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Contrasting conditions with and without awareness has been the preferred method for
investigating the neural correlates of consciousness (NCC) for decades, yet recently it
has been suggested that further insights can be made by moving beyond this method,
specifically by meticulously controlling that potential precursors and consequences of
the NCC are not mistaken for an NCC. Here, we briefly review the advantages and
potential pitfalls of existing paradigms going beyond the contrastive method, and we
propose multivariate decoding of neural activity patterns as a supplement to other methods.
Specifically, we emphasize the ability of multivariate decoding to detect which patterns
of neural activity are consistently predictive of conscious experiences at the single trial
level.This is relevant as the “NCC proper” is expected to be consistently predictive whereas
processes that are consequences of consciousness may not occur on every trial (making
them less predictive) and prerequisites of consciousness may be present on some trials
without conscious experience (making them less predictive).
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THE EVOLUTION OF CONTRASTIVE ANALYSIS
In early outlines of contrastive analyses in consciousness research,
emphasis was placed on comparing pairs of psychological phe-
nomena of which one was conscious and the other was not
(e.g., Baars, 1994). Behavioral characteristics and neural activity
could thus be compared between the conscious and unconscious
cases. In the case of vision, for instance, neural activity related
to masked and unmasked stimulus presentations (Dehaene et al.,
2001) or to stimuli presented at various durations (Kjaer et al.,
2001) has been investigated. Over the last two decades, meth-
ods have evolved so rapidly that it is now difficult to determine
what is a natural extension of the contrastive analysis method
and what is an alternative method. In this article, we discuss
some of the recent developments, and we consider how mul-
tivariate decoding, as an extension of or in combination with
contrastive analysis, can contribute to identifying neural correlates
of consciousness (NCC).

Many recent paradigms were developed in order to avoid con-
founds present in the original proposals and experiments. For
instance, if stimulus duration is varied, the two conditions no
longer differ exclusively in terms of the subjective experience of
the participant, but also in terms of an important stimulus char-
acteristic, which could be expected to have an impact on conscious
as well as unconscious processing (Overgaard, 2004). For this
reason, some scientists have preferred paradigms where the phys-
ical parameters remain stable, but only the conscious experience
varies. This has been done, for instance, using masked stimuli
by contrasting trials based on reports of awareness (e.g., Babiloni
et al., 2010). Furthermore, in some relatively early studies par-
ticipants primarily performed objective tasks, and to the extent

that awareness reports were used, they were used to confirm that
conditions could be treated as subliminal/supraliminal (Dehaene
et al., 2001; Kjaer et al., 2001; Silvanto et al., 2005). In contrast,
in some later studies, scientists have more often preferred to base
analyses on trial-by-trial reports of awareness (or confidence) even
when multiple physical stimulus conditions are used (Christensen
et al., 2006; Koivisto, Mäntylä et al., 2010). The use of awareness
reports can be seen as a necessary consequence of the wish to
control for physical parameters. Methodologically speaking, these
reports separate conditions when trials no longer differ in terms
of objective characteristics. But their use is also partly a conse-
quence of theoretical arguments in favor of the crucial role of
awareness ratings as a key measure of validity in consciousness
research (Overgaard, 2006, 2010). Some scientists even prefer to
keep accuracy stable so that only the level of awareness varies
between conditions (Lau and Passingham, 2006; Lau, 2008) or
to examine the correlates of accuracy and awareness separately
while ensuring that mask and stimulus have very different neural
signatures (Hesselmann et al., 2011).

Common to most recent studies is that the need to con-
trol for potential confounds has resulted in a shift from the
examination of complete unawareness versus complete awareness
to the examination of smaller differences in graded awareness
ratings or changes in the probability of obtaining reports of
awareness. As the change between conscious and unconscious
perception occurs more suddenly across stimulus intensity for
the attentional blink (than for masking), this paradigm has
sometimes been preferred (e.g., Sergent et al., 2005) although
others are reluctant to use the paradigm as they suspect it
reflects failure to attend (possibly conscious) perception (e.g.,
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Lamme, 2006). Bistable perception provides another method
for ensuring both conscious and unconscious perception under
equal stimulation conditions. Many earlier studies using ambigu-
ous perception examined differences in neural activity related
to ambiguity/non-ambiguity (Lumer et al., 1998) or reversals
of perception (Kornmeier and Bach, 2004), but some have
also compared neural activity related to one perceptual state
versus another (Andrews et al., 2002; Sterzer and Rees, 2008;
Sandberg et al., 2013).

RECENT DEVELOPMENTS
Recently, it has been argued that it is possible that studies using
contrastive analyses cannot distinguish between a NCC and its pre-
requisites (NCC-pr) and consequences (NCC-co; Aru et al., 2012).
An NCC-pr is neural activity associated with task specific initial
processing (which predicts later conscious experiences) whereas
an NCC-co is neural activity related to a process that occurs for
conscious stimuli only, for instance encoding in working memory.
Aru et al. (2012) have argued that by manipulating stimulus pro-
cessing in various ways, NCC-pr and NCC-co should change, but
the NCC should remain stable. In one experiment, Melloni et al.
(2011) manipulated the stimulus expectation across conditions
and found that an early EEG component (around 100 ms) only
reflected differences between seen and unseen stimuli when there
was no expectation of the stimulus, and similarly a later compo-
nent (the P300) only correlated with awareness when stimuli had
to be encoded in working memory, but not when a representation
was already present. In contrast, a component between the two, at
around 200–300 ms, correlated with conscious perception inde-
pendently of condition. This indicated that the first component
was an NCC-pr, the middle component at 200–300 ms a likely
NCC candidate, and the P300 an NCC-co.

Although this method for moving beyond contrastive analysis
is certainly novel and useful, it assumes one can evoke the same
experience by means of multiple, very different manipulations.
However, there is no guarantee that the experience is identical
even if the same proportion of awareness responses is obtained
across conditions. Ratings of awareness can be viewed as a deci-
sion process in which evidence is gathered for a particular response
(e.g., Lau, 2008), for example “seen,” but when different manipu-
lations are made, the decision axis is no longer shared, and thus
it is unknown if the NCC can be expected to remain unchanged
(Jannati and Di Lollo, 2012). A potential solution to this could be
the use of more detailed awareness ratings, but it may also be possi-
ble to improve the paradigm in general using decoding approaches
as we will return to later.

Accordingly, we still have no paradigm to investigate NCCs
without potential systematic confounds. Newer paradigms, to
some degree, have solved problems in previous paradigms, yet have
introduced new ones. For this reason, we argue that converging
evidence across multiple paradigms is essential in the search for
the “NCC proper” (Overgaard, 2011).

MULTIVARIATE DECODING
Here, we use the term multivariate decoding [also sometimes
referred to as multivariate/multi-voxel pattern analysis, pattern
classification, “brain reading,” or simply decoding (Haynes and

Rees, 2006; Norman et al., 2006; Haynes, 2009)] as an umbrella
term for a group of analysis techniques for which the goal, in
this context, is to decode the conscious experience of a partic-
ipant based on large amounts of brain data. We will exemplify
the general logic behind multivariate decoding by example of a
within-subject decoding.

Take an MEG dataset (Figure 1), for instance, of a subject with
x epochs of class A (e.g., “aware”) and x epochs of class B (e.g.,
“no awareness”): each data point of each epoch is called a feature.
For a given dataset with n sensors/sources and t time points, one
will thus have n X t features for each epoch. The dataset is then
divided into two parts, a training set (often 90% of the data) and
a test set (the remaining 10%; Figure 1A). A model is fitted to
the training set and each feature is assigned a weight. Dependent
on the sign of a given weight, it raises the posterior probability of
a given epoch to belong to class A or B, respectively. The fitted
training set, with its feature weights, is then used to predict the class
of each epoch for the test set (Figure 1B). The predicted class label
for a given epoch is the class label that has the highest posterior
probability assigned to it when the feature weights for that epoch
are summed together. One can then obtain a classification score,
which is the percentage of correctly classified epochs. Figure 1C
shows an example of this. To test the generality of the classification
score, one can cross-validate the score by dividing the data set into
training and test sets in different ways.

We believe that multivariate decoding has a role in neuroscien-
tific consciousness research for several reasons and in the following
we will go through these. We will, however, first emphasize that
decoding results should be interpreted with care: although a given
mental state can be decoded above chance from particular neu-
ral activity, this does not in itself imply a causal relationship. In
this sense, multivariate decoding shares some of the limitations of
correlation studies. Multivariate decoding, nevertheless, opens up
new possibilities that have not previously been available.

INCREASED SENSITIVITY OF MULTIVARIATE DECODING
One main advantage of multivariate decoding is the greater sensi-
tivity than that of traditional mass-univariate approaches typically
used in contrastive analyses (i.e., the testing of single variables one
at a time; Haynes and Rees, 2006; Norman et al., 2006). Mul-
tivariate decoding is more sensitive that univariate testing due to
pooling of information and the informativeness of the co-variance
of the features (Haynes and Rees, 2006). Furthermore, univariate
tests typically test for linear relationships whereas the nature of
the relationship does not need to be specified to achieve successful
decoding (Haynes, 2009). The advantage of multivariate decoding
in consciousness research has been shown for fMRI where Haynes
and Rees (2005) showed that decoding based on V1–V3 voxels
combined was more predictive of perception during binocular
rivalry than decoding based on the combined mean of the same
voxels. Similarly, using MEG Sandberg et al. (2013) showed that
perception during binocular rivalry can be decoded at an accuracy
just a few percent below peak decoding accuracy (around 75%)
using just 10 occipital sensors, which were individually at chance
(below 51.5%).

At its core, all univariate testing regards data points as indepen-
dent of one another, which is evidently false for both MEEG and
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FIGURE 1 | Illustration of a hypothetical classification analysis and the

steps involved. (A) The classifier is to distinguish between two categories:
“Aware” (red) and “Unaware” (blue). Trials are separated into training and test
sets in three different ways to ensure cross-validation. The plots show

hypothetical activity developing over time courses for ten trials of aware and
unaware respectively. (B) The decisions reached based on the model fit in the
training set. (C) Classification is performed for 100 trials (50 aware and 50
unaware) with a non-linear decision boundary.

fMRI data. It is precisely the heavy spatial and temporal correla-
tions of neuroimaging data that make them fit for multivariate
analyses. In contrast to univariate tests, multivariate tests can
facilitate the information contained in the temporal and spatial
dependencies between data points in both sensor and source space
(MEEG) and in voxel space (fMRI) in a single test.

FINDING CONSISTENT CORRELATES USING MULTIVARIATE
DECODING
Multivariate tests are more sensitive to differences between con-
ditions that are present during all epochs, and that they are less
sensitive to differences between conditions that are only present
during some of the epochs. Indeed, Haynes (2009) emphasized
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that a core NCC (or “NCC proper”) should in principle be able
to predict a conscious state perfectly. From this it follows that
higher decoding accuracy is generally a sign of greater representa-
tional accuracy although it must be emphasized that care should
be taken when comparing decoding accuracies across different
brain areas, and there are several aspects to consider. For instance,
Kamitani and Tong (2006) found that perceived motion direc-
tion was only decoded as well from MT+ as from earlier visual
areas V1–V4 when the same number of voxels was used. Indeed,
a later article by Smith et al. (2011) mention that when compar-
ing fMRI decoding accuracies across conditions, participants, or
brain regions, it is important that several factors are controlled
for including the number of voxels and stimulus repetitions (and
we might add that not only the number of spatial, but also the
number of temporal, features should be controlled for). Addi-
tionally, they specifically emphasize the importance of controlling
for or taking into account the mean amplitude of the compo-
nent of interest as they show that decoding accuracy increases as
a function of mean amplitude even if specificity is not increased.
The function with which classifier accuracy increases as a func-
tion of response amplitude (measured as percent signal change for
fMRI) can nevertheless be estimated and compared across areas
for a more valid comparison of decoding accuracy. A simpler, but
not always feasible solution is to compare components of equal
amplitude.

A note of caution is necessary, however: even when mean ampli-
tude is controlled for, the obtainable signal from two components
may differ in their signal-to-noise ratios (for instance, if the angle
of the neurons prevents a good signal in MEEG). This necessi-
tates that one is cautious when interpreting differences in accuracy
between MEEG components unless one has a good way to esti-
mate differences in noise ceilings. Such estimations are possible
with encoding models (Kay et al., 2008) or with representational
similarity analysis (Nili et al., 2014), but it is presently an unre-
solved issue for decoding models and further work in this field
is important for ensuring the validity of comparisons of decod-
ing accuracies. It should be emphasized that the issue is not likely
to be dramatic and presently a rough estimate of noise ceiling
may be achieved by prior knowledge of decoding accuracies across
different tasks for various brain regions/components.

Univariate tests are of course sensitive to differences that are
present on all epochs, but crucially they can, in addition, be sensi-
tive to differences that appear only on some epochs, but show some
average difference between conditions (e.g., aware/unaware). This
has important implications for the attempt to separate NCC-pr,
NCC, and NCC-co. In Figure 2, we show simulated data with three
components for which there are average differences between tri-
als reported as “aware” and “unaware” by a participant. We would
expect the actual NCC to vary consistently with the conscious
experience – whenever the participant has an experience of the
stimulus, the relevant component should reflect this. The NCC-pr,
however, might be present without the NCC on some trials (i.e.,
one particular prerequisite of conscious experience was present
on a trial, but perhaps some others were not, and the participant
thus had no experience) in which case the component becomes an
unreliable predictor and should not be assigned high weights by
the classifier when all data are taken into account, and it should

FIGURE 2 | Consistency of the neural correlates of consciousness

(NCC). Three simulated, hypothetical signals of differing consistency and
strength are plotted. All could be candidate NCC, thus reflecting differences
between trials classified as “aware” and “unaware” by a participant. For
the first component, there is a small average difference, but the
component is not consistently larger for “aware” trials, making it unlikely
that the component reflects awareness. The component could reflect a
prerequisite for consciousness (NCC-pr) as it has to be present for
awareness, but it does not guarantee awareness. For the second
component, there is a medium average difference, and the component is
consistently larger for “aware” trials. On the single trial level, the
component thus reflects awareness and it may thus be an actual NCC.
Finally, for the third component, there is a large average difference, but the
component is only found on a subset of “aware” trials, and it does thus not
consistently reflect awareness. The component could thus reflect
processes that are consequences of awareness (NCC-co), which occur
exclusively for “aware” trials, but may not occur on every single aware trial.
Note that traditional univariate statistics based averaged participant-specific
averages would erroneously find more evidence for the last component
being the NCC proper in this example.

produce suboptimal decoding accuracy when used to train/test
the classifier alone. This corresponds to the first component in
Figure 2. The NCC-co, on the other hand, might not occur after
each single NCC component (even if it occurs after some NCC
components), and it should never occur without an NCC compo-
nent. It is thus expected to be similarly suboptimal for decoding
even if it produces very large responses on some trials and a large
average difference. This corresponds to the third component in
Figure 2. The actual NCC is thus expected to be consistently
the most predictive at the single trial level even if it does not
produce the largest average difference. This corresponds to the
second component in Figure 2. As mentioned above, multivariate
decoding approaches are able to identify the most consistent cor-
relates, but traditional univariate analyses typically base statistics
on participant-specific means and would in our example find sig-
nificant evidence in favor of the third component even though it
only occurs on some trials. Importantly, if the aim is to compare
components, as in our example (Figure 2), univariate tests are not
readily interpretable. There is no straightforward interpretation of
what a difference in amplitude between components means (Luck,
2014). In comparison, the interpretation of differences in decod-
ing accuracy is straightforward – it simply means that the pattern
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holds more information about the label of the state, say “aware” or
“unaware.”

In cases where the confounding processes occur on every sin-
gle trial with an awareness response, multivariate decoding on
its own will not be able to distinguish between NCC and NCC-
pr/NCC-co as all responses could be equally predictive. For this
reason, we believe that the optimal paradigm is a combination of
decoding and the methods suggested by Melloni et al. (2011) and
Aru et al. (2012). One way to combine methods would be to use
cross-task decoding – i.e., using several tasks resulting in similar
conscious experiences and training/testing on different tasks using
a leave-one-out procedure. In this case, decoding performance
should be best for components that generalize across experimental
contexts.

Using multivariate decoding on MEG data, a study by our group
have found that conscious experience during binocular rivalry was
predicted relatively accurately by activity around 130–320 ms after
stimulus onset and that an earlier and a later component was
not consistently predictive (Sandberg et al., 2013). In an addi-
tional (ongoing) MEG study, multivariate decoding furthermore
showed that activity around this time was the most predictive of
small, graded differences in the clarity of conscious experience
on the single trial level (Andersen et al., in preparation). Simi-
larly, decoding can be used on different brain areas in turn in
order to compare how consistently predictive these are separately
(and/or combined; Norman et al., 2006). For binocular rivalry,
this was done for V1–V3 by Haynes and Rees (2005) and across
the cortex by Sandberg et al. (2013). Lastly, it should be acknowl-
edged that when doing multivariate analyses, “decoding” is not
strictly necessary. There are ways of doing “encoding” as well,
where one can extract parameters from the model, as in classi-
cal univariate models. Encoding applications are at the moment,
however, less available than decoding applications, both theoreti-
cally and practically, but see Allefeld and Haynes (2014) for a novel
approach.

OTHER POSSIBILITIES USING MULTIVARIATE DECODING
The use of multivariate decoding opens up for potential research,
which would otherwise be difficult or even impossible to conduct.
For MEG, conscious experience can be decoded using only a few
milliseconds of data gathered within the first 200 ms after stimulus
presentations (Sandberg et al., 2013, 2014). Particularly, if near-
perfect, near real-time decoding can be achieved, it may be possible
to exploit such speed in the control of brain-computer interfaces.
At present, one study was able to achieve above 85% decoding
accuracy for three of eight participants (and around 95% for one;
Sandberg et al., 2013). In comparison, univariate decoding (i.e.,
using the single best sensor at the single best time point) resulted
in lower accuracies (around 10% lower), and would furthermore
require both time point and sensor to be specified in advance.
Additionally, other studies have shown cases in which multivariate
decoding is above chance in the absence of an average activity
difference (Sterzer et al., 2008).

Because decoding can be accomplished prior to report, it raises
the possibility that an MEG based brain-computer interface could
be used to generate changes in the environment even before they
are produced by the motor behavior of the individual, which could

be of key importance in the study of overt behavior and sense of
agency. Furthermore, neural correlates can be analyzed before and
after the preparation to report in the attempt to filter out cor-
relates of introspection, metacognition, and motor preparation.
And finally, fast and accurate decoding allows for manipulations
of stimuli or brain activity (using TMS, for instance) around the
time where an event is experienced, but before it is reported, and
it may allow for the study of awareness without report.

Haynes and Rees (2006) emphasized the importance of the then
unresolved issue of how well activity generalizes over time, across
situations (paradigms) and even across participants. This can be
examined by conventional methods using correlations, but decod-
ing provides a method of examining whether minor changes are
critical or whether the overall patterns are generally maintained.
Haynes and Rees (2005) used fMRI to examine drops in decoding
accuracy across days, but the first long-term study was conducted
by Sandberg et al. (2014), who found that the decrease in decoding
accuracy within participants across 2.5 years was only around 1%,
which was comparable to the drop across a few days. This study
also found that the drop when attempting to generalize across
participants (even at the source level) was much greater (around
10%). Further studies examining whether minor details in patterns
of activity predict related changes in perceptual experience can be
used to address theoretical questions about multiple realization in
the brain.

It has also been established that it is possible to decode the
conscious experience of one individual using a classifier trained
on a different individual although the accuracy is lower than for
within-individual decoding (Poldrack et al., 2009; Haxby et al.,
2011; Sandberg et al., 2013, 2014). This opens up possibilities that
so far have been outside the reach of cognitive neuroscience meth-
ods. One might apply multivariate decoding to investigate whether
neural correlates generated in experiments using one paradigm
can be used to train a classifier to decode the experience in other
paradigms as we discuss above. Furthermore, between-participant
decoding opens possibilities of decoding across groups for which
it is uncertain whether one has conscious experiences, such as
vegetative or minimally conscious patients. When consciousness
has been examined in non-human animals, methods such as flash
suppression have been used to ensure the validity of report as the
stimuli are bistable but conscious perception can be manipulated
by the experimental setup (Sheinberg and Logothetis, 1997). Such
or similar methods could in principle also be used with patients,
and it could be possible to decode both within individuals but also
to examine how well classifiers generalize from healthy individuals
to reduced consciousness patients. Here again, the improved accu-
racy of multivariate decoding provides an advantage compared to
univariate approaches.
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