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A large body of research has documented infants’ ability to classify animate and inanimate
objects based on static or dynamic information. It has been shown that infants less than
1 year of age transfer animacy-specific expectations from dynamic point-light displays to
static images. The present study examined whether basic motion cues that typically trigger
judgments of perceptual animacy in older children and adults lead 7-month-olds to infer an
ambiguous object’s identity from dynamic information. Infants were tested with a novel
paradigm that required inferring the animacy status of an ambiguous moving shape. An
ambiguous shape emerged from behind a screen and its identity could only be inferred
from its motion. Its motion pattern varied distinctively between scenes: it either changed
speed and direction in an animate way, or it moved along a straight path at a constant speed
(i.e., in an inanimate way). At test, the identity of the shape was revealed and it was either
consistent or inconsistent with its motion pattern. Infants looked longer on trials with the
inconsistent outcome. We conclude that 7-month-olds’ representations of animates and
inanimates include category-specific associations between static and dynamic attributes.
Moreover, these associations seem to hold for simple dynamic cues that are considered

minimal conditions for animacy perception.
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INTRODUCTION

To recognize a given entity as being either animate or inanimate
is thought to be a fundamental process characterizing human
perception and cognition (e.g., Opfer and Gelman, 2010). Fur-
thermore, the perception of animacy has been hypothesized to
relate to the broader domain of social cognition (Pavlova, 2011,
2013; Kaiser and Shiffrar, 2013). Many developmental studies have
shown that infants differentiate between these global categories
within the first year of life (e.g., Mandler and McDonough, 1993,
1998; Behl-Chadha, 1996; Quinn and Johnson, 2000; Pauen, 2002).
Being interested in what kind of information infants may use for
developing such broad categories, a large body of research explores
the role of static information. Among those static attributes consid-
ered relevant for identifying animates in terms of their appearance
are facial features (e.g., Smith and Heise, 1992; Johnson et al., 1998;
Johnson, 2000), leg-like appendages (Mandler and McDonough,
1993, 1998; Rakison, 2005), body configuration (e.g., Eimas
and Quinn, 1994; Eimas etal., 1994), and surface information
(Johnson et al., 1998; Woodward et al., 2001).

Other studies have explored infants’ knowledge of proper-
ties of animates and inanimates based on dynamic information.
Presenting point-light displays which show only the move-
ment pattern but not the appearance of objects, Bertenthal
etal. (1984) demonstrated that 4-month-olds distinguish biolog-
ical from mechanical motion (see also Bertenthal etal., 1985).
Arterberry and Bornstein (2001) found that infants as young as
3 months were able to categorize animals and vehicles based on
point-light displays.

Some other work has focused on dynamic attributes which
are defined in causal or functional terms. Among those behav-
ioral properties which seem crucial for identifying animate beings
are goal-directedness (e.g., Gergely etal., 1995; Rochat etal,
1997; Shimizu and Johnson, 2004; Luo and Baillargeon, 2005;
Schlottmann and Ray, 2010) and self-propelledness. For exam-
ple, even 7-month-olds expect only humans to be self-propelled
(e.g., Poulin-Dubois etal., 1996; Saxe etal., 2005; Markson and
Spelke, 2006; Pauen and Triuble, 2009). In sum, developmental
research clearly suggests that infants less than one year of age are
well able to distinguish animals and inanimate objects according
to their motion behavior, as well as their appearance in categorical
terms.

Being interested in how infants become able to relate specific
motion pattern to category-specific behavioral features, numer-
ous studies have focused on infants’ attribution of goals to
biologically moving entities (e.g., Shimizu and Johnson, 2004;
Luo and Baillargeon, 2005; Schlottmann and Ray, 2010). Cor-
responding data suggests that young infants attribute goals
even to schematic shapes if presented in animate motion
(typically operationalized as non-rigid, caterpillar motion, or
self-propulsion).

To date only a few studies have addressed the question of
how infants become able to relate specific motion pattern to
category-specific appearance and to infer one from the other.
Pauen and Triuble (2009) tested whether 7-month-old infants
consider category-boundaries (animate, inanimate entities) when
ascribing self-propelledness within an ambiguous motion event.
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Infants were shown an unfamiliar animal and a ball, physically
connected to each other and performing a contingent animate-
like motion on a small stage (i.e., self-propelled, following a
non-linear path; see Mandler, 2004). When both entities were
later presented motionless in separate locations, infants expected
the animal and not the ball to start moving again. Because the
spatiotemporal information was ambiguous (i.e., both objects
showed the same type of motion), infants had to consider dis-
positional status information in order to ascribe the origin of
motion to one of the objects. Consistent with this interpreta-
tion, a follow-up study by the same authors revealed that infants
no longer showed looking preferences for the animal when static
features characteristic for the appearance of animate beings were
either removed (i.e., facial features) or replaced by inanimate
features (i.e., furry body replaced by a plastic spiral). This pat-
tern of results demonstrates that 7-months-old infants can form
category-specific relations between static and dynamic attributes
and that infants attend to static information (facial and body fea-
tures) about the dispositional status of the entities in order to
identify the “motion-originator” in a spatiotemporally ambiguous
motion event.

While both types of information were provided simul-
taneously in the Pauen and Triauble (2009) paradigm,
Arterberry and Bornstein (2002) were interested in infants’ abil-
ity to transfer their expectations from dynamic to static displays
of animates and inanimates and vice versa. Differing from Pauen
and Trauble (2009), the dynamic displays were realized as point
light displays, thereby conveying reduced shape information. The
authors provided 6- and 9-month-olds with either pictures or
with dynamic point-light-displays showing different exemplars of
the same global category (either animals or vehicles) for famil-
iarization. At test, one new exemplar of the familiar category
was combined with one exemplar of the contrasting category.
When the same kind of presentation format was used during
familiarization and at test, even 6-month-olds showed a positive
categorization response, hence suggesting that static or dynamic
cues can both provide the basis for categorizing animals and
vehicles at an early age. When infants were familiarized with point-
light-displays and saw pictures at test, 6-month-olds failed, but
9-month-olds succeeded in discriminating both global categories.

It should be noticed that point-light displays are created by
highlighting the joints of the entities to be studied, they pro-
vide implicit shape information (Cutting, 1978; Giese and Poggio,
2003; Schlottmann and Ray, 2010). Hence, Pauen and Triuble
(2009), as well as Arterberry and Bornstein (2002) provided infants
with characteristic shape information about the entities shown
in motion. In the present study we asked whether 7-month-olds
are able to use markedly reduced dynamic information about
motion path to infer the identity of a morphologically ambiguous
entity.

In the literature on perceptual animacy, numerous studies
have manipulated the motion of simple objects, such as geomet-
ric shapes (see Gelman and Opfer, 2002; Rutherford etal., 2006;
for reviews, see Scholl and Tremoulet, 2000; Gyulai, 2004). The
rationale for this work is that when the identity of an object
is ambiguous, animacy can be detected by using motion cues.
Blythe etal. (1999) have argued that a small set of motion cues

can be sufficient not only to determine whether or not a moving
object is animate, but also to determine what intention motivated
the object’s movement. Tremoulet and Feldman (2000) examined
human perception of animacy, based on the motion of simple
geometric shapes. In their study, adult participants responded
to displays of single objects moving across an otherwise empty
background. Their experiments revealed that even very simple
motions can serve as effective cues to our perception of ani-
macy; more specifically, changes in speed and direction seem
to be crucial for perceiving a given entity as animate (especially
when adding orientation changes in the sense that the object’s
principal axis is always aligned with the direction of motion).
Schultz and Biilthoff (2013) have shown that a single-dot stimu-
lus can evoke the impression of a natural animate entity. Using a
parametric design, the authors induced a gradual variation in the
percept of animacy by systemically manipulating the impression
of self-propelledness. Changes in this movement parameter led to
gradual animacy judgments in adult participants without resort-
ing to additional information about form or interaction between
objects.

Previous studies suggest an early sensitivity to some dynamic
cues to animacy (e.g., self-propulsion). However, infants’ sen-
sitivity to the specific cues that trigger animacy perception in
adults has not yet been studied systematically. We do not yet
know whether information about the speed constancy and direc-
tion of a given object’s motion is sufficient to make infants, like
adults, to form expectations regarding the animacy status of a
given entity. The present study addresses this issue. For this pur-
pose, we developed a paradigm that requires infants to infer the
identity of a moving “shadow,” a gray colored silhouette whose
ambiguous shape does not reveal its identity. Speed constancy,
motion direction, and orientation of the shadow’s motion were
distinctively varied to disambiguate the animacy status of the
target entity before it was finally revealed during the test phase.
We tested 7-month-olds, based on the findings of Pauen and
Trauble (2009) who demonstrated that infants at that age asso-
ciate self-propelled motion with animals but not with inanimate
objects. If 7-month-old infants can infer the identity of the shadow
based on motion cues alone, we expected them to look longer
at test trials revealing inconsistency between appearance infor-
mation and previous motion information regarding the target
entity.

ETHICS STATEMENT

All experiments reported in this manuscript were conducted at
a German University where institutional review boards or com-
mittees are not mandatory, but where researchers need to follow
the rules and regulations of the code of conduct for good sci-
entific practice (http://www.uni-heidelberg.de/universitaet/profil/
wissenschaftliche_praxis/). The study complies with the APA
ethical standards.

The experiments consisted in non-invasive and unconstrained
behavioral observations of infants. Prior to the experimental ses-
sion, parents were given full information about the procedure and
the duration of the experiment. Only infants, for whom parental
informed consent was obtained, participated in the study. The data
were analyzed anonymously.
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EXPERIMENT 1

METHOD

The basic principle of the shadow paradigm is to present infants
with two entities casting identical shadows when hidden behind
a semi-opaque screen (phase 1) before showing only one shadow
moving either in an animate or an inanimate way (phase 2). At test
(phase 3) the semi-opaque screen is removed to reveal one object
whose motion was either consistent or inconsistent with its ani-
macy status. We predicted that 7-month-olds would look longer
at inconsistent than at consistent trials. To test this assumption,
we used a within-subject design.

PARTICIPANTS

A total of 35 7-month-old infants (M = 7 months, 13 days;
range = 7 months, 1 day to 7 months, 29 days), 18 girls and
17 boys participated. 10 additional infants had to be excluded due
to fussiness (n = 2), not looking at least 3 s at the critical motion
event during phase 2 (n = 2), or failing to look during all four
test trials during phase 3 (n = 6). All infants came from a White,
middle-class socioeconomic background.

MATERIALS

The stimuli were two animate beings (dog, cow), and two inani-
mate objects (truck, motorcycle), each presented as realistic 2D
photographs. We chose mammals and vehicles because exem-
plars of both types have a comparably complex appearance as
well as parts associated with movement. Perhaps most impor-
tantly, identical blurred shadows in terms of overall shape and
size could be created when both objects were covered by a semi-
lucent screen. The dog was always paired with the truck, and
the cow was paired with the motorcycle. The two entities were
presented in computer-animated scenes (created with Microsoft®
Power Point®).

DESIGN

Using a within-subjects design, each infant was administered
four trials including both stimulus pairs (two consecutive tri-
als including dog-truck, two consecutive trials including cow-
motorcycle). The first two trials (Part A) as well as the last
two trials (Part B) ended with the same outcome object. If the
first two trials ended with the animate object of the respective
object pair, then the last two trials ended with the inanimate
object of the respective object pair and vice versa (e.g., trial
1 and 2 showed the dog at test, trial 3 and 4 showed the
motorcycle). The type of motion pattern shown during the
motion scene alternated between the four trials. Whether the
first trial included an animate motion or an inanimate motion
during the motion presentation phase, i.e., whether this motion
pattern was consistent or inconsistent with the object shown
at test, was counterbalanced across the entire sample. Each
infant saw two consistent and two inconsistent test trials (see
Figure 1).

PROCEDURE

Infants were tested in a dimly lit room and sat in a high chair ata
distance of 70 cm from the monitor. Presentations were shown on
a 17" TFT monitor and infants’ looking behavior was recorded

Object pair Possible motion pattern  Possible outcome
on the left of the shadow object on the right
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FIGURE 1 | Object-pairs, motion patterns and test-outcomes presented
on each trial.

by a Tobii T60 eye-tracker (TOBII Technology AB, Danderyd,
Sweden).

The stimuli (approximate size: 5.3 x 3.8 visual degrees)
were presented in computer-animated scenes (32.5 x 12.9 visual
degrees) each consisting of three phases. During phase 1, infants
were shown both stimuli as well as three separate screens: two
smaller screens covering 25% of the scene on the left and the
right side of the display, respectively, and one screen covering
the middle of the display (50%). At the beginning of each trial,
infants first saw one pair of stimuli (e.g., dog-truck), placed above
each other, both located on the left side of the display. During
a 15-s time interval the two objects were covered and uncovered
three times by a semi-lucent screen emerging from, and disap-
pearing to the left side of the display. When covered, the two
objects appeared as two identical shadows (see Figures 2A-C).
After the third covering event with the left screen, another semi-
lucent screen was lowered down to cover the middle section of the
screen and remained in place. Next, an opaque screen emerged
from the right side of the screen and covered the right side of the
display, followed by an additional opaque screen entering from the
left side overlaying the left semi-lucent screen and fully covering
both shadows (see Figures 2D-F). At the end of phase 1, which
lasted a total of 25 s, all three screens (two opaque and one semi-
lucent) covered the display thus hiding the two stimuli as well as
their shadows.

During phase 2 (motion phase) that immediately followed
phase 1 and lasted for 10 s, infants saw one single shadow emerg-
ing from behind the middle of the left opaque screen, moving
across the middle semi-lucent screen and disappearing behind
the right opaque screen (see Figures 2G,H). The motion pat-
tern was either animate or inanimate: The animate motion pattern
included changes in speed constancy (4x motion changes) as
well as direction changes (3x approximately 45° turns, starting
with a 45° angle of climb), with the principal axis of the shadow
always aligned with the direction of motion. These changes were
evenly distributed across the 10-s motion phase so that infants
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who were attentive to the motion phase for 3 s or more saw at
least one change in speed constancy and one direction change.
Infants who did not meet this criterion were excluded from further
analyses.

The inanimate motion pattern included a constant linear tra-
jectory from the left to the right side of the scene. To ensure
consistency across conditions, infants also needed to look for
at least 3 s in the linear-motion presentations in order to be
included in the final sample. Because the shadows for both the
animal and the vehicle looked identical, static perceptual informa-
tion could not be used to infer which of the two stimuli moved
behind the semi-transparent screen. The only information avail-
able for making inferences about the object identity was its motion
pattern.

Phase 3 (test phase) started once the shadow had disappeared
behind the right opaque screen. The opaque screen then slid
to the right (3 s) revealing either the animate or the inanimate
entity presented during phase 1 (see Figure 2I). The corre-
sponding stimulus was presented for 15 s. Depending on the
motion pattern presented during phase 2 and the stimulus revealed
during phase 3, the trials could either be consistent (i.e., an
animal following the animate motion or a vehicle following the
inanimate motion) or inconsistent (i.e., an animal following an
inanimate motion, or an inanimate object following an animate
motion).

The total duration of the presentation (all four trials) was
about 3.5 min. For every given pair of stimuli (i.e., dog-truck,
cow-motorcycle), each entity was shown once in the upper
position and once in the lower position during the first phase. Each
entity appeared equally often as test-exemplar and was equally
often preceded by an animate or an inanimate shadow-motion
during the motion phase.

The parent sat in a nearby chair and was asked not to interact
with the infant. During the presentation, the experimenter was
occluded by a curtain and monitored infants’ fixations via a video-
camera. As soon as the infant’s attention was focused on the screen,
the experimenter started the computer-controlled presentation.
For the first 15-s period of each trial (phase 1) it was measured
how long infants looked to the left 25% part of the screen, showing
both objects one above the other. For each test phase (phase 3), an
area of interest (AOI) was defined that covered the outcome-object
(including an approximately 0.9 visual degree outline to account
for sampling errors). Infant’s fixation duration to that AOI during
the test phase was measured. Fixation was defined as stable gaze
within one visual degree for at least 200 ms (e.g., Gredebick etal.,
2010).

RESULTS AND DISCUSSION
The mean looking time during the first 15 s period showing
the two objects before the semi-lucent screen covered them for
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the third time was 4.57 s (SE = 0.16). Infants had no a priori
preferences for one of the two object pairs shown during phase 1
[dog-truck: M = 4.41 s, SE = 0.24; cow-motorcycle: M = 4.49,
SE = 0.26; t(34) = —0.24, p = 0.81]. There was also no signifi-
cant motion-type dependent difference in infants’ looking times
during the motion phase (phase 2) with similar looking times
at animate motion scenes (M = 6.22, SE = 0.21) compared to
inanimate motion scenes (M = 6.08, SE = 0.22), t(34) = 1.35,
p=0.18.

For the test phase, an analysis of variance was conducted to test
whether infants differentiated between test trials showing objects
congruent or incongruent with the observed motion pattern of
the shadow. Preliminary analyses revealed that neither the type
of object (animate or inanimate objects at test), nor the order
of presentation (consistent or inconsistent outcomes first) had
any effect on infants’ looking responses during the test trials.
A 2 x 2 repeated measures analysis of variance was conducted
with Congruency Type (motion pattern consistent or inconsis-
tent with test object) and Motion Type (animate or inanimate
motion) as within-subjects factors. This analysis revealed a signif-
icant main effect for Congruency Type F(1,34) = 34.00, p < 0.001,
n? = 0.50, with longer looking times for inconsistent outcomes
(Minconsistent = 4.54, SE = 0.28) compared to consistent ones
(M consistent = 3.19, SE = 0.21). No other main effect or interaction
was observed.

An examination of individual infants’ looking times confirmed
these results. 30 of the 35 infants looked on average longer at
the incongruent test trials compared to the congruent test trials
[x%(1) = 17.86, p < 0.001]. Figure 3 shows the mean looking
times for the congruent and incongruent test trials as a function
of Motion Type.

Mean looking time (s)

Inanimate Motion

Animate Motion

m Congruent Outcome W Incongruent Outcome

Motion Type

FIGURE 3 | Experiment 1. Mean looking times in seconds during
congruent and incongruent test trials (separated by motion type).
**p < 0.01. Error bars represent +1 SE.

As hypothesized, infants looked longer at test trials revealing
inconsistency between appearance information and previous
motion information regarding the target entity. This suggests
that they were able to use markedly reduced dynamic infor-
mation (changes in speed constancy and direction) to infer the
animacy status of the previously shown morphologically ambigu-
ous shadow. However, in the present study, infants always saw
both kinds of objects as static pictures at the beginning of the pre-
sentation, followed by the dynamic displays, and ending up with
one of the static picture. Hence we cannot rule out that infants
benefited by a priori static information to process the motion
information.

The aim of Experiment 2 was to clarify the relative impact
of given static information by replicating Experiment 1 without
presenting the two objects before the moving shadow.

EXPERIMENT 2

PARTICIPANTS

A total of 24 7-month-old infants (M = 7 months, 14 days;
range = 7 months, 1 day to 7 months, 30 days), 10 girls and
14 boys participated. Eight additional infants had to be excluded
due to fussiness (n = 3), or failing to look during phase 3 during all
four test trials (n=>5). All infants came from a White, middle-class
socioeconomic background.

MATERIAL AND PROCEDURE

Material, Design, and Procedure were the same as in Experiment
1, with the only difference that there was no presentation of the
two static pictures prior to the shadow’s motion. Consequently,
the presentation started by showing an opaque screen covering
the left side of the display. A semi-lucent screen was lowered
down to cover the middle section of the screen and remained
in place, followed by an opaque screen emerging from the right
side and covering the right quarter of the display. Next, the
motion phase started: One single shadow emerged from behind
the middle of the left opaque screen, moved across the mid-
dle semi-lucent screen and disappeared behind the right opaque
screen. The sequence of motion patterns (animate and inan-
imate patterns) as well as the duration of the motion phase
was identical to Experiment 1. The following test phase was
also equivalent to the first experiment by removing the right
opaque screen revealing either an animate or an inanimate entity
for 15s.

As in Experiment 1, each infant saw two consistent test tri-
als (an animal following the animate motion pattern or a vehicle
following an inanimate motion pattern) and two inconsistent
test trials (an animal following the inanimate motion pattern
or a vehicle following an animate motion pattern). The total
duration of the presentation (all four trials) was about two
minutes.

RESULTS AND DISCUSSION

There was no significant motion-type dependent difference in
infants’looking times during the motion phase (phase 2) with sim-
ilar looking times at animate motion scenes (M = 6.16, SE = 0.26)
compared to inanimate motion scenes (M = 5.96, SE = 0.24),
#(23) = 1.18, p = 0.25.
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For the test phase, an analysis of variance was conducted to test
whether infants differentiated between test trials showing objects
congruent or incongruent with the observed motion pattern of
the shadow. Preliminary analyses revealed that neither type of
object (animate or inanimate objects at test), nor order of presen-
tation (consistent or inconsistent outcomes first) had any effect on
infants’ looking responses during the test trials.

A 2 x 2 repeated measures analysis of variance was con-
ducted with Congruency Type (test object consistent or inconsistent
with motion pattern) and Motion Type (animate or inanimate
motion) as within-subjects factors. This analysis revealed a
significant main effect for Congruency Type F(1,23) = 29.98,
p < 0.001, n*> = 0.50, with longer looking times for incon-
sistent outcomes (Minconsistent = 4.99, SE = 0.23) compared
to consistent ones (Mconsistent = 3.81, SE = 0.26). No other
main effect or interaction was observed. An examination of
individual infants’ looking times confirmed these results. 0.21
of the 24 infants looked on average longer at the incongruent
test trials compared to the congruent test trials [ x2(1) = 13.50,
p < 0.001]. Figure 4 shows the mean looking times for the
congruent and incongruent test trials as a function of Motion
Type.

In conclusion, infants’ looking pattern in Experiment 2, pre-
senting no static pictures of an animal and a vehicle prior to the
shadow’s motion, does not differ from the results obtained in
Experiment 1. On the basis of these data, it seems unlikely that
the static pictures shown at the beginning of each trial in Experi-
ment 1 played a key role in infants’ detection of category-motion
incongruencies at test. This suggests that longer looking times
during the inconsistent test trials in Experiment 1 reflected the
recognition of category-specific motion cues without any form of
priming.
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FIGURE 4 | Experiment 2. Mean looking times in seconds during
congruent and incongruent test trials (separated by motion type).
**p < 0.01. Error bars represent +1 SE.

GENERAL DISCUSSION

The main goal of the current experiments was to determine if
infants have already formed specific expectations about the type
of motion cues that have been found to generate animacy judg-
ments in older children and adults. The present results suggest
that 7-month-olds’ representations of animals and vehicles include
category-specific associations between static and dynamic cues
that are considered minimal conditions for animacy perception
(e.g., Scholl and Tremoulet, 2000; Tremoulet and Feldman, 2000;
Schultz and Biilthoff, 2013).

These findings suggest that within their first year of life, infants
have already formed some stable associations between static
and dynamic attributes characterizing global categories. How-
ever, while Arterberry and Bornstein (2002) provided relevant
evidence with 9-month-olds in a task where dynamic informa-
tion was provided via point-light displays, displaying manner
of motion as well as implicit shape information (e.g., Cutting,
1978; Giese and Poggio, 2003; Schlottmann and Ray, 2010) of
the objects, the present study manipulated the motion cues of
ambiguous shapes so that no morphological cues would allow
infants to identify either an animal or an inanimate object. While
Pauen and Triuble (2009) also tested 7-month-olds, their task
provided infants with static and dynamic information simultane-
ously. In contrast, we attempted to dissociate dynamic and static
information.

Referring to Arterberry and Bornstein (2002), it has been shown
that 9-month-olds, but not 6-month-olds, succeed in a categoriza-
tion task presenting dynamic point-light displays for habituation
and static images as test stimuli. According to the authors, this
reflects that with age, infants become less tied to specific stimu-
lus information with age, and show the ability to transfer category
knowledge across cues. It should be noted, though, that 9-months-
olds were able to transfer animacy-specific expectations from
dynamic to static displays but not vice versa.

One might speculate that it was easier for infants tested with
the Arterberry and Bornstein (2002) paradigm to extract the
implicitly given shape information from the dynamic point-
light displays presented over several trials during familiarization
and to make the transfer to a static picture at test. On the
contrary, familiarized with a series of static pictures, the abstrac-
tion of shape from a point-light display at test seemed much
harder.

Such a dissociation between dynamic and static feature process-
ing is in accordance with the fact that both types of information
are processed along different neural pathways (Leslie etal., 1998;
Mareschal etal., 1999; Mareschal and Johnson, 2003). It is well
established that, from birth, motion helps infants to first direct
their eye gaze toward the object by triggering subcortical path-
ways (colliculi superiores). Once the object is in focus, in depth
encoding of specific parts or features can take place. Research on
early categorisation also suggests that information about motion
and/or function relevant object parts facilitate object classifica-
tion (e.g., Rakison and Cohen, 1999; Triuble and Pauen, 2007,
2011)

In comparison to Arterberry and Bornstein (2002),
7-month-olds participating in the present study succeeded in
ascribing animacy-specific motion cues performed by a fully
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ambiguous shape to subsequently presented static pictures of
the corresponding objects. While in the Experiment 1 infants
always saw an exemplar of both kinds of objects as static pic-
tures at the beginning of each trial, Experiment 2 yielded the
same results without providing any a priori static information
before the start of the shadow movement. This suggests that
a priori given static information is not necessary for estab-
lishing animacy-specific relations between dynamic and static
features.

Previous research on infants’ knowledge of properties of ani-
mates and inanimates based on dynamic information typically
focused on specific motion patterns like rigid versus non-rigid
(caterpillar) motion. The present study extends this line of
research by showing that in addition to motion pattern, motion
pathisalso animportant and early accessible cue to animacy status.
Until today, the nature of early animacy-ascriptions to given events
or entities is not fully clarified. While some authors interpret cor-
responding data as a sign for conceptual or higher level processes
(e.g., Arterberry and Bornstein, 2002; Pauen and Triuble, 2009),
others assume that ascriptions of animacy or causality to given
events might be to a large extent perceptual in nature (e.g., Scholl
and Tremoulet, 2000). The mere fact that the ascription of ani-
macy or causality can be mediated by highly reduced motion cues
in simple displays (e.g., Leslie, 1986; Blythe et al., 1999; Tremoulet
and Feldman, 2000; Schultz and Biilthoff, 2013) led to the assump-
tion that such phenomena reflect first and foremost perceptual,
perhaps modular processes that are clearly distinguishable from
higher-level cognitive analyses. Scholl and Tremoulet (2000) sug-
gest that such phenomena might lie at an intersection of perceptual
and cognitive processing (see also Leslie, 1986 for a proposal on a
modular based mechanism for interpretations of events as being
causal).

The present set of data cannot resolve this issue. It might be
that the motion cues provided in the present task are processed
within an automatic encapsulated perceptual mechanism, result-
ing in an impression of animacy that either does or does not match
with conceptual representations activated by the outcome picture
presented at test. Furthermore, the matching process at test might
also be mainly perceptual in nature, reflecting perceptually based
associations between animacy-specific dynamic and static features.
Such an assumption conflicts with more conceptual accounts that
assume that higher-level processes determine the animacy status of
an entity, including various assumptions on the nature and content
of higher-level mechanisms that might be involved in conceptual
information processing (e.g., Keil, 1991; Gelman etal., 1995; Keil
etal., 1998; Mandler, 2004). Regardless of the automaticity of this
visual phenomenon, the fact that individual variability in sensi-
tivity to animacy cues predicts social cognition (e.g., empathy)
in adults suggests that it might represent a building block in the
development of more conceptual representations of social stimuli
(Miller and Saygin, 2013).

In any case, we conclude that transfer performances as shown
by 7-month-old infants in the present task and also by slightly
older infants in the study of Arterberry and Bornstein (2002)
include processes going beyond the perceptual information cur-
rently present in a given event. Seven-month-olds in the cur-
rent study treated animacy-specific static and dynamic features

as belonging together even when both types of features were
presented in isolation. Rakison and Poulin-Dubois (2001, 2002)
as well as Pauen and Triuble (2008) adopt a more moderate def-
inition of conceptual processing, including the ability to form
lasting relations between animacy-specific dynamic and static
information in combination with the ability to activate accord-
ing relations when only one type of information is given. In
this sense, infants’ looking patterns at test might reflect the
activation of conceptual representations of animate and inani-
mate entities. To determine the role of conceptual processes that
might be involved in these early inferences, further research is
needed.

In sum, the current results obtained with an innovative
paradigm are in line with the assumption that 7-month-old infants
are able use specific dynamic cues, known to trigger animacy
perception in adults, to infer the identity of morphologically
ambiguous entities. Future research with this paradigm can clar-
ify whether infants draw similar inferences about animacy from a
wide range of motion cues.
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