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Models of confirmatory factor analysis (CFA) are frequently applied to examine the
convergent validity of scores obtained from multiple raters or methods in so-called
multitrait-multimethod (MTMM) investigations. We show that interesting incremental
information about method effects can be gained from including mean structures and
tests of MI across methods in MTMM models. We present a modeling framework for
testing MI in the first step of a CFA-MTMM analysis. We also discuss the relevance of
MI in the context of four more complex CFA-MTMM models with method factors. We
focus on three recently developed multiple-indicator CFA-MTMM models for structurally
different methods [the correlated traits-correlated (methods – 1), latent difference, and
latent means models; Geiser et al., 2014a; Pohl and Steyer, 2010; Pohl et al., 2008] and
one model for interchangeable methods (Eid et al., 2008). We demonstrate that some of
these models require or imply MI by definition for a proper interpretation of trait or method
factors, whereas others do not, and explain why MI may or may not be required in each
model. We show that in the model for interchangeable methods, testing for MI is critical
for determining whether methods can truly be seen as interchangeable. We illustrate the
theoretical issues in an empirical application to an MTMM study of attention deficit and
hyperactivity disorder (ADHD) with mother, father, and teacher ratings as methods.
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Multitrait-multimethod (MTMM) analysis is frequently used to
examine the convergent and discriminant validity of psycho-
logical measurements based on measurement designs in which
multiple constructs or traits are assessed by multiple meth-
ods (Campbell and Fiske, 1959; Widaman, 1985; Millsap, 1995;
Dumenci, 2000). In the classical MTMM design, multiple (typi-
cally at least three) methods are used to assess multiple (typically
at least three) constructs or traits. The analysis of MTMM data
has historically focused on the interpretation of the so-called
MTMM matrix, which summarizes the correlations between
variables in an MTMM design. The MTMM matrix approach
was developed by Campbell and Fiske (1959) who also pro-
posed heuristics for the interpretation of MTMM correlations
in terms of convergent and discriminant validity. Over the
years, confirmatory factor analysis (CFA) has become a popu-
lar tool for analyzing data obtained from MTMM designs, given
the greater flexibility of the CFA framework compared to the
original MTMM matrix approach (for a detailed discussion of
the advantages of the CFA approach to MTMM analyses, see
Eid et al., 2006).

Whereas Campbell and Fiske’s original approach focused
exclusively on correlation structures, CFA models allow analyzing
not only correlation, but also covariance and mean structures
(e.g., Little, 1997). Moreover, CFA models allow for the analy-
sis of multiple (instead of just a single) indicators (e.g., items or
scales) per trait-method unit (TMU). For example, self-, parent,
and teacher-reports on three or more items or scales could be
used to assess depression. Using multiple indicators per TMU has
the advantage that researchers can study the factorial validity at
the item level for each type of method, that method effects can
be analyzed separately for different traits to examine the poten-
tial trait-specificity of method effects, and that measurement
error influences (unreliability) can be more properly estimated
(Marsh and Hocevar, 1988; Eid et al., 2003). Despite the fact that
modern CFA methods allow for an analysis of covariance and
mean structures in the same model, most applied MTMM studies
so far have focused exclusively on modeling covariance struc-
tures. In addition, most MTMM studies still use single-indicator
designs (i.e., just a single observed variable per TMU; e.g.,
Servera et al., 2010).
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In the present article, we show that by moving from an exclu-
sively covariance- or correlation-based MTMM approach to an
approach that includes latent means, more fine-grained infor-
mation about convergent validity and method effects can be
gained in CFA-MTMM analyses. In this context, we highlight
a specific advantage of multiple-indicator MTMM designs that
has received little attention in the MTMM literature so far: the
possibility to test for measurement invariance (MI) across mul-
tiple raters or methods when the different methods provided
scores on comparable measurement instruments (e.g., equivalent
questionnaires).

Analyzing mean structures in MTMM models and the inves-
tigation of mean method effects in MTMM models has been
proposed in previous work (Eid, 2000; Pohl et al., 2008; Pohl
and Steyer, 2010). The new aspect in the current paper is the
investigation of MI across methods, which facilitates a proper
interpretation of mean method effects. Examining MI is a novel
aspect in MTMM research and considering MI itself as well as
for the interpretation of mean method effects adds important
information when evaluating MTMM data.

Although some MTMM studies have examined MI in the
context of multiple-group comparisons (i.e., for comparing mea-
surement structures across different populations; e.g., Cole and
Maxwell, 1985; Marsh et al., 1992), the issue of MI across methods
within the same population seems to have received little atten-
tion in the literature. For example, although Woehr et al. (2005)
tested for configural, metric, and residual invariance across dif-
ferent raters, they did not examine intercept invariance or latent
mean differences across raters.

In the present paper, we focus on MTMM designs that (1)
use multiple raters as methods and (2) equivalent questionnaires
across raters. Such designs are common in the applied MTMM
literature. For example, Cole et al. (1997) used equivalent child
and parent versions of questionnaires measuring depression and
anxiety in children. Similarly, Grigorenko et al. (2010) used self-
report, parent-report, and teacher-report versions of the same
questionnaire to assess problem behaviors in children. Burns et al.
(in press) assessed symptoms of hyperactivity, impulsivity, inat-
tention, and academic impairment in 5th graders by mother,
father, and teacher ratings, all of which filled out equivalent forms
of a questionnaire.

We show that by studying MI across raters, additional informa-
tion about method effects can be obtained that cannot be revealed
through purely correlational MTMM analyses. By testing for MI,
researchers can first of all examine whether the same factor struc-
ture holds across methods (configural invariance, see discussion
below)—an assumption that is often implicitly made in MTMM
studies, but rarely formally tested. In addition, researchers can
examine whether different methods (e.g., different raters) use the
questionnaire scales in a similar way (i.e., whether the scales have
equal difficulty and discrimination across raters in the sense of
item response theory). For example, when the same symptoms
of attention deficit and hyperactivity disorder (ADHD) are rated
by parents and teachers, different loadings or intercepts may be
obtained, showing that the observed symptom scores differ in
difficulty or discrimination between raters. This could, for exam-
ple, indicate that teachers are more lenient than parents in their

ratings or that certain symptoms are only weakly related to the
latent variable for a specific type of rater. Therefore, the finding of
measurement non-invariance across raters can reveal additional
insights into more subtle forms of method effects.

In addition to the general relevance of MI testing across meth-
ods, researchers may be uncertain as to the relevance of MI in
different CFA-MTMM models with method factors. With the
present article, we also want to contribute to a better under-
standing of the issue of MI in the context of recently developed
CFA-MTMM models. In line with modern MTMM approaches,
we focus on models that use multiple indicators per TMU (Marsh
and Hocevar, 1988; Eid et al., 2003, 2008; Geiser et al., 2012).

We first explain why the inclusion of means in addition to
covariances and testing for MI can reveal useful incremental
information in MTMM studies in general. We then present a
modeling framework for testing MI in MTMM studies that use
multiple indicators per TMU. Subsequently, we turn to four
different models with method factors that have recently been
proposed for the analysis of MTMM data. For each of the four
models, we discuss which level of MI these models require for a
proper interpretation of the model parameters.

ANALYZING MEAN STRUCTURES IN MTMM ANALYSES:
INTERESTING INCREMENTAL INFORMATION
The reported outcome of most MTMM studies are statistical
indices that provide information on the convergent validity (or
consistency) of different methods or raters in terms of the rank
order of the individuals that were assessed by the different meth-
ods. As a simple example, researchers often interpret a correlation
between, say parent and teacher ratings of child behavior in terms
of convergent validity, following Campbell and Fiske’s (1959)
guidelines. In terms of individual differences, such a correlation
coefficient indicates to which extent different raters agree as to
the rank order of children on the outcome variable (e.g., depres-
sion, externalizing problem behavior, ADHD). This information
is clearly useful, as it informs us about how much variability is
shared between raters or methods for the same construct.

Here, we argue that covariance-based information on multi-
ple raters’ agreement as to the relative standing of individuals
on a construct (which is typically the focus of MTMM stud-
ies) is not the only useful information that can be gained from
MTMM studies. This is because information about the overall
level (mean) is usually also of interest. That is, we argue that
researchers often want to know, for instance, whether parent
ratings of problem behaviors result in the same or similar con-
clusions about the overall level of these behaviors in a population
as do teacher ratings. Such questions can be addressed by ana-
lyzing mean structures in CFA-MTMM models in addition to
covariance structures, which is a relatively novel aspect in MTMM
research. Comparing means across raters requires a certain level
of MI across raters. That is, for such comparisons to be meaning-
ful, the measurement parameters that link the observed scores to
the latent variables should be equal across raters to ensure com-
parable scales. This issue parallels the comparison of latent means
across groups in multigroup CFA and structural equation model-
ing (SEM) as well as the examination of mean changes across time
in longitudinal studies (e.g., Little, 1997).
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THE MEANING OF MI FOR MTMM DATA
Formally, MI can be said to hold in an MTMM study if (1) a
similar factor structure is found for different methods used to
assess multiple traits or constructs using multiple indicators per
TMU and/or (2) certain parameters of the measurement model
(e.g., factor loadings, intercepts, or residual variances) that relates
the observed scores to latent variables are equal across meth-
ods. Condition (1) requires only that (a) the same number of
factors be found across methods and (b) the pattern of load-
ings (which variable loads onto which factor) be the same across
methods. For Condition 1, the term configural invariance has
been coined in the general MI literature (e.g., Meredith, 1993;
Widaman and Reise, 1997; Millsap, 2011). Condition 2 is more
restrictive and requires that not only the basic factor structure be
equivalent across methods, but also specific parameters such as
factor loadings, intercepts, or residual variances.

Even though it seems clear that establishing at least configural
invariance (equal factor structure) across methods is a necessity
for a meaningful comparison across methods, even configural
invariance is typically not formally tested in MTMM studies (for
exceptions, see Woehr et al., 2005; Burns et al., in press). Here,
we argue that testing for MI is useful when different methods
were scored on comparable scales (e.g., multiple raters taking
the same questionnaire), because such analyses (1) provide addi-
tional insights into method effects and (2) allow researchers to test
whether it is meaningful to compare latent means across raters. A
meaningful comparison of latent means across methods requires
that at least strong MI be established across methods (i.e., equal
loadings and intercepts). Strong MI ensures that the origin and
units of measurement are the same across raters.

A MODELING FRAMEWORK FOR TESTING MI IN MTMM
STUDIES
Marsh and Hocevar (1988) proposed a general target or baseline
model for MTMM studies that use multiple indicators per TMU.
In the present article, we show that this model as well as an exten-
sion of it can be used for testing MI across methods in MTMM
studies. Marsh and Hocevar’s model is depicted in Figure 1 as
a path diagram. For simplicity, here we consider only a single
construct (or trait; j = 1) that is measured by just two methods
(k = 1, 2). Each TMU jk is represented by three indicators (i = 1,
2, 3). Focusing on this simple design is sufficient to explain the
general MI issues, which can then easily be generalized to larger
MTMM designs. (In our empirical application presented later on,
we used a design with one trait and three methods).

Note that in our path diagrams, we represent both the
covariance and mean structure, following the RAM conven-
tions introduced by McArdle (1980). The model proposed by
Marsh and Hocevar (1988) includes a separate common fac-
tor (or true score variable) for each TMU (e.g., one factor for
mother ratings of hyperactivity and one factor for teacher ratings
of the same construct). All TMU factors are allowed to corre-
late. Marsh and Hocevar’s model has a number of advantages
for MTMM analyses in general. First, the model allows testing
the appropriateness of the latent factor structure for each TMU.
For example, the assumption of unidimensionality may be vio-
lated for some or all methods, thus providing evidence against

configural invariance across methods, which is fundamental to
MTMM analysis. Second, the model allows examining Campbell
and Fiske’s (1959) MTMM correlations at the latent level. That
is, rather than inspecting observed correlations that are attenu-
ated by measurement error as in Campbell and Fiske’s original
approach, the model in Figure 1 provides the same correlations at
the level of common true score variables. Therefore, the MTMM
correlations are corrected for random measurement error. This
has the advantage that the estimated correlations are less biased
and easier to compare between constructs with different scale
reliabilities1.

In the present article, we focus on the possibility to for-
mally test for MI across methods within each construct or trait
by estimating constrained versions of the model. In these con-
strained versions, parameters of the measurement model such
as loadings, intercepts, or residual variances are constrained to
be equal across methods to test whether and to which extent
such MI assumptions are tenable. In order to test for MI,
we can examine the following series of models in line with
Widaman and Reise (1997)2:

1. A model of configural invariance postulates the same factor
structure (number of factors and pattern of loadings) across
methods, but does not impose any formal equality constraints
on non-zero factor loadings, intercepts, or residual variances.

2. A model of weak invariance postulates the same factor struc-
ture plus equal factor loadings for corresponding indicators
across methods.

3. A model of strong invariance postulates the same factor struc-
ture, equal factor loadings, and equal intercepts for corre-
sponding indicators across methods.

4. A model of strict invariance postulates the same factor struc-
ture, equal factor loadings, equal intercepts, and equal mea-
surement error (residual) variances for corresponding indica-
tors across methods.

One drawback of the model presented in Figure 1 is that it will
only fit MTMM data when the indicators are strictly homoge-
neous in the sense that within each method, all indicators have
perfectly correlated true score variables that differ only in scal-
ing (i.e., have potentially different intercepts and loadings). This
assumption is frequently violated in practice, because different
items or subscales often measure slightly different facets of a con-
struct and therefore do not share exactly the same common true
score variable in the sense of classical test theory models. For
example, one item for measuring the construct depression may
refer to sadness, whereas another item meant to measure the same
construct may refer to sleeping problems. Therefore, although both

1Latent correlations are less biased than observed correlations only if cor-
related errors of measurement do not exist or if such correlated errors are
properly modeled.
2In addition to full invariance that requires all corresponding parameters to
be equal across raters, models of partial invariance have also been discussed
in the general MI literature. Partial MI means that invariance is tenable only
for a subset, but not all indicators (e.g., Byrne et al., 1989). In addition, in the
MTMM case, measurement parameters may be invariant across some, but not
all methods as shown in the empirical example section.
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FIGURE 1 | CFA measurement model for multiple-indicator MTMM data. Each latent factor Tjk represents the error-free (true) scores of a specific TMU.
The picture shows an example in which three indicators Yijk (i = 1, 2, 3) are used to measure one construct or trait (j = 1) by two methods (k = 1, 2).

items measure facets of depression, they may not share exactly
the same true score variable. As another example, consider item
wording effects due to positive and negative item wording (e.g.,
Vautier et al., 2003), which can also cause a common true score
model to show misfit.

If such inhomogeneities generalize across methods (e.g., if par-
ent ratings of sadness are more strongly correlated with teacher
ratings of sadness than with teacher ratings of sleeping problems),
then the model in Figure 1 likely will not fit the data very well,
because this model assumes a homogeneous correlation struc-
ture across methods for the same construct. We therefore present
an extension of the model in Figure 1, in which this issue is
addressed by including indicator-specific residual factors for all
but a reference indicator (see Figure 2). An equivalent approach
has been presented previously to account for indicator hetero-
geneity in longitudinal studies, in which the same issues occur
when the same indicators are repeatedly measured across time in
single-method designs (Eid et al., 1999).

The model in Figure 2 uses a reference-indicator approach
in which I – 1 (of a total number of I) indicators are con-
trasted against a reference indicator (without loss of generality,
the first indicator i = 1 in Figure 2 is chosen as reference
indicator). This is done by introducing residual method (or
indicator-specific) factors ISij for all except the reference indi-
cator. These indicator-specific factors have means of zero and
are by definition uncorrelated with the true score that repre-
sents the reference indicator (see Appendix A in Supplementary
Material for the formal definition of these factors). The ISij

factors reflect indicator-specific variance that is not shared
with the reference indicator, but is shared across methods.
Indicator-specific factors can be correlated with each other
in principle, reflecting potential shared deviations of non-
reference indicators from the reference indicator (e.g., the
reference indicator measuring the sadness aspect of depres-
sion, whereas the remaining two indicators both refer to

sleeping problems). Whether or not these correlations are
meaningful and should be estimated depends on the specific
application.

The model with indicator-specific factors can be used for MI
testing in the same way as the model in Figure 1. If at least strong
MI (i.e., equal reference factor loadings λijk and intercepts αijk)
can be established in either the model in Figure 1 or the model in
Figure 2, latent mean differences across methods can be meaning-
fully interpreted3. In the model with indicator-specific factors, it
is also possible to test for invariant loadings γijk of the ISij factors
(in addition to the reference factor loadings λijk).

Establishing invariant ISij factor loadings is not necessary for
a meaningful comparison of the reference factors T1jk across
methods (for more detailed explanations see Appendix A in
Supplementary Material). In many applications, only the factors
T1jk and their invariance across methods will be of substantive
interest. Nonetheless, comparisons of the γijk loadings across
methods can reveal interesting information about the extent to
which indicator-specific effects are reflected in different methods.
For example, some methods may not be as sensitive to sub-
tle differences in item content as others. This can be reflected
in non-invariant γijk loadings across methods. In the follow-
ing section, we examine the issue of MI in the context of more
sophisticated CFA-MTMM models with method factors that
researchers often use in a second step of an MTMM analyses.
Subsequently, we present applications of all models to an actual
data set.

3Some authors have recommended that strict invariance be established before
latent mean comparisons are conducted (see, e.g., Wu et al., 2007). Strict
invariance is only necessary, however, when correlated errors of measurement
exist and are not properly modeled. We recommend that researchers pay care-
ful attention to tests of model fit to detect potential error correlations and that
such correlations—if they exist—be properly modeled with additional latent
variables.
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FIGURE 2 | Extended CFA measurement model for multiple-indicator

MTMM data. In contrast to Figure 1, the extended model contains I – 1
indicator-specific factors ISij to reflect shared indicator-specific effects

across raters. The latent factors T1jk are now specific to the reference
indicator Y1jk and therefore carry an additional index for the reference
indicator.

DIFFERENT MTMM MODELS
More sophisticated CFA-MTMM models are often employed
because the simple CFA models in Figures 1, 2 do not directly
express method effects in terms of latent variables (i.e., method
factors), except for indicator-specific effects. In contrast, more
complex CFA-MTMM models contain additional latent vari-
ables that directly reflect method effects in terms of latent
methods factors. Such models allow explicitly contrasting dif-
ferent methods against a gold standard method (e.g., Eid,
2000; Pohl et al., 2008) or against a common trait (Pohl and
Steyer, 2010). Furthermore, more complex models allow relat-
ing method effects to external variables, which is not possible
in Marsh and Hocevar’s (1988) simple CFA model discussed
above.

In this article, we focus on four CFA-MTMM models that are
relatively new: (1) Eid et al.’s (2003) multiple indicator CT-C(M –
1) model, (2) Pohl et al.’s (2008) latent difference model, (3) Pohl
and Steyer’s (2010) latent means model, and (4) Eid et al.’s (2008)
CFA-MTMM model for interchangeable methods. Whereas the
first three models were developed for use with structurally differ-
ent methods (e.g., different fixed types of raters such as mothers,
fathers, and teachers, which are not drawn from the same set of
raters), Eid et al.’s (2008) CFA-MTMM model was developed for
interchangeable (random) methods (e.g., randomly selected cus-
tomers rating a product or service). Furthermore, whereas the
first three models can all be defined as equivalent versions of
Marsh and Hocevar’s (1988) simple CFA model, the CFA-MTMM
model for interchangeable raters in general implies a different
covariance and mean structure.

We focus on the above models, because all of them can
be formulated based on the well-defined concepts of clas-
sical testy theory (CTT). This ensures that in all of the
models, the trait and method factors have a clear mean-
ing and interpretation (Geiser et al., 2014a). Given the fact
that the CT-C(M – 1), latent difference, and latent means
approaches each imply the exact same measurement model as

the simple CFA model presented previously, we show only the
structural parts of the models for simplicity and parsimony in
Figure 3.

THE CT-C(M – 1) APPROACH
Presentation of the model
Figure 3A shows the structural part of the CT-C(M – 1) model
in the version first presented by Geiser et al. (2008) and dis-
cussed in detail in Geiser et al. (2012)4 . In the CT-C(M – 1)
model, one method serves as gold standard or reference method.
This could either be a method that a researcher has most con-
fidence in or that is most different from the remaining meth-
ods (for guidelines as to the choice of the reference method,
see Geiser et al., 2008, 2012). For example, Geiser et al.
(2014b) examined the convergent validity of giftedness assess-
ments in children using the CT-C(M – 1) approach. They
selected a maximum-performance test battery to serve as refer-
ence method, given that the test battery provided a more objective
measure of abilities relative to more subjective ability ratings
provided by the children themselves, their parents, and their
teachers.

In Figure 3A, without loss of generality, the first method (k =
1) was chosen as reference. The second and any additional meth-
ods are regressed on the true score variable pertaining to the
reference method using a latent regression analysis:

E
(
T1jk|T1j1

) = β0jk + β1jkT1j1

4The CT-C(M – 1) model version is slightly more restricted than Eid et al.’s
(2003) original model version. We chose to present the more restricted version
here, given its direct correspondence to and mathematical equivalence with
the latent difference and latent means models. The differences between Eid
et al.’s (2003) model and the version presented here are explained in Geiser
et al. (2012); the general MI issues discussed below apply to either version of
the model.

www.frontiersin.org October 2014 | Volume 5 | Article 1216 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Geiser et al. Measurement invariance in MTMM analysis

T1

1

T111

T112

1

E(T1)

Var(T1)

Var(M112)

E(M112)
Cov(T1, M112)1

M1121

–1

Latent Means Model

CT-C(M – 1) Model

Residual112

1

β112

T111

T112

1

E(T111)

β012

Var(T111)

Var(Residual112)

Latent Difference Model

T112 – T111

1

1

T111

T112

1

E(T111)

Var(T111)

Var(T112 – T111)

E(T112 – T111)

Cov[T111,(T112 – T111)]

A

C

B

FIGURE 3 | Three different ways to examine method effects with

structurally different methods. (A) Latent regression [CT-C(M – 1)]
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at the latent level, but differ in terms of which level of MI they
require (see discussion in the text). The measurement part of the
models is the same as in Figures 1, 2 and therefore not shown in
this figure.

where β0jk and β1jk indicate regression coefficients and k �= 1. The
residuals of these regressions

Residual1jk = T1jk − E
(
T1jk| T1j1

)

serve as method factors in the CT-C(M – 1) model. Note that the
CT-C(M – 1) model has the same number of parameters in the
structural model as the simple CFA model. For one construct and
two methods, there are five structural parameters: the reference
factor mean and variance, the regression coefficients β0jk and β1jk,
and the latent residual [method factor] variance. Note that for
more than two traits or methods, admissible covariances among
latent factors would be additional parameters to be estimated in
the structural model.

Even though mathematically equivalent, the CT-C(M – 1)
model represents a useful extension of the simple CFA model,
because it allows us to express the information about method
effects (defined relative to a reference method) in terms of
latent method factors that are residuals with respect to the ref-
erence factors. Given that the method factors are defined as

residuals relative to the reference factors, they are by defini-
tion uncorrelated with the reference factors and thus represent
independent variance components (Eid et al., 2003). It also fol-
lows from their definition as residuals that the method factors
have means of zero. Hence, it would not be meaningful to make
statements about method factor means in the CT-C(M – 1)
model.

The CT-C(M – 1) model allows us to (a) quantify what
percentage of the observed or true score variance in different
methods is shared vs. not shared with the reference method and
(b) directly relate method effects to other variables (e.g., by cor-
relating method factors with external variables). The proportion
of observed variance that is shared with the reference method is
expressed by the consistency coefficient:

Con
(
Yijk

) = λ2
ijkβ

2
1jkVar

(
T1j1

)
/ Var

(
Yijk

)
.

The consistency coefficient is often used as an indicator of con-
vergent validity relative to the reference method or “gold stan-
dard.” The proportion of observed variance that is not shared
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with the reference method is expressed by the method-specificity
coefficient:

MSpe
(
Yijk

) = λ2
ijkVar

(
Residual1jk

)
/ Var

(
Yijk

)
.

The method-specificity coefficient is used to indicate which por-
tion of the observed variance is unique to a specific method
and not shared with the reference method. Correlations between
method factors are allowed in the CT-C(M – 1) model. These
correlations are partial correlations between non-reference meth-
ods from which variance shared with the reference method has
been partialled out. Therefore, method factor correlations reflect
a shared perspective (or “bias”) of non-reference methods relative
to the reference method.

MI in the CT-C(M – 1) model
The CT-C(M – 1) model allows contrasting different meth-
ods against a reference method by means of a latent regression
approach. For this purpose, strictly speaking, MI across meth-
ods beyond configural invariance is not required. That is, for
the interpretation of the standardized regression coefficients as
well as the coefficients of consistency and method-specificity, it
does not matter whether different methods were measured on the
same scale, because the coefficients of interest are standardized.
This makes the CT-C(M – 1) model very flexible for examining
the convergent validity of different methods. For example, Geiser
et al. (2014b) examined the convergent validity of objective abil-
ity tests and subjective ability ratings. Objective and subjective
assessments were made on completely different scales; nonethe-
less the CT-C(M – 1) model allowed examining the degree of
convergent validity across these methods.

On the other hand, the interpretation of the unstandardized
regression coefficients β0jk and β1jk can in some cases be difficult
if the different methods used different scales. This issue parallels
the potential difficulty of interpreting unstandardized regression
coefficients in standard ordinary least squares regression analysis
when predictor and criterion variables used different or arbitrary
metrics. Furthermore, if a researcher wants to make comparisons
of latent means across methods based on the latent mean of the
reference factor and the unstandardized regression coefficients,
strong MI is required in the same way as in Marsh and Hocevar’s
(1988) model.

THE LATENT DIFFERENCE APPROACH
Presentation of the model
The latent difference approach is closely related to the CT-C(M
– 1) approach in that different methods are contrasted against
a reference method. However, in the latent difference approach,
method effects are defined as simple deviations (differences) from
a reference method true score variable rather than as regression
residuals (Pohl et al., 2008). Latent difference factors (T1jk − T1j1)
are introduced that reflect method effects in terms of the differ-
ence between a true score of a non-reference method and the true
score pertaining to the reference method (see Figure 3B):

T1jk = 1T1j1 + 1
(
T1jk − T1j1

)
.

The latent difference model again has the same number of param-
eters in the structural model as Marsh and Hocevar’s (1988)
simple CFA model (five parameters in the case of two methods:
the reference factor mean and variance, the latent difference fac-
tor mean and variance, and the covariance between reference and
latent difference factor). In contrast to the CT-C(M – 1) model,
a correlation between reference and method factor is allowed in
the latent difference model, because the method factor is not
defined as a regression residual with respect to the reference fac-
tor. Moreover, in contrast to the CT-C(M – 1) approach, the mean
of the method factor can be estimated as well and reflects the
latent mean difference between two methods. A more detailed
comparison of the latent difference and CT-C(M – 1) models can
be found in Geiser et al. (2012).

MI in the latent difference model
In the latent difference model, convergent validity is assessed in
terms of the latent difference between true score variables per-
taining to different methods. Smaller differences indicate greater
convergent validity relative to the reference method. MI plays a
more important role in the latent difference model than in the
CT-C(M – 1) model. Given that method effects are defined in
terms of difference scores between the true score variables per-
taining to different methods, strong MI is critical for a meaningful
interpretation of the structural model parameters in the latent
difference model. When strong MI does not hold, the interpre-
tation of the latent difference scores can become difficult, because
a violation of strong MI indicates that the true score variables
pertaining to different methods may not be measured with com-
parable origin or units of measurement. In this case, persons’
individual difference scores as well as the mean and variance of
the latent difference factor would be difficult to interpret.

THE LATENT MEANS APPROACH
Presentation of the model
In the latent means model, method effects are defined as devia-
tions from an average across true score variables (Pohl and Steyer,
2010). In the first step, a common trait factor Tj is defined by aver-
aging across the true score variables that reflect different TMUs.
In our example with just one trait and just two methods, we
obtain:

Tj := (
T1j1 + T1j2

)
/ 2,

where the “:=” sign indicates a definition. The method factors are
defined as deviations from the common trait:

M1j1 := T1j1 − Tj,

M1j2 := T1j2 − Tj.

Given their definition as deviations from the same average, the
method factors sum up to zero (i.e., M1j1 + M1j2 = 0). Therefore,
in the case of two methods, we obtain the following deterministic
relationship between the two method factors:

M1j1 = −M1j2.
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It is thus sufficient to include only M – 1 method factors as in the
CT-C(M – 1) and latent difference models (i.e., the last method
factor is fully determined by the implicit sum-to-zero constraint
and therefore redundant). Here, without loss of generality, we
dropped the first method factor so that we obtain the following
structural model shown in Figure 3C:

T1j1 = Tj − M1j2,

T1j2 = Tj + M1j2.

All trait and all method factors in the latent means model can
be correlated. As in the CT-C(M – 1) and latent difference mod-
els, for two TMUs, we obtain a structural model with five free
parameters (the common trait factor mean and variance, the
method factor mean and variance, and the covariance between
the common trait and the method factor).

MI in the latent means model
The latent means model defines a common trait Tj as the aver-
age of true score variables T1jk that pertain to the same construct
j. Such an average is typically only meaningful when the true
score variables are measured on the same scale. A similar argu-
ment applies to the interpretation of the method factors in the
model: A deviation of a particular method from the grand average
is only meaningful if all methods used the same scale. Moreover,
as in the latent difference model, establishing at least strong MI
is crucial for the interpretation of the model parameters in the
latent means model. One difference between the latent difference
and latent means models in this regard is that the latent differ-
ence model allows for partial MI, whereas the latent means model
does not. That is, as long as at least one non-reference method
shows MI relative to the reference method, the latent difference
between the two can be meaningfully interpreted. In the latent
means model, however, the common trait will typically only have
a clear interpretation if all methods show at least strong MI.

THE CFA-MTMM MODEL FOR INTERCHANGEABLE METHODS
Presentation of the model
Eid et al. (2008) showed that measurement designs with inter-
changeable methods imply different measurement models for
modeling trait and method effects than do designs with struc-
turally different methods. This is because the underlying random
experiment differs for designs with structurally different vs. inter-
changeable methods. Eid et al. (2008) presented a multilevel CFA
approach for modeling interchangeable methods each of which
used the same items to rate each trait. Nussbeck et al. (2009)
showed that the same model can also be estimated within the
single-level CFA framework. Here, we consider Nussbeck et al.’s
single-level CFA approach (rather than the multilevel version) for
two reasons: (1) The single-level version of the model is easier to
compare to the previously described models for structurally dif-
ferent methods, and (2) the single-level CFA approach is more
flexible in terms of explicitly testing assumptions of MI than is
the multilevel approach (this parallels the issue of testing MI in
longitudinal latent state-trait models in the single- vs. multilevel
CFA framework as described in detail in Geiser et al., 2013).

When methods are interchangeable, they are considered ran-
domly drawn from a set of equivalent methods (Eid et al., 2008).
Eid et al. (2008) as well as Nussbeck et al. (2009) showed that
this structure implies a CFA model with M uncorrelated method
factors (i.e., a separate method factor for each interchangeable
method; see Figure 4). As can be seen in Figure 4, for one trait
and two methods, we obtain measurement models that have
the same structure as longitudinal latent state-trait models (e.g.,
Geiser et al., 2013) for multiple indicators and that are similar to
so-called bifactor models (e.g., Reise, 2012).

Figure 4A is a version of the model for homogeneous indica-
tors all of which measure exactly the same common trait factor
Tj. Figure 4B shows a model version with indicator-specific trait
factors Tij. Indicator specific traits are useful to capture inho-
mogeneities among indicators in a similar way as was done
with indicator-specific factors in the previously discussed mod-
els for structurally different methods. The method factors Mjk are
defined as residuals with respect to the trait factor(s). As a con-
sequence, the trait factors are by definition uncorrelated with all
Mjk pertaining to the same construct j, and all Mjk factors have
means of zero by definition. Similar to the CT-C(M – 1) model,
method effects are defined as regression residuals. In contrast to
the CT-C(M – 1) model, however, the trait factors are common
to all methods (rather than specific to a reference method), and
the method factors are uncorrelated across methods. This makes
sense, because of the interchangeable nature of the ratings. In
contrast to structurally different methods, with interchangeable
methods, there is no one method that is particularly outstanding
or special (or seen as a gold standard). Therefore, it makes sense
to include general trait factors and uncorrelated method factors
for each method.

Note that the common factors and the method factors in the
interchangeable model have a different meaning than the trait and
method factors in the latent means model. The common trait in
the latent means model is defined as an average of true scores, and
the method factors are defined as differences from this average. In
contrast, the common factor in the interchangeable model is not
an average and the method factors are not differences from an
average, but residuals with respect to a common factor.

MI in the CFA model for interchangeable methods
The interchangeable model is an interesting case with regard to
the issue of MI, because it is less obvious whether or not MI across
methods is required or should be established in the model. For
the interpretation of the traits and method factors in the model,
MI does not appear to be necessary, because the traits are not
defined as an average of true scores, and the method factors are
not defined as difference scores relative to a reference true score
or an average of true scores as in the latent difference and latent
means models. Nonetheless, testing for invariant loadings and
intercepts across methods is critical in this model as well, albeit
for different, somewhat more subtle reasons.

If different supposedly interchangeable methods result in dif-
ferent loadings or intercepts for the same indicator, this can ques-
tion the assumption that these methods are truly interchangeable
in the sense that they represent “random samples” drawn from
a set of uniform methods. For example, a researcher may ask a
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FIGURE 4 | CFA-MTMM models for interchangeable methods. (A) Version
with a general trait factor for homogeneous indicators. (B) Version with
indicator-specific traits for heterogeneous indicators. In the pictures, we

show the recommended specification, in which loadings and intercepts are
set equal across methods for identical indicators. In model version B, all trait
factor loadings are fixed to 1 and all intercepts are fixed to zero.

person to come to a laboratory and bring two randomly selected
friends to provide ratings of the person with respect to psycho-
logical variables (e.g., personality variables such as agreeableness
etc.). The target person may not be sure whom to bring and may
select his or her best friend as well as a more distant acquaintance.
In this case, the “best friend” may have access to different infor-
mation about the target person than the acquaintance. Hence,
the two ratings may be considered structurally different rather

than interchangeable. Non-interchangeable ratings may result in,
for example, different latent means. This may result in a misfit
of a model with equal loadings or intercepts, providing evidence
against the assumed interchangeable nature of the two raters.

Strictly speaking, a researcher dealing with truly interchange-
able methods (in the sense that the ratings represent random
draws from a population of equivalent methods) would not only
expect to find equal trait and method factor loadings as well as
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equal intercepts across methods, but also equal error and equal
method factor variances for each type of rater.

Obviously, the issue of MI in the CFA-MTMM model for
interchangeable methods can often be resolved by making sure
the methods are truly selected at random from a set of uni-
form methods. In this case, by definition, the measurement
parameters are equivalent in the population (although they may
differ in a sample due to sampling fluctuations). However, in
practice, a random selection of raters or other methods may
not always be feasible. Tests of MI can then provide a way to
scrutinize whether the assumption of interchangeable methods
is warranted or whether the chosen methods should better be
treated as structurally different. In the latter case, the use of
one of the three previously discussed models for structurally
different methods would be preferable. Below we present an
application of all five models to an MTMM study on ADHD
symptoms.

EMPIRICAL ILLUSTRATION
SAMPLE AND MEASURES
The participants were mothers, fathers, and teachers of 1045 first
grade children from 22 randomly selected elementary schools on
the island of Majorca in the Balearic Islands and eight schools
from Madrid (Spain). Assessments one and two occurred in the
spring with assessment three occurring 12-months later. For the
present illustration, we used data from the third assessment for
which N = 709 (HI; j = 1) and N = 710 (IN; j = 2) cases with
mother ratings (k = 1), father ratings (k = 2), and teacher rat-
ings (k = 3) were available. The average age of the children was
approximately 8 years with approximately 90% of the children
being Caucasian and 10% North African.

Mothers, fathers, and teachers completed Child and
Adolescent Disruptive Behavior Inventory (CADBI, Burns
and Lee, 2010a,b). This study used the nine symptoms on the
attention-deficit/hyperactivity disorder-inattention (ADHD-IN)
and the nine symptoms on the ADHD-hyperactivity/impulsivity
(HI) subscales. The ADHD symptoms were rated on a 6-point
scale [i.e., nearly occurs none of the time (e.g., 2 or fewer times per
month), seldom occurs (e.g., once per week), sometimes occurs (e.g.,
a few times per week), often occurs (e.g., once per day), very often
occurs (e.g., several times per day), and nearly occurs all the time
(e.g., many times per day)].

For the purpose of this demonstration, item parcels were used
as indicators rather than individual symptoms, given that earlier
research provided justification for the use of parcels (Burns et al.,
in press).

MODELING STRATEGY
In Step 1 of our analyses, we attempted to establish a well-
fitting baseline model for conducting subsequent MI analyses.
For this purpose, we fit both Marsh and Hocevar’s (1988) simple
CFA model (Figure 1) and the extended model with indicator-
specific factors (Figure 2) to the data and compared their fit to
test whether homogeneity of the indicators (parcels) as well as
configural invariance (equal factor structure) across raters could
be assumed in the present application. None of the initial mod-
els included any formal equality constraints on measurement

parameters. If the model in Figure 1 for homogeneous indica-
tors had fit the data well, it would have been the preferable model
for further invariance tests relative to the more complex model in
Figure 2, because the latter model is less parsimonious. In case of
a substantially better fit of the more complex model in Figure 2,
the more complex model is preferred, indicating a certain degree
of indicator heterogeneity.

In Step 2, we proceeded with tests of MI across raters, using
the best-fitting model from Step 1. The analyses in Step 2
began with a model of weak factorial invariance (only equal
loadings across raters), then tested a strong invariance model
(equal loadings and equal intercepts across raters), and finally
a model of strict invariance (equal loadings, equal intercepts,
and equal residual variances across raters). Given that all sub-
sequent models were nested within previous models, we per-
formed chi-square difference tests to compare the fit of the
models directly. In cases in which one of the subsequent mod-
els showed a significantly worse fit than the preceding model,
we further investigated issues of partial MI. That is, we tested
in these cases whether there was invariance across some of the
raters (e.g., mother and father, but not teacher ratings). Given
that mother and fathers rated the children in the same context
(at home), our hypothesis was that mother and father ratings
may satisfy a stricter level of MI than parent and teacher rat-
ings. In the final step, we tested for latent mean differences
across raters if at least strong MI could be established for at least
one pair of raters (e.g., mother and father ratings). In Step 3,
we fit more complex CFA-MTMM models with method factors
if this was warranted given the level of MI achieved in Steps
1 and 2.

All models were fit in Mplus 7 using maximum likelihood esti-
mation. Examples of the Mplus specification for all models can be
found in Appendix B in Supplementary Material. Global model
fit was evaluated using the chi-square test, root mean square
error of approximation (RMSEA), comparative fit index (CFI),
Tucker-Lewis index (TLI), and standardized root mean square
residual (SRMR). For a review and detailed discussion of these
fit indices, see Schermelleh-Engel et al. (2003). Relative model fit
was assessed via the chi-square difference test for nested models
and Akaike’s information criterion (AIC).

RESULTS OF THE MI ANALYSES
Table 1 shows global and relative model fit statistics for both the
HI and IN constructs in the analyses of the Figure 1, 2 mod-
els. It can be seen that for both HI and IN, based on global
model fit and the AIC, Model 1 (the configural invariance model
without indicator-specific factors) clearly had to be rejected in
favor of Model 2 (configural invariance with indicator-specific
factors) as a baseline model. The configural invariance model
with indicator-specific factors fit the data very well overall, show-
ing a non-significant chi-square value for both HI and IN as
well as excellent results based on other fit indices. An inspec-
tion of the model parameters revealed that for both HI and
IN, the indicator-specific factors had significant (albeit relatively
small) loadings (see Table 2), showing that the parcels were
essentially, but not perfectly homogeneous. We therefore used
the model with indicator-specific factors as the baseline model
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Table 1 | Goodness of fit statistics for different models fit to the HI and IN multirater data set.

Model χ2 df p RMSEA CFI TLI SRMR χ2� df� p(χ2�) AIC

HYPERACTIVITY/IMPULSIVITY

Figure 1 configural invariance 269.91 24 <0.001 0.12 0.963 0.944 0.02 9773

Figure 2 configural invariance 17.70 17 0.41 0.01 1.000 1.000 0.01 —a —a —a 9535

Figure 2 weak invariance 21.40 21 0.44 0.01 1.000 1.000 0.02 3.7 4 0.45 9531

Figure 2 strong invariance 29.85 25 0.23 0.02 0.999 0.999 0.02 8.45 4 0.08 9531

Figure 2 strict invariance 52.60 31 0.009 0.03 0.997 0.996 0.02 22.75 6 <0.001 9542

Figure 2 strong invariance
with equal means

104.27 27 <0.001 0.06 0.988 0.984 0.08 74.42b 2b <0.001b 9602

Figure 2 strong invariance
with equal means only for
mother and father reports

30.52 26 0.25 0.02 0.999 0.999 0.02 0.67b 1b 0.41b 9530

INATTENTION

Figure 1 configural invariance 196.64 24 <0.001 0.10 0.975 0.962 0.02 9386

Figure 2 configural invariance 16.09 17 0.52 0.00 1.000 1.000 0.01 —a —a —a 9219

Figure 2 weak invariance (all
raters)

28.18 21 0.14 0.02 0.999 0.998 0.02 12.09 4 0.02 9223

Figure 2 weak invariance
(mothers and fathers only)

17.66 19 0.55 0.00 1.000 1.000 0.01 1.57c 2c 0.46c 9217

Figure 2 strong invariance (all
raters)

193.63 25 <0.001 0.10 0.976 0.965 0.04 165.45 4 <0.001 9381

Figure 2 strong invariance
(mothers and fathers only)

29.20 23 0.17 0.02 0.999 0.999 0.02 11.54d 4d 0.02d 9220

Figure 2 strict invariance (all
raters)

230.73 31 <0.001 0.10 0.971 0.966 0.04 9406

Figure 2 strict invariance
(mothers and fathers only)

30.39 26 0.25 0.02 0.999 0.999 0.02 1.19e 3e 0.76e 9215

Figure 2 strict invariance
across mothers and fathers
only with equal means only
for mother and father reports

34.81 27 0.14 0.02 0.999 0.998 0.02 4.42 1 0.04 9218

Note: RMSEA, root mean square error of approximation; CFI, comparative fit index; TLI, Tucker-Lewis index; SRMR, standardized root mean square residual; AIC,

Akaike’s information criterion. All chi-square difference tests refer to the previous model in the preceding row unless otherwise indicated. Bold-face indicates best-

fitting models for which detailed results are presented.
a No chi-square difference test reported, because model nesting involves boundary constraints in this case.
b Relative to the strong invariance model with unequal means.
c Relative to the configural invariance model.
d Relative to the model of weak invariance for mother and father reports only.
e Relative to the model of strong invariance for mother and father reports only.

for subsequent MI tests involving equality constraints on load-
ings, intercepts, residual variances, and latent means for both HI
and IN.

For HI, the assumptions of weak and strong MI across raters
did not lead to a significant decline in model fit as indicated by
chi-square difference tests5. The strong MI model also showed a

5Indicator-specific loadings γijk were not invariant across methods in the
present application, indicating that different methods reflected indicator-
specific effects differently. In particular, as can be seen from Table 2, teacher
ratings showed much weaker (and partly insignificant) loadings on the ISij

factors compared to parents, indicating that teachers did not differentiate as
much between different facets of ADHD as did parents. This could potentially
be explained by Halo effects that may have been more significant for teacher
as compared to parent ratings in the present application.

very good global fit (non-significant chi-square). In contrast, the
model of strict invariance was rejected by the chi-square differ-
ence test and also showed an increased AIC value relative to the
strong invariance model. We concluded that error variances dif-
fered significantly across raters, whereas loadings and intercepts
did not. Given that strong MI is sufficient for demonstrating scale
equivalence and for meaningful comparisons of latent means, we
proceeded with the strong-MI model and tested for latent mean
differences across all three rater types for the HI construct.

The strong-MI model with equal means across all three rater
types was clearly rejected for HI, showing that there were true
mean differences across some of the raters (indicating a lack
of convergent validity with respect to the true means or true
mean differences between the home vs. school contexts). We addi-
tionally tested whether the means for mother and father ratings
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Table 2 | Parameter estimates of the measurement models fit to the HI and IN multirater data set.

Parameter label Hyperactivity/impulsivity (j = 1) Inattention (j = 2)

Estimate SE Standardized estimate Estimate SE Standardized estimate

TRAIT FACTOR LOADINGS

λ1j 1.00a — 0.96b; 0.95b; 0.97b 1.00a — 0.96b; 0.96b; 0.98b

λ2j 0.93 0.01 0.90b; 0.90b; 0.94b 0.13 0.01 0.91b; 0.92b; 0.96b

λ3j 0.92 0.01 0.90b; 0.90b; 0.94b 0.95 0.01 0.88b; 0.89b; 0.93b

INDICATOR-SPECIFIC FACTOR LOADINGS

γ2j1 1.00a — 0.37 1.00a — 0.33

γ2j2 0.88 0.21 0.34 0.96 0.08 0.31

γ2j3 0.17 0.06 0.07 0.31 0.07 0.09

γ3j1 1.00a — 0.24 1.00a — 0.35

γ3j2 1.57 0.56 0.40 0.94 0.08 0.32

γ3j3 0.13 0.08 0.03 0.06 0.08 0.02

INTERCEPTS

α1j1 0.00a — 0.00a —

α2j1 −0.09 0.02 0.06 0.02

α3j1 0.08 0.02 0.16 0.02

α1j2 0.00a — 0.00a —

α2j2 −0.09 0.02 0.06 0.02

α3j2 0.08 0.02 0.16 0.02

α1j3 0.00a — 0.00a —

α2j3 −0.09 0.02 0.01 0.02

α3j3 0.08 0.02 −0.15 0.02

ERROR VARIANCES

Var (ε1j1) 0.09 0.01 0.08c 0.07 0.01 0.09c

Var (ε2j1) 0.07 0.04 0.06c 0.08 0.01 0.07c

Var (ε3j1) 0.15 0.02 0.13c 0.09 0.01 0.11c

Var (ε1j2) 0.10 0.01 0.09c 0.07 0.01 0.08c

Var (ε2j2) 0.09 0.03 0.08c 0.08 0.01 0.07c

Var (ε3j2) 0.02 0.06 0.02c 0.09 0.01 0.10c

Var (ε1j3) 0.07 0.01 0.06c 0.06 0.01 0.05c

Var (ε2j3) 0.11 0.01 0.11c 0.10 0.01 0.06c

Var (ε3j3) 0.13 0.01 0.12c 0.15 0.01 0.13c

Note: For hyperactivity/impulsivity, a model of strong invariance for all raters and equal means across mother and father ratings was chosen. For inattention, a model

of strict invariance for mother and father ratings was chosen. λijk , trait factor loading (i, indicator; j, trait; k, method/rater); γijk , indicator-specific factor loading; αijk ,

intercept; Var(εijk ), error variance. The methods used here are mother report (k = 1), father report (k = 2), and teacher report (k = 3).
a Parameter fixed for identification.
b Standardized loadings differed between raters for the same variable, because error variances and latent factor variances were allowed to differ in the final models.

The standardized loadings are therefore given separately for each rater type in the following order: (1) mothers, (2) fathers, (3) teachers.
c Standardized residual variances indicate 1 – R2 and can be interpreted as coefficients of unreliability [(1 – Rel(Yijk )] for each variable.

Dashes indicate fixed parameters for which no standard errors are computed.

were significantly different from one another, or whether the
parent means only differed from the teacher means. A model with
latent means constrained equal across mother and father (but not
teacher) ratings was not rejected by the chi-square difference test
relative to the strong MI model with unconstrained latent means.
Therefore, we concluded that mothers and fathers did show con-
vergent validity of mean levels for the HI construct, whereas the
latent mean for teacher ratings was significantly smaller than for
mothers and fathers. This indicated a lack of convergent validity
with regard to the HI mean level across parent and teacher ratings
or true differences in the mean HI levels between contexts (home

vs. school; more details are provided later on when we discuss the
parameter estimates of the final models).

Our analyses of the IN construct yielded different findings with
regard to MI. In the IN case, already the weak invariance model
showed a statistically significant (albeit relatively modest) increase
in the chi-square relative to the configural invariance model, indi-
cating at least partly non-invariant loadings across some of the
raters. We tested whether the loadings were equivalent at least
across mother and father ratings, as mothers and fathers were rat-
ing the same context (home). This hypothesis was not rejected by
the chi-square difference test.
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The strong-MI model for all raters showed a marked and
highly significant increase in the chi-square relative to the full
weak invariance model. We again tested whether strong invari-
ance could at least be assumed across mothers and fathers. This
hypothesis was also rejected according to the chi-square difference
test, although the resulting chi-square difference was relatively
modest and the global chi-square for this model was still non-
significant. The strong-MI model for mothers and fathers also
showed a very good global model fit, as indicated by a non-
significant overall chi-square goodness of fit test. We therefore
decided to proceed with the “partial strong-MI” model and to
also test for strict MI across mother and father ratings only (leav-
ing the intercept and residual variance parameters for teachers
unconstrained). The strict-MI model for mothers and fathers
showed a good overall model fit in terms of the chi-square and did
not fit significantly worse than the partial strong-MI model. We
therefore used the partial strict-MI model to test for mean differ-
ences across mothers and fathers. The resulting model with equal
means across mothers and fathers showed a significant, albeit
rather small chi-square difference value, indicating that there was
a small difference in the latent means between mother and father
ratings of IN.

A key finding of the IN analyses was the clear non-invariance of
teacher intercepts relative to mother and father intercepts for this
construct. The parameter estimates for the final models (strong
MI across all three raters and equal latent means across mother
and father reports for HI; strict MI across mother and father rat-
ings only and unconstrained latent means across all raters) are
presented in Tables 2, 3. Table 2 contains the parameter estimates
related to the measurement models (i.e., the loadings, inter-
cepts, and error variances). Table 3 shows the structural (latent
variable model) parameter estimates (i.e., the latent covariances,
correlations, variances, and means).

From Table 2, it can be seen that for IN, the intercepts for
teacher ratings were markedly lower than the parent intercepts,
indicating that teachers generally found it more “difficult” to
endorse the symptoms on each of the IN indicators than did
parents. One explanation could be that teachers in general are
perhaps more used to seeing a broad spectrum of symptoms of
IN and distraction in class than are parents at home. Therefore,
the teachers in our sample may have used a different frame of ref-
erence (and a higher “threshold”) when making their ratings of
IN compared to parents. As a consequence, a more serious level
of observed IN symptoms was required for teachers to produce
the same score on the latent variable of IN as would be obtained
from parent ratings. Interestingly, this difference was only found
for IN, but not HI. This shows us that MI analyses in the context
of MTMM data can reveal quite interesting information about
differences between methods and how they may or may not use
rating scale in a different way that may lead to scores that are not
directly comparable. This information goes beyond what is typi-
cally assessed in MTMM studies and what can be obtained from
an MTMM matrix alone.

From Table 3, we can see that there was substantial convergent
validity in terms of the rank order of children for both HI and
IN. Latent correlations ranged between 0.78 and 0.81 for mother

Table 3 | Estimated latent covariances, correlations, means, and

variances in the final models.

1. 2. 3. 4. 5.

HYPERACTIVITY/IMPULSIVITY

1. T111 — 0.85 (0.06) 0.45 (0.05) —a —a

2. T112 0.81 (0.02) — 0.43 (0.05) —a —a

3. T113 0.42 (0.04) 0.42 (0.04) — — —a

4. IS21 —a —a —a — 0.03 (0.01)

5. IS31 —a —a —a 0.29 (0.07) —

Means 1.10b (0.04) 1.10b (0.04) 0.71 (0.04) —a —a

Variances 1.11 (0.07) 0.99 (0.06) 1.05 (0.06) 0.16 (0.04) 0.07 (0.03)

INATTENTION

6. T121 — 0.60 (0.04) 0.41 (0.04) —a —a

7. T122 0.78 (0.02) — 0.44 (0.05) —a —a

8. T123 0.45 (0.04) 0.44 (0.04) — —a —a

9. IS22 —a —a —a — 0.05 (0.01)

10. IS32 —a —a —a 0.44 (0.07) —

Means 0.97 (0.04) 1.03 (0.04) 0.88 (0.04) —a —a

Variances 0.74 (0.05) 0.80 (0.05) 1.17 (0.07) 0.12 (0.02) 0.10 (0.02)

Note: Covariances are shown above the diagonal, correlations below the

diagonal.
a Covariances, correlations, or means that are set to zero by definition of the

model. Standard errors are given in parentheses.
b Latent means for hyperactivity/inattention were set equal across mother and

father reports.

and father ratings and between 0.42 and 0.45 between parents
and teachers. Latent means for mother and father ratings of HI
were set equal, given that this constraint was supported by the
goodness-of-fit tests. In contrast, teacher ratings of HI resulted in
a significantly smaller latent mean than parent ratings (0.71 vs.
1.10). The standardized mean difference was about 0.35, which
can be seen as a small effect. It could be that teachers again use
a different frame of reference for problems of HI, as they may be
used to seeing a much larger array of problem behaviors at school
than what most parents experience at home. Another explanation
could be that the possibly more structured school context relative
to less structure at home reduces the occurrence of HI symptoms
in school relative to home for children within the normal range
on HI.

For IN, the latent mean based on father reports was slightly
larger than the mother-report mean (1.03 vs. 0.97, which rep-
resented a standardized mean difference below 0.10 and hence
a very small effect). Our MI analyses for IN had indicated that
the teacher mean could not be directly compared to the parent
means, given the finding of intercept non-invariance for teacher
as compared to parent ratings.

CT-C(M – 1) model
Our analyses with the CT-C(M – 1) model allowed us to estimate
the consistency and method-specificity coefficients relative to a
reference method. For the present example, we chose to select
mother reports (k = 1) as reference method and contrast father
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reports (k = 2) and teacher reports (k = 3) against this refer-
ence. This also made it possible to examine correlations between
the father and teacher method factors, Corr(Mj2, Mj3). These
correlations reflect whether fathers and teachers shared a com-
mon perspective that theses rater types did not share with mother
reports.

Our results revealed high consistency and relatively low
method-specificity coefficients for father reports for both HI
and IN [range of consistency coefficients: 0.53 ≤ Con(Yi12) ≤
0.60 for HI; 0.48 ≤ Con(Yi22) ≤ 0.55 for IN; range of method-
specificity coefficients: 0.27 ≤ MSpe(Yi12) ≤ 0.31 for HI;
0.32 ≤ MSpe(Yi22) ≤ 0.36 for IN], indicating that there was
high convergent validity between mother and father reports.
This finding reflected the high correlations found between the
mother and father trait factors in the baseline CFA model that
we reported above. Consistency coefficients were lower (and
method-specificity coefficients higher) for teacher ratings [range
of consistency coefficients: 0.15 ≤ Con(Yi13) ≤ 0.16 for HI; 0.17 ≤
Con(Yi23) ≤ 0.19 for IN; range of method-specificity coefficients:
0.73 ≤ MSpe(Yi13) ≤ 0.77 for HI; 0.70 ≤ MSpe(Yi23) ≤ 0.76 for
IN], showing that mother and teacher ratings shared less vari-
ance with each other than did mother and father ratings. The
latent correlations between the father and teacher method fac-
tors were estimated to be ϕ = 0.15 for HI and ϕ = 0.19 for
IN (both p-values were < 0.001). These correlations can be
interpreted as partial correlations between father and teacher rat-
ings after partialling out the common variance that both rater
types shared with mother reports. In this case, the method fac-
tor correlations were rather small. This indicated that there was
not much of a shared perspective between fathers and teachers
above and beyond what fathers and teachers both shared with
mothers.

Latent difference model
In the present example, a latent difference approach could be used
for HI for all three rater types (mothers, fathers, and teachers),
given that strong MI had been established across all three rater
types for this construct. Given intercept non-invariance of teacher
ratings as compared to parent ratings for IN, a latent difference
approach would have been easily interpretable only for mother
vs. father ratings for IN (excluding teacher ratings). We therefore
only present the results for HI here as an example, for which we
could meaningfully include all three rater types.

The latent difference model for HI yielded a latent dif-
ference factor mean of E(T112 – T111) = −0.02 [Var(T112 –
T111) = 0.40] for father vs. mother ratings. This latent dif-
ference factor mean was not significantly different from zero
(p = 0.41), showing that mother and father ratings of HI did
not differ significantly in their latent means. The latent dif-
ference factor mean for teachers vs. mothers was estimated
to be E(T113 – T111) = −0.40 [Var(T113 – T111) = 1.26],
which was statistically significantly different from zero (p <

0.001). This again showed that mother and teacher ratings
resulted in significantly different estimates of the overall level
of HI in our data example. The correlations of father and
teacher latent difference factors with the mother reference fac-
tor were ϕ = −0.40 and ϕ = −0.56, respectively. The latent

difference factors for father and teacher ratings were correlated
ϕ = 0.33.

Latent means model
The latent means model defines a common trait as the average
across method-specific true score variables. Therefore, a latent
means approach is only interpretable if all methods show at least
strong MI. Otherwise, the “grand mean” of methods will be dif-
ficult to interpret. Therefore, we decided not to estimate the
latent means model for IN because of intercept non-invariance
for teacher ratings. The model was meaningful for HI, however,
because all three rater types were shown to have invariant load-
ings and intercepts for this construct. The latent means model
for HI yielded a common latent mean estimate of E(T1) = 0.97
[Var(T1) = 0.73]. The method factors in the latent means model
represent deviations from the common latent mean factor. Their
means indicate to which extent methods (on average) deviate
from the grand mean across methods. The means of the method
factors were estimated to be E(M12) = 0.12 [Var(M12) = 0.21] for
father reports and E(M13) = −0.26 [Var(M13) = 0.50] for teacher
reports. This reflected the fact that the latent mean of teacher rat-
ings was substantially lower than the latent means for mother and
father ratings of HI. The common trait was correlated ϕ = 0.06
with M12 and ϕ = −0.15 with M13. The correlation between M12

and M13 was estimated to be ϕ = −0.73.

CFA-MTMM model for interchangeable methods
We fit both the general and the indicator-specific trait ver-
sions of Eid et al.’s (2008) CFA-MTMM model for interchange-
able methods to our data example to test whether the rat-
ings would satisfy the restrictions implied by the interchange-
able model (i.e., invariant loadings and intercepts as shown in
Figures 4A,B). Note that from a measurement theoretical point
of view, mother, father, and teacher ratings would typically not be
seen as interchangeable methods, because they are not sampled
from the same “universe” of methods; here, we use these data
merely to illustrate MI analyses in the interchangeable MTMM
model and do not imply that the ratings should be treated as
interchangeable.

The fit statistics are presented in Table 4. Parameter estimates
for the final models are given in Table 5. We found that a model
with invariant loadings and intercepts for all three types of raters
(mother, father, and teacher) was not tenable for either HI or IN,
even if the less restrictive version of the model with indicator-
specific traits was used. One reason was that in this model, the
latent means are implicitly assumed to be equal across all inter-
changeable methods—this assumption was already rejected in
our initial analyses of the simple CFA model.

In contrast, an indicator-specific trait model for mother and
father reports only (dropping teacher reports from the analysis)
fit both the HI and IN data well, showing that mother and father
ratings satisfied the conditions of interchangeability implied by
the model in this application. This parallels our findings from the
previous analyses according to which mother and father ratings
were more similar to one another than they were compared to
teacher ratings. For both HI and IN, mothers and fathers shared
the same or very similar means as indicated by previous analyses.
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Table 4 | Goodness of fit statistics for different versions of the CFA-MTMM model for interchangeable methods fit to the HI and IN multirater

data set.

Model χ2 df p RMSEA CFI TLI SRMR χ2� df� p(χ2�) AIC

HYPERACTIVITY/IMPULSIVITY

All three raters; equal
loadings and intercepts

378.01 31 <0.001 0.13 0.948 0.939 0.16 9867

Mothers and fathers only;
equal loadings and intercepts

7.34 8 0.50 0.00 1.000 1.000 0.01 6102

Mothers and fathers only;
equal loadings, intercepts,
and residual variances

12.70 11 0.31 0.02 1.000 0.999 0.01 5.36 3 0.15 6102

Mothers and fathers only;
equal loadings, intercepts,
residual variances, and
method factor variances

16.81 12 0.16 0.03 0.999 0.999 0.03 4.11 1 0.04 6104

INATTENTION

All three raters; equal
loadings and intercepts

381.16 31 <0.001 0.13 0.949 0.941 0.09 9556

Mothers and fathers only;
equal loadings and intercepts

9.42 8 0.31 0.02 1.000 0.999 0.01 5648

Mothers and fathers only;
equal loadings, intercepts,
and residual variances

10.10 11 0.52 0.00 1.00 1.00 0.01 0.68 3 0.88 5643

Mothers and fathers only;
equal loadings, intercepts,
residual variances, and
method factor variances

11.15 12 0.52 0.00 1.000 1.000 0.02 1.05 1 0.31 5642

Note: In order to save space, we only present results for the model version with indicator-specific traits (Figure 4B), given that the model version with a single trait

(Figure 4A) did not fit well for any rater combination. RMSEA, root mean square error of approximation; CFI, comparative fit index; TLI, Tucker-Lewis index; SRMR,

standardized root mean square residual; AIC, Akaike’s information criterion. For both constructs, the initial model included all three rater types. Subsequent models

included only mother and father ratings (dropping teacher ratings from the analysis). Bold-face indicates best-fitting models.

(The baseline model for IN yielded a significant mean differ-
ence between mother and father reports; this was likely because
there was more statistical power to detect mean differences in
the combined model with all three raters. Nonetheless, the mean
difference between mothers and fathers was very small also in the
initial analysis).

We also tested more strict models of interchangeability for
mother and father ratings, in which we also constrained (a)
the error variances and (b) the method factor variances to be
equal across mother and father ratings. Chi-square difference
tests revealed that for HI, equal error variances were tenable, but
not equal method factor variances. In contrast, for IN, both the
assumption of equal error variances and the assumption of equal
method factor variances were acceptable according to the chi-
square difference test. In summary, mother and father ratings
of IN could be viewed as strictly interchangeable in the sense
of the model, whereas for HI the ratings could be viewed as
interchangeable except for the amount of method factor variance.

DISCUSSION
Researchers frequently use different raters as methods in MTMM
studies. Often, ratings are provided on comparable items or
scales. In these cases, one can examine whether (1) different raters
use the items or scales in equivalent ways (i.e., whether MI holds

across methods) and (2) whether there is convergent validity of
latent mean levels across methods. This opens up new possibilities
for studying method effects in more detail. Whereas traditional
approaches to MTMM analyses (such as Campbell and Fiske’s,
1959; MTMM matrix or conventional CFA-MTMM models) have
typically focused exclusively on (observed or latent) relation-
ships (correlations) between different TMUs, the MI approach
presented here first of all examines the relationships between indi-
cators and latent variables within each TMU. In this article, we
proposed to analyze MI using a baseline MTMM model without
method factors in the first step of the analysis. Using this model,
researchers can first of all test whether the proposed factor struc-
ture holds within corresponding TMUs and second, whether the
way indicators relate to latent factors within a TMU is compara-
ble across methods. This allows researchers to examine whether
supposedly equivalent concepts that are measured by the same
indicators (but different methods) have similar relationships with
their indicators for different methods. (This may be termed an
examination of the “convergent validity of measurement proper-
ties.”). If they do, this may increase a researcher’s confidence that
similar concepts are indeed measured by each method or at least
that the indicators “function” similarly across methods. If they
don’t, then a researcher may question whether the concepts can
be seen as equivalent across methods, warranting further study
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Table 5 | Parameter estimates in the CFA-MTMM models for interchangeable methods fit to mother and father ratings of HI and IN.

Parameter label Hyperactivity/impulsivity (j = 1) Inattention (j = 2)

Estimate SE Standardized estimate Estimate SE Standardized estimate

TRAIT FACTOR LOADINGS

λ1j 1.00a — 0.84; 0.89b 1.00a — 0.84

λ2j 1.00a — 0.88; 0.91b 1.00a — 0.87

λ3j 1.00a — 0.84; 0.88b 1.00a — 0.85

METHOD FACTOR LOADINGS

γ1j 1.00a — 0.37 1.00a — 0.47

γ2j 0.88 0.05 0.34 1.05 0.05 0.41

γ3j 0.99 0.05 0.07 0.98 0.05 0.43

ERROR VARIANCES

Var (ε1j ) 0.09 0.01 0.08; 0.08b,c 0.07 0.01 0.08c

Var (ε2j ) 0.09 0.01 0.07; 0.08b,c 0.09 0.01 0.08c

Var (ε3j ) 0.09 0.01 0.08; 0.09b,c 0.09 0.01 0.10c

LATENT MEANS

E(T1j ) 1.09 0.04 0.98 0.03

E(T2j ) 0.95 0.04 1.17 0.04

E(T3j ) 1.08 0.04 1.09 0.04

LATENT VARIANCES

Var (T1j ) 0.86 0.06 0.58 0.04

Var (T2j ) 0.92 0.06 0.88 0.06

Var (T3j ) 0.78 0.06 0.66 0.05

Var (Mj1) 0.26 0.04 0.18d 0.02

Var (Mj2) 0.14 0.03 0.18d 0.02

For hyperactivity/impulsivity, a model of strong invariance for all raters and equal means across mother and father ratings was chosen. For inattention, a model of

strict invariance for mother and father ratings was chosen. λijk , trait factor loading (i, indicator; j, trait; k, method/rater); γijk , indicator-specific factor loading; αijk ,

intercept; Var(εijk ), error variance. The methods used here are mother report (k = 1), father report (k = 2), and teacher report (k = 3).
a Parameter fixed for identification.
b Standardized loadings and standardized error variances for HI differed between raters for the same variable, because the method factor variances were allowed

to differ in the final model. The standardized loadings and error variances are therefore given separately for each rater type in the following order: (1) mothers, (2)

fathers.
c Standardized residual variances indicate 1 – R2 and can be interpreted as coefficients of unreliability [(1 – Rel(Yijk )] for each variable.
d Method factor variances were set equal across mother and father reports in this model.

Dashes indicate fixed parameters for which no standard errors are computed.

of what exactly is measured by each method and in which ways
concepts or item meanings might differ across methods.

Non-invariant intercepts or loadings across methods can indi-
cate that the scales have a different meaning for different methods.
For example, a certain behavior may be less relevant for the def-
inition of a construct for one type of rater than for another.
Consider, for instance, symptoms of ADHD. A specific ADHD-
IN symptom may be highly relevant for parents’ view of their
children, but not so critical for teachers’ view (maybe because it
does not occur in the school context), thus leading to different
factor loadings or intercepts for the same symptom. The find-
ing of measurement non-invariance can thus shed more light on
how different indicators (e.g., ADHD symptoms) “function” for
different types of raters.

It is interesting to note that our approach of beginning an
MTMM analysis with a thorough investigation of the measure-
ment properties within and across TMUs seems to be well in
line with Fiske and Campbell’s (1992) later view of the original

Campbell and Fiske (1959) MTMM approach. In their 1992
review, Fiske and Campbell proposed to “settle for the practice
of studying ‘TMUs’,” given that “method and trait or content are
highly interactive and interdependent” (p. 394). Examining MI
across TMUs is one component of such an analysis strategy that
places more emphasis on what is measured within each TMU
rather than just on correlations between TMUs.

While traditional MTMM analyses focus exclusively on cor-
relation or covariance structures (Campbell and Fiske, 1959), we
propose to routinely consider means in the analyses as well, which
is a novel aspect in MTMM research. By including means in
the analysis, MI across methods can be more fully tested and,
if strong MI can be established, latent means can be compared
across methods to examine the degree of convergent validity
of mean levels across methods. When using just the covariance
matrix (and no means), researchers can test for loading (weak
factor) invariance and invariant error variances, but not for inter-
cept (strong) MI. In our empirical example, we found that the
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intercepts were non-invariant across some methods for one of the
constructs, indicating differences in scale difficulty across meth-
ods. This information could not have been obtained without
including means in the analysis.

In addition, when only covariances or correlations are ana-
lyzed, latent means cannot be compared across methods. Strong
MI is a prerequisite for interpreting latent mean differences across
methods in a straightforward way. With non-invariant intercepts
and/or loadings, latent mean differences across methods may be
difficult to interpret, because the measurements would not be in
the same metric in this case. In cases of non-invariance, mean
differences would represent a mixture between rater biases and
measurement bias (differences in scale use). This was the case
for parent vs. teacher ratings of IN in our empirical example. Of
course, the question of interpretability depends on the particu-
lar substantive application and is also a matter of degree rather
than “all or nothing.” For example, if violations of MI are small,
approximate MI (van de Schoot et al., 2013) may still hold, war-
ranting a proper interpretation of latent mean differences across
methods.

If strong MI can be established across methods (such as in our
empirical application to the HI construct), then a researcher can
meaningfully test whether methods converge in the assessment
of the latent mean level of a construct in a given population. In
our HI example, this was the case for mothers vs. fathers, but
not for parents vs. teachers. This showed that there was a lack
of convergent validity of mean levels across methods (or a true
difference between the home and school contexts), even though
the convergent validity in terms of the correlations between par-
ents and teachers was quite strong. This issue is especially critical
when researchers want to draw conclusions about, for example,
the overall level of a problem such as HI. In this case, they would
come to different conclusions based on parent vs. teacher ratings
in the present example. It is therefore important to examine the
convergent validity of mean levels across raters in such cases.

Of course, testing for MI and comparing latent means only
makes sense when methods used comparable measurement
instruments (items and response scales) to begin with. When very
different methods are used (e.g., ratings vs. physiological mea-
sures of stress), tests of MI are typically not meaningful, especially
when scoring procedures differ between methods (e.g., 4-point
Likert scale vs. cortisol concentration in nmol/L). When different
methods used similar response scales as in the examples presented
in this paper, but strong MI cannot be established, observed mean
differences for corresponding indicators across methods still pro-
vide valuable information, as they indicate method effects at the
measurement level (i.e., differences in scale use; see discussion
above).

DIFFERENT MODELS
In this article, we demonstrated that including mean structures
and testing for MI is not only an issue of potential substan-
tive interest in MTMM analyses. With respect to more complex
CFA-MTMM models with method factors, we showed that MI is
relevant to these models especially for two reasons: (1) the def-
inition of trait and method factors may require strong MI for a
meaningful interpretation of structural parameters such as latent

trait and method factor means and variances as well as individ-
ual scores on these latent variables or (2) at least strong MI is
implied by a CFA model for interchangeable methods. Therefore,
MI is not just something that researchers may or may not be inter-
ested in when analyzing MTMM data; instead, depending on the
model, MI can be a prerequisite for the proper interpretation of
one’s MTMM model or for conclusions about whether methods
can be seen as interchangeable or not.

We showed that among the more complex models for struc-
turally different methods discussed here, the CT-C(M – 1) model
makes the least restrictive assumptions in terms of MI. That is, for
calculating coefficients of convergent validity (consistency) and
method specificity in this model or for the interpretation of trait
and method factors in general, MI beyond configural invariance
is not required. The only case in which MI can become relevant
in the CT-C(M – 1) model is when researchers want to interpret
unstandardized structural regression coefficients or latent mean
differences derived from these coefficients.

In contrast, the latent difference and latent means models
require MI across methods by definition. When different meth-
ods used comparable items that were measured on the same
scale (or rescaled to the same metric) and provided that strong
MI across methods can be established, then the latent difference
and latent means models provide a meaningful and straightfor-
ward estimation of mean method effects, because means can be
directly estimated for the method factors in these models. In con-
trast, in the CT-C(M – 1) model, mean method effects are not
directly estimated in terms of method factor means, because the
method factors in this model have means of zero by definition.
Nonetheless, mean method effects can also be analyzed in the CT-
C(M – 1) model as shown in detail in Geiser et al. (2012). An
advantage of the CT-C(M – 1) model is that it can be used even
when different methods used completely different metrics (e.g.,
self-reports on a 4-point Likert scale vs. cortisol concentrations as
measures of stress) or when MI does not hold.

The latent difference model is less restrictive with regard to MI
than the latent means model, as the latent difference model can
still be used in cases of partial MI (when at least one non-reference
method shows strong MI relative to the reference method). In
contrast, a proper interpretation of the common trait in the
latent means model requires that strong MI between all methods
be established. Despite these differences between the CT-C(M –
1), latent difference, and latent means models, all three models
provide meaningful definitions of trait and method factors. The
choice of a particular model depends in part on a researcher’s
specific goals in a given application.

Another area of MTMM research for which MI plays a role is
when researchers study interchangeable methods. We considered
Eid et al.’s (2008) CFA-MTMM model for interchangeable meth-
ods separately, because it is designed for a different data structure
(interchangeable methods) than the CT-C(M – 1), latent differ-
ence, and latent means models (which are designed for struc-
turally different methods). If, for example, a researcher wants to
test whether methods that, based on theory, are conceived of as
interchangeable truly are interchangeable in a statistical sense, he
or she should use an appropriate CFA-MTMM model for inter-
changeable methods and test for MI. If this assumption is rejected,
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the methods in question may be better viewed as structurally dif-
ferent. In this case, one of the models for structurally different
methods [CT-C(M – 1), latent difference, or latent means] may
be more appropriate.

CONCLUSION
Most MTMM studies so far have focused on assessing conver-
gent validity in terms of correlations between methods or raters
selected to measure the same constructs. We argued that use-
ful incremental information about method effects can be gained
from including mean structures in MTMM models and testing
for MI across methods. Furthermore, we showed that MI is rele-
vant in more complex CFA-MTMM models with method factors,
either because the definitions of trait and method factors imply
MI for a meaningful interpretation of structural parameters or
because the type of method (interchangeable vs. structurally dif-
ferent) may or may not imply MI across methods. We hope that
researchers will find our article useful as a guide for future, more
fine-grained studies of method effects.
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