revealed that segment-only
overlap was not enough to facilitate priming in syllabic lan-
guages; however, ERPs revealed that Mandarin speakers did
process the segment initially (Qu et al., 2012). When a pic-
ture and word shared all phonological segments except the
consonantal onset, no phonological activation presented itself
in the ERPs for category associates (Jescheniak et al., 2003)
as phonological activation occurs from beginning-to-end of a
word.

Cross-language ERP results show orthographic and phonolog-
ical activation during the same time windows as for L1 research
suggesting rapid and automatic activation of the sub-lexical
phonology of both the L1 and L2 whereby the phonology belong-
ing to the language of the word is automatically selected (Jouravlev
et al., 2014; Timmer et al., 2014a,b). To conclude, these results
provide additional evidence for an early locus of the MOPE. How-
ever, most computational models cannot account for GPC rules
or grapheme-phoneme correspondences from multiple languages
within one system.

During reading aloud studies, orthographic and phonologi-
cal effects continue into later time-windows to different extents.
At this moment, it is not entirely clear why the priming effects
are maintained at later components in some cases, but not in
others. However, LDT research has already shed light on the pos-
sible meaning of these later components. The P325 has been
associated with lexical form processing; it was demonstrated to
be susceptible to partial (e.g., teble – TABLE) compared to full
repetition priming, but not to unrelated compared to partial
priming (Holcomb and Grainger, 2006). However, the reading
aloud literature has always used unrelated and partial priming
and has shown that effects continue into this later compo-
nent (Timmer and Schiller, 2012; Timmer et al., 2012, 2014a,b;
Jouravlev et al., 2014). The N400 is believed to be a form-meaning
interface in LDT research (e.g., Holcomb and Grainger, 2006;
Grainger and Holcomb, 2009). Future research is necessary to
add to the understanding of later components in the reading
process.

DISCUSSION
Behavioral data have not been able to differentiate between mod-
els of visual word recognition assuming an early locus of GPC
(DRC; CDP+, and triangle model) and a late locus of GPC
(speech-planning account). Recent ERP studies have clearly shown
GPC occurring approximately 150 ms after target presentation,

providing neural evidence for an early locus (Timmer and Schiller,
2012; Timmer et al., 2012, 2014a,b; Jouravlev et al., 2014).

All models assuming an early locus of GPC can explain the
within-language phonological MOPE, though each does so slightly
differently. For words starting with letters that have multiple
print-to-sound associations (e.g., <c> as /s/ or /k/) the DRC
model suggests GPC takes place in the non-lexical opposed to
the lexical route and is rule-based. For example, context rules
assure that the first <c> in circus is read as an /s/ because it
is followed by a front vowel and as a /k/ in carpet because it is
followed by a back vowel. In contrast, the CDP+ and triangle
model are not rule-based, but train the model on GPC corre-
spondences. The phonological output of the model is compared
to the orthographic input and adjusted if necessary, based on,
for example, context sensitivity in the CDP+ model. The trian-
gle model adjusts its weights based on erroneous phonological
outputs.

The cross-language phonological MOPE currently cannot be
accommodated by these computational models as they have not
focused on bilingualism. To do so, however, may be possible with
some simple modifications. To accommodate for both L1 and
L2 GPC, when deviating from each other (e.g., <kn> as /kn/
in Dutch and /n/ in English), this could be handled in a similar
manner as is now done for multiple print-to-sound-associations
within a language. Instead of using the following vowel as a
context, as for only L1 GPC, the language of the word may be
used as a context to select L1 or L2 GPC. The DRC model must
add additional rules, the CDP++ model must be trained on
L2 words, and the triangle model must adjust weights depend-
ing on the language of the word. For syllabic languages, Roelofs
(2014) adjusted the WEAVER++ model (Levelt et al., 1999) to
accommodate the absence of segmental priming. While the lex-
ical word activates all its segments and metrical frame (stress)
in alphabetic languages, it immediately activates atonal sylla-
bles in syllabic languages. To conclude, the present behavioral
and neural results suggest future directions for computational
models.
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