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Musical rhythms are often perceived and interpreted within a metrical framework that
integrates timing information hierarchically based on interval ratios. Endogenous timing
processes facilitate this metrical integration and allow us using the sensory context for
predicting when an expected sensory event will happen (“predictive timing”). Previously,
we showed that listening to metronomes and subjectively imagining the two different
meters of march and waltz modulated the resulting auditory evoked responses in the
temporal lobe and motor-related brain areas such as the motor cortex, basal ganglia,
and cerebellum. Here we further explored the intentional transitions between the two
metrical contexts, known as hemiola in the Western classical music dating back to
the sixteenth century. We examined MEG from 12 musicians while they repeatedly
listened to a sequence of 12 unaccented clicks with an interval of 390 ms, and tapped
to them with the right hand according to a 3 + 3 + 2 + 2 + 2 hemiola accent pattern.
While participants listened to the same metronome sequence and imagined the accents,
their pattern of brain responses significantly changed just before the “pivot” point of
metric transition from ternary to binary meter. Until 100 ms before the pivot point, brain
activities were more similar to those in the simple ternary meter than those in the
simple binary meter, but the pattern was reversed afterwards. A similar transition was
also observed at the downbeat after the pivot. Brain areas related to the metric transition
were identified from source reconstruction of the MEG using a beamformer and included
auditory cortices, sensorimotor and premotor cortices, cerebellum, inferior/middle frontal
gyrus, parahippocampal gyrus, inferior parietal lobule, cingulate cortex, and precuneus.
The results strongly support that predictive timing processes related to auditory-motor,
fronto-parietal, and medial limbic systems underlie metrical representation and its
transitions.

Keywords: auditory evoked response, MEG, musical meter, timing processing, auditory-motor interaction,

anticipatory processing

INTRODUCTION
Listening to the isochronous sound sequence of a metronome
beat involves either perceptual grouping or subdividing of the
interval at its integer ratios. For example, while listening to an
unaccented isochronous pulse, listeners tend to perceive accents
every 2nd, 4th, or 3rd stimulus, suggesting that a subconscious
grouping of pulses into binary (2 or 4) or ternary (3) sets under-
lies this perception (Temperley, 1963; Brochard et al., 2003;
Abecasis et al., 2005). Similarly, the performance in a tapping
task reflects the preference for subdividing the pulse by factors
of two or three (Pressing, 1998). Interestingly, the ability to repro-
duce and temporally rescale even more complex non-isochronous
rhythms seems to be further decomposed into sub-units with
simple integer ratios such as binary and ternary ratios, which
are preferred over non-integer ratios (Collier and Wright, 1995).
Furthermore, it appears that the binary ratio is readily preferred
over ternary ratio in production and perception (Fraisse, 1956;

Povel, 1981; Collier and Wright, 1995), suggesting that the two
principles might differ not only in the number of groupings but
also in underlying innate mechanisms for timing generation pro-
cesses (Brochard et al., 2003; Abecasis et al., 2005; Pablos Martin
et al., 2007).

The common perceptual preference for binary and ternary
interval ratios is well reflected in the metrical structure of the tra-
ditional Western music system. When listening to a musical piece
structured within a certain “meter,” listeners perceive subjectively
multiple levels of perceptual salience of timing information such
as strong or weak accents, similarly as in the illusionary accent
described above. In computational music theory, meter can be
explained by a collection of grouping levels of the main pulse
(“tactus”) which generally falls between 1 and 3 Hz (Large, 2008).
Each of the additional pulse levels are subdivisions or higher-level
groupings of the tactus in binary and/or ternary ratios (Lerdahl
and Jackendoff, 1996; London, 2004). From these pulse levels, a
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FIGURE 1 | Accent strength at each pulse position in (Top) binary

“march,” (Middle) ternary “waltz,” and (Bottom) “hemiola.” Note that
the upbeat positions (indicated with the letter “U”) have only one layer of
metric structures, while the downbeat positions have multiple layers
coinciding at the same time. This contributes to the stronger accents in the
downbeats (indicated with the letter “D”). In the hemiola pattern, the number
of the layers is three due to coexisting binary and ternary meters. At the 1st or
7th position, the strongest accent is derived because of the three coinciding
accents. This point also serves as a “pivot” point that allows an intentional
switch from ternary to binary meter.

pattern of “strong” and “weak” beats is then derived by points
of coincidence shared amongst multiple metric strata, with more
points of coincidence conferring higher structural prominence
or perceptual “strength” (Figure 1). Thus, in a binary metric
cycle (“measure”), the first beat (“downbeat”) is strong, appear-
ing in both lower and higher pulse levels. By contrast, the second
beat (“upbeat”) only appears in lower pulse levels, resulting in
a weaker perceptual strength (Figure 1, top). A similar schema
exists in ternary meter (Figure 1, middle). This pattern extends
to higher-order pulse levels, which form the large-scale temporal
scaffolding for the entire musical work (Lerdahl and Jackendoff,
1996; London, 2004). The difference in perceptual salience across
pulses is considered to form the basis of musical timing expecta-
tion (Huron, 2006). Perceptual and motor skills such as auditory
memory (Palmer and Krumhansl, 1990; Jones et al., 2002), tap-
ping synchronization (Essens, 1986; Large et al., 2002; Repp, 2007;
Repp et al., 2008), auditory discrimination (Pablos Martin et al.,
2007; Repp, 2010; Kung et al., 2011), and musical performance
(McLaughlin and Boals, 2010) are facilitated by the structure of a
metrical hierarchy.

The metric facilitation of auditory and motor tasks predicts
underlying “top-down” processing of musical expectations, pre-
sumably supported by endogenous neural activity, according to
the Dynamic Attending Theory (DAT) (Jones and Boltz, 1989).
DAT posits that multiple neural oscillators synchronize with
isochronous rhythms, aiding in tracking and anticipation of com-
plex rhythm patterns, such that listeners are able to direct their
attention dynamically to a given pulse level, and to musical
events at adjacent pulse levels (Large and Kolen, 1994; Large

and Jones, 1999; Large, 2000, 2010; McAuley and Jones, 2003).
The most important feature of DAT in our context is that the
presumed neural oscillators operating simultaneously at several
sub-harmonic and harmonic frequencies can successfully reflect
a hierarchical structure of musical meter (Large and Jones, 1999;
Large and Palmer, 2002). While the DAT and oscillatory mod-
els of meter processing have emerged from questions about
musical rhythm, they have recently been integrated into wider
research questions related to timing processing (Nobre et al.,
2007; Kotz and Schwartze, 2010). To adapt to the constantly
changing world, the brain seems to infer or predict not only
“what” sensory input happens but also “when” it happens to
reduce prediction errors and minimize neural resources when
things are more predictable (Friston, 2005). These processes,
termed “predictive coding” and “predictive timing,” respectively,
are thought to be facilitated by endogenous neural oscillatory
activities and are crucial for effective perceptual, cognitive and
learning processes (Engel et al., 2001). Accordingly, such tim-
ing processing in the brain should allow us to expect, perceive,
and move in time related to the available cues about musical
meter.

Recent electrophysiological studies demonstrate entrainment
to hierarchical meter, using auditory evoked responses (AERs)
in magnetoencephalography (MEG) and electroencephalogra-
phy (EEG). When participants imagined higher-level binary and
ternary pulse levels during listening to regular pulses, the long-
latency AER differentiated between subjective binary and ternary
meter conditions as well as between downbeat and upbeat posi-
tions in response to a single pulse around after 200 ms toward the
next stimulus onset (Fujioka et al., 2010). Using binary, ternary,
and quaternary meter conditions, the effects of imagined meter
and beat position on the AER were also observed at a similar
latency range (Schaefer et al., 2011). Another EEG study with the
similar paradigm (Nozaradan et al., 2011) has demonstrated that
the AER contained frequency components at the tactus frequency
and the additional metric pulse levels (e.g., two or three times
slower than the tactus frequency). The latter study by Nozaradan
et al. (2011) examined the spectral representation of the AER and
found slow oscillatory components matching with the meter fre-
quency, which is complementary to the time domain findings of
AER modulation at specific beat position and specific latency in
the former two studies (Fujioka et al., 2010; Schaefer et al., 2011).
The nature of modulation of the AER in the latency range beyond
200 ms typically relates to higher-level semantic processing of
auditory objects. In contrast, shorter latency (<200 ms) responses
mainly represent lower-level acoustic information of the stimulus
(Ross et al., 2012).

Further EEG studies have also demonstrated expected con-
trasts between downbeats and upbeats within a given meter
during higher-level auditory processing (Brochard et al., 2003;
Jongsma et al., 2004; Abecasis et al., 2005; Pablos Martin et al.,
2007; Geiser et al., 2009; Potter et al., 2009). The results are in
line with enhanced mismatch negativity (MMN) and/or P300
responses, which occur when an anticipated auditory feature
corresponding to a metrical downbeat is replaced with another
feature, violating the hierarchy of perceptual salience. Given that
the generation of MMN and P300 relies on constantly updating
the features of the expected events in a memory trace, these results
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mean that the brain’s prediction of “what” seemingly interacts
with the salience of the prediction of “when.”

Functional neuroimaging implicated a neural network of both
auditory and motor areas functionally associated with rhythm
processing and production (Schubotz and Von Cramon, 2001;
see Wiener et al., 2011 for meta-analysis). This functional cou-
pling of auditory-motor networks is observed even in perception
tasks without a motor component. Specifically, functional mag-
netic resonance imaging (fMRI) studies concerned with internal
encoding of metric information have implicated the basal gan-
glia (Grahn and Brett, 2007; Grahn and Rowe, 2009), cerebellum
(Chen et al., 2008; Bengtsson et al., 2009), and supplementary
motor area (SMA) (Chen et al., 2008; Bengtsson et al., 2009),
as well as the dorsal premotor cortex and right frontal lobe
(Bengtsson et al., 2009). This privileged auditory-motor associ-
ation in musical rhythm processing has been also found in neural
oscillatory activities in the beta-band (13–30 Hz). Beta oscilla-
tions are specifically related to the dynamics of the sensorimotor
function. Intrinsic beta oscillations are observed in the sensori-
motor cortices and motor related brain areas, and their signal
power decreases prior and during a movement and increases post-
movement (Pfurtscheller and Lopes Da Silva, 1999; Engel and
Fries, 2010). In passive listening tasks, endogenous representa-
tions of rhythm were found in EEG and MEG (Snyder and Large,
2005; Fujioka et al., 2009, 2012). In these studies, modulations of
the beta-band power as well as phase coherence were observed in
synchrony with metric pulses.

Moreover, phase coherence in meter-related beta oscillations
during auditory-cued finger tapping indicated a network of func-
tional connectivity including auditory and motor cortices as
well as basal-ganglia, cerebellum and thalamus (Pollok et al.,
2005). While passively listening to isochronous stimuli those areas
as well as the anterior cingulate and parahippocampal gyrus
were involved in coherent beta oscillation (Fujioka et al., 2012).
Although involvement of the parahippocampal gyrus has not
been observed in other fMRI findings related to musical rhythm
processing (Grahn and Brett, 2007; Chen et al., 2008; Bengtsson
et al., 2009; Grahn and Rowe, 2009), a recent fMRI study using
naturalistic music stimuli showed association of hippocampus
and amygdala with the beat processing (Alluri et al., 2012).
Moreover, the parahippocampal gyrus and cingulate were related
to acoustic novelty processing reflected in the P300 component
in intracranial EEG (Halgren et al., 1995), and MEG (Tarkka
et al., 1995) as well as beta-band oscillation in EEG (Haenschel
et al., 2000). Thus, the spatial overlap of this beta network with
the proposed striato-thalamo-cortical motor network, attention-
related fronto-parietal network, and the memory-related limbic
network may suggest that shared mechanisms of motor planning
and predictive timing exist in meter representation.

In our previous MEG study, we examined AERs of down-
beats and upbeats induced by binary and ternary meter tasks
(Fujioka et al., 2010). We examined endogenous representations
of both binary and ternary meters, to find neural substrates
for differential processing of strong and weak metric beats in
each meter. Participants alternated between tapping the down-
beat (“tap” task, using the right index finger) and imaging each
meter over an unaccented, isochronous pulse following auditory

cues (“imagine” task). Electromyography (EMG) was used on the
right first dorsal interosseous (FDI) muscle to ensure that motor
related brain activity did not result from actual motor activity
during the imagine tasks and only data from imagine tasks were
analyzed. Contrasts between the binary and ternary metric condi-
tions as well as downbeats and upbeats within the waltz condition
accounted for the majority of variance in the data. In the contrast
between binary and ternary meters, activity was concentrated in
the right temporal lobe (including Heschl’s gyrus (HG), superior
and medial temporal gyri (STG and MTG), and insula) as well
as right precentral gyrus and left basal ganglia. In the contrast
between downbeat and upbeat AERs within the waltz condition,
activations for the downbeat were larger in the left hemispheric
basal ganglia and thalamus as well as right temporal regions.
These results were consistent with striato-thalamo-cortical net-
work models previously proposed for timing control (Matell
and Meck, 2004; Grahn and Brett, 2007; Stevens et al., 2007;
Meck et al., 2008; Grahn and Rowe, 2009; Wiener et al., 2011).
Additionally, the parahippocampal gyrus was also activated bilat-
erally in both conditions, although the number and latency of
late peaks in the right gyrus varied widely in both contrasts. This
seems again in line with the findings about memory processes
that modulate the AER as discussed above and might indicate
that metric representations are stored and accessed from the hip-
pocampal memory system that is also considered to predict or
imagine future events (Martin et al., 2011).

To our knowledge, no research has explored how our brain
processes a transition between these two meters, which results
in a higher-order complex pattern. From the DAT framework,
this is an important question because such transition should pre-
sumably require a mental manipulation of switching the timing
within a system of neural oscillators. Furthermore, as combina-
tion of binary and ternary metric groupings appears to require
long-term learning experiences such as exposure over encul-
turation (Hannon and Trehub, 2005), such voluntary changing
between metrical systems can be considered to involve activating
endogenous timing processes.

In order to examine neural mechanisms underlying switching
between metrical systems, we used the experimental paradigm of
alternating between finger-tapping and imagery of metric pattern
during isochronous sound sequence, with the 3 + 3 + 2 + 2 + 2
pattern (Figure 1, bottom) as appears in the famous melody
of “America” from Leonard Bernstein and Steven Sondheim’s
West Side Story. This pattern, termed “hemiola,” has been fea-
tured prominently in Western classical music traditions since the
sixteenth century (Russell, 1952; Collins, 1964; Neumann, 1987).
In this 12-pulse pattern, the first 6 pulses are grouped in ternary
meter, followed by 6 pulses grouped in binary meter. Thus, the
metric transition happens between the sixth and seventh tones,
which acts as a “pivot,” (Figure 1, bottom). Typically, the hemi-
ola is aimed to cause an interesting rhythmic effect within a
musical phrase, syncopating the pulse as the metrical framework
transiently shifts between ternary and binary meters. Since this
device is used extensively in the musical repertoire, highly trained
musicians in Western classical music are well familiar with the
hemiola. Accordingly, we examined brain responses only from
musicians under the assumption that this familiarity would result
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in consistent and robust responses, especially since probabilistic
learning and musical training have been implicated in strength-
ening other music-related AERs (Kim et al., 2011). Ternary and
binary patterns of the same length used in Fujioka et al. (2010)
were also included, allowing direct comparison of AERs between
pivot-related down- and up-beats to those in the simple binary
and ternary meters.

We examined the MEG in three conditions (Figure 2), namely,
march, waltz, and hemiola, to study whether brain activities at
downbeat and upbeat positions in the three metric contexts dif-
fer. We tested three hypotheses. First, we expected to replicate
the binary vs. ternary meter difference in the AER in the audi-
tory cortex (Fujioka et al., 2010). We expected differences in the
brain responses between the upbeat position in march (Up2) and
waltz (Up3) conditions, and similarly between the downbeat in
march (Down2) and waltz (Down3) conditions. Second, dur-
ing an intentional metric switching, predictive timing processes
would be involved for maintaining or updating the internal met-
ric schema, such that the AER to the upbeat just preceding the
transition (PivotUp3) would be already different from that to the
simple upbeat in waltz (Up3). If the transition starts even ear-
lier, it might already play a role of the upbeat in march (Up2).
Moreover, the transition might not be an immediate and com-
plete switch from the up-beat to the down-beat crossing the
transition point; these upbeats and downbeats in the hemiola pat-
tern might still carry the representation of both meters, such that

simultaneous binary and ternary meter processing gives rise to
the underlying polyrhythmic structure as described in Figure 1.
Thus, we expected that the brain response at the PivotDown2
position might share homology with those in Down2 and Down3
only partly and/or transiently. Third, the brain areas involved in
the meter-related differences would overlap with those found pre-
viously in the motor-related areas (Fujioka et al., 2010), regions
associated with task switching such as the dorso-lateral pre-
frontal cortex and dorsal anterior cingulate (Rogers et al., 1998;
Macdonald et al., 2000; Johnston et al., 2007; Woodward et al.,
2008), and regions of musical and non-musical syntactic process-
ing such as the inferior frontal gyrus (Maess et al., 2001; Koelsch
and Mulder, 2002; Tillmann et al., 2006; Koelsch, 2009) due to the
intentional effort in changing the metric scheme dynamically.

MATERIALS AND METHODS
PARTICIPANTS
Data from 12 healthy, right-handed musicians (9 females; 21–34
years of age, mean of 27 years) were included. Musical qualifica-
tions were a minimum of conservatory performance studies or
Canadian Royal Conservatory of Music Grade 8 or higher cer-
tification in their primary instrument or vocal range. Musicians
played a mean of 21 h per week, began musical training at mean
age of 7.33 years (range 3–13) and have been studying their
instrument a mean of 17.5 years (range 8–28). None had any
history of psychological or neurological disorders. The primary

FIGURE 2 | Stimulus sequence and tasks. Auditory stimuli were 25 ms
tones presented every 390 ms. Changes in pitch cued the beginning and the
end of the tapping interval. The same stimulus was used for all three
conditions. At a high-pitched 1000-Hz tone, the participants started tapping at
every second tone in the march condition, at every third tone in the waltz
condition, or twice in every third tone, followed by three times in every
second tone, in the hemiola condition. The three conditions were run in
separate experimental blocks. The black arrows indicate the downbeats with

which the participants’ tapping was synchronized in each condition. The gray
arrows indicate the imagined, subjectively maintained downbeat positions
during the listening interval. In the hemiola condition, the transition of the
meter from ternary to binary was termed at “pivot.” We analyzed only the
AER in the time window of colored rectangles, namely, upbeats in march and
waltz (Up2 and Up3) and the following downbeats respectively (Down2 and
Down3), and the upbeat before the pivot point, and the following downbeat
(PivotUp3 and PivotDown2).
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and secondary instruments include piano (played by 9 partic-
ipants), voice (5), guitar (4), woodwinds (4), and strings (3).
There were no percussion instrumentalists. The main playing
style was classical (10), rock (1), and folk (1). All the musicians
had already obtained or been working toward obtaining a music
degree/diploma from a postsecondary institution. The study was
approved by the Research Ethics Board of the Baycrest Centre for
Geriatric Care.

STIMULI AND PROCEDURE
Three experimental conditions consisted of binary (“march”),
ternary (“waltz”), and a 3 + 3 + 2 + 2 + 2 (“hemiola”) accent
pattern (Figure 2). Each condition was tested in separate blocks,
each using the same identical sound sequence for stimulation.
Within each block, participants alternated repeatedly between
blocks of “tap” and “imagine” tasks. They tapped with the right
hand index finger on a response key pad. Tap and imagine
task stimuli were 12 tones each, consisting of one cue tone fol-
lowed by 11 click tones in isochronous succession. Clicks were
250-Hz sine tones of 25 ms duration including the rise and
fall slopes each 5 ms presented at 390-ms inter-onset intervals
(approximately 2.56 Hz). A 1000-Hz cue indicated the begin-
ning of the tapping interval, and a 500-Hz cue the imagine
interval. The march block lasted for 190 s (20 tap and imag-
ine cycles), the waltz for 320 s (34 tap and imagine cycles), and
the hemiola for 480 s (51 tap and imagine cycles). To obtain
an equal number of position-of-interest contrasts in each met-
ric accent structure, four hemiola blocks, two march, and two
waltz blocks were used. After practice trials, the order of con-
ditions was counterbalanced across participants, such that the
hemiola blocks were always interleaved between march and waltz
blocks.

Participants were instructed to tap a rhythmic pattern begin-
ning with the 1000-Hz tap cue. Participants tapped every other
beat for the march condition, every three beats in the waltz
condition, and in a 3 + 3 + 2 + 2 + 2 tap spacing pattern in
the hemiola condition. In each instance, taps coincided with
the “downbeat” designation (i.e., Down2 and Down3), with the
immediately preceding tone designated as an “upbeat” (i.e., Up2
and Up3). In the hemiola condition, the positions in the pivot
transition between march and waltz, were termed as PivotUp3
and PivotDown2.

MEG data were recorded with a 151-channel neuromagne-
tometer (VSM Medtech) with a continuous sampling rate of
625 Hz for each trial. Participants were seated upright, with
their head resting comfortably in the helmet-shaped MEG sen-
sor. Auditory stimuli were presented binaurally via insert ear-
phones E3A (Etymotic Research). Participants were instructed
to remain still, avoiding head movement or any extraneous tap-
ping movement during the imagine tasks. Trials were re-run
if head movement exceeded a 1-cm threshold or mechanical
problems were reported. This happened to 6 trial blocks across
two participant sessions, resulting in 16 min extra recording
time for both participants. Compliance was monitored by live
video. Electromyography (EMG) signals were recorded simulta-
neously with the neuromagnetic data to monitor tapping motion.
Ag/AgCl electrodes were used on both hands, with leads on
the FDI muscle and immediately adjacent knuckle. The EMG

electrode impedance was kept below 30 kOhms. A ground wire
was run from the right collarbone. In addition to EMG data,
timing of the key pressing by the right index finger tapping was
also recorded with an in-house, custom-made response-button
system.

DATA ANALYSIS
The data analysis was focused on AER to stimuli presented during
the imagining period (Figure 2). The epoch windows were related
to the onsets of stimuli at each position-of-interest (PivotDown2
and PivotUp3 in the hemiola, Down2 and Up2 in the simple
march, and Down3 and Up3 in the simple waltz), using a pre-
stimulus interval of 400 ms and a poststimulus interval of 800 ms.
Sporadic finger movements during this time interval were identi-
fied by EMG signals exceeding 25 µV in amplitude or 25 µV/s in
its first derivative, after which corresponding MEG epochs were
excluded from further analysis. The data were corrected for eye
movement artifacts using a principal component analysis (PCA).
Any component exceeding 1.5 pT was subtracted from the MEG
data. After DC-offset baseline correction using the whole epoch
interval, the epochs were averaged for obtaining AERs, which
showed magnetic field maps with exclusively bilateral dipolar
patterns over the temporal lobes (Figure 3).

Source activities at the left and right auditory cortices were
examined with two steps as follows. First, we used equivalent cur-
rent dipole modeling to estimate the locations and orientations of
the dipoles of the AER around the P1m peak with latency of about
90 ms. It has been known that the fast stimulation with 390-ms
inter-stimulus interval reduces the N1 response and apparently
prolongs the latency of the P1 peak (Näätänen and Picton, 1987).
Individual dipole models were calculated as mean across all blocks
and conditions. The residual variance for the dipole estimations
were 25.3% on average (SD: 11.5). Second, the source activities of
the averaged AER were transformed into two source waveforms
in the left and right hemispheres respectively for different condi-
tions using source space projection (Tesche et al., 1995; Ross et al.,
2000) based on the individual dipole model of each participant.
The planned comparison between conditions in a pair-wise man-
ner (PivotDown2 vs. Down2, PivotDown2 vs. Down 3, Down2
vs. Down3, PivotUp3 vs. Up2, PivotUp3 vs. Up3, and Up2 vs.
Up3) was performed based on non-parametric permutation tests
within each hemisphere (Figure 4). This test used 1000 times per-
mutated data and computed the probability to find the difference
in the resampled datasets.

Additionally the whole-brain source activities were estimated
using synthetic aperture magnetometry (SAM) (Robinson and
Vrba, 1999), a beamformer algorithm that defined a spatial fil-
ter on the MEG data in the 0–30 Hz frequency range on a 8 ×
8 × 8 mm mesh covering the brain. The SAM approach uses a
linearly constrained minimum variance beamformer algorithm
(Van Veen et al., 1997; Robinson and Vrba, 1999), normal-
izes source power across the whole cortical volume (Robinson,
2004), and is capable of identifying activities in auditory (Fujioka
et al., 2010, 2012; Ross et al., 2010) and sensorimotor cortices
(Jurkiewicz et al., 2006) as well as deep sources such as hippocam-
pus (Riggs et al., 2009), fusiform gyrus, and amygdala (Cornwell
et al., 2008). To construct the SAM spatial filter, we used the
Montreal Neurological Institute (MNI) template brain, which was
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FIGURE 3 | Example of the AER (0–390 ms) at the MEG sensor level after

the down-beat onset in the PivotDown2 in the hemiola and Down2 in

the march conditions. The left panel shows the grand-averaged response in

the MEG sensors (top-view). The right panel shows magnetic field
topography for each condition at the latency of 98.1 ms, and the difference
(PivotDown2-Down2).

FIGURE 4 | Grand-average source waveforms of AER from the left and

right auditory cortices. Time zero corresponds to the stimulus onset of
the downbeat in the hemiola (PivotDown2), march (Down2) and waltz
(Down3) conditions. The vertical lines indicate the stimulus onsets 390 ms
before and after the respective downbeat. Thus, the graphs show
responses to the downbeat and on preceding and following upbeat. The

upward arrow in each plot indicates the time point of pivot position (blue)
for PivotDown2, and the downbeat position (black) for Down2 and Down3,
respectively. The open circles indicate the time points where the pair-wise
comparison using a permutation of the two conditions (hemiola vs. march:
top panel, hemiola vs. waltz: middle, and march vs. waltz: bottom) were
significant at p < 0.05.

Frontiers in Psychology | Auditory Cognitive Neuroscience November 2014 | Volume 5 | Article 1257 | 6

http://www.frontiersin.org/Auditory_Cognitive_Neuroscience
http://www.frontiersin.org/Auditory_Cognitive_Neuroscience
http://www.frontiersin.org/Auditory_Cognitive_Neuroscience/archive


Fujioka et al. Metric transition processing

derived from averaging the magnetic resonance images (MRI)
of 152 brains, based on Talairach standard coordinates as pro-
vided in the AFNI software package (Cox, 1996). The source
analysis based on individual MRI co-registration with a spher-
ical head model correlates reasonably well with group analysis
based on a template brain (Steinstraeter et al., 2009). Thus, the
template MRI has been used successfully when individual partic-
ipant MRIs are not available (Jensen et al., 2005; Fujioka et al.,
2010, 2012; Ross et al., 2010). The SAM computation for each
condition was based on the single-trial data for each task block
(hemiola, march, and waltz) including all down- and up-beats
within the block along with the following beat. In the compu-
tation of covariance matrices, epoched data was chosen before
application of the artifact removal algorithm. This was required
to avoid reducing the rank of the covariance matrix when using
either PCA or independent component analysis. Subsequently,
the spatial filter was applied to the single trials of the evoked mag-
netic field data obtained under all experimental conditions and
calculated the signal power below 30 Hz to create event-related
SAMs (ER-SAM; Cheyne et al., 2006). The output measures were
time courses of normalized source power for each volume element
across the entire time interval.

The obtained four-dimensional ER-SAM maps were down-
sampled in time by a factor of eight for data reduction, which
resulted in volumetric maps at every 12.8 ms. The voxels, which
contained significant activation elicited by the auditory stimuli,
were identified by two-sided t-tests comparing the mean source
power in the first half of the interval and that in the second half
by using the data across all conditions. The voxels with p < 0.05
were taken into the subsequent partial least square (PLS) analy-
sis. There was no correction for multiple comparisons at this step
because statistical inference was made using multivariate analysis
described below.

A multivariate PLS analysis (McIntosh et al., 1996) was used
to examine significant contrasts in spatio–temporal patterns of
source activities across different condition. Specifically we per-
formed PLS for the three downbeat conditions (PivotDown2,
Down2, and Down3), and for the three upbeat conditions
(PivotUp3, and Up2, and Up3) separately for four contiguous
time windows every 100 ms after the stimulus onset (0–100,
100–200, 200–300, and 300–400 ms). As a multivariate technique
similar to PCA using singular value decomposition (SVD), PLS
is suitable to identify the relationship between one set of inde-
pendent variables (e.g., the experimental design) and a large
set of dependent measures (e.g., neuroimaging data). PLS has
been successfully applied to time series of multi-electrode event-
related potentials (Lobaugh et al., 2001), fMRI data (McIntosh
and Lobaugh, 2004; McIntosh et al., 2004) and multi-voxel MEG
SAM data (Fujioka et al., 2010). The input of PLS is a cross-block
covariance matrix, which is obtained by multiplying the design
matrix (an orthonormal set of vectors defining the degrees of free-
dom in the experimental conditions), and the data matrix (time
series of brain activity at each location as columns and partici-
pants within each experimental condition as rows). The output
of PLS is a set of latent variables (LVs), obtained by SVD applied
to the input matrix. Similar to eigenvectors in PCA, LVs account
for the covariance of the matrix in decreasing order of magnitude

determined by singular values. Each LV explains that a certain
pattern of contrast across the experimental conditions (design-
LV) (Figure 5) is expressed by a cohesive spatial–temporal pattern
of brain activity (brain-LV). This was accompanied by two types
of statistical analyses using resampling methods. First, the signif-
icance of each LV was determined by a permutation test using
200 times permuted data with conditions randomly reassigned
for recomputation of PLS. This yielded the empirical proba-
bility for the permuted singular values exceeding the originally
observed singular values. An LV was considered to be signifi-
cant at p < 0.05. Second, for each significant LV, the reliability
of the corresponding eigenimage of brain activity was assessed
by bootstrap estimation using 200 times resampled data with
participants randomly replaced for recomputation of PLS, at
each time point at each location. The ratio of the activity to
its standard error estimated through the bootstrap resampling
corresponds to a z-score in parametric testing. This bootstrap
ratio indicates statistical significance of the contrast expressed
by the LV. Each point in time and space for which the absolute
value of the bootstrap ratio was 3.0 (corresponding approxi-
mately to p < 0.0027) was accepted as significantly contributing
to the identified contrast for each LV. For visualization pur-
poses, the significant brain LV was further analyzed to extract the
brain activity spatial pattern that was significantly correlated with
the design-LV (Figure 6). Among all voxels with a mean abso-
lute value of the bootstrap ratio larger than 3.0 within the time
window of the interest, we report the locations of local max-
ima if the distance between peaks was larger than 20 mm. The
Talairach coordinates of the final selection of spatial locations are
reported in Tables 1, 2. The Talairach anatomical labels for each
location were extracted according to the stereotaxic coordinates
from AFNI.

RESULTS
AUDITORY EVOKED RESPONSES
AERs were obtained for each condition per participant showing
typical dipolar magnetic field patterns in the sensor domain. An
example of the AER over a 390-ms beat cycle is shown in the
left panel of Figure 3 for the PivotDown2 and Down2 conditions.
While response waveforms were generally similar across condi-
tions, multiple differences occurred over the 390-ms beat cycle.
The magnetic field of the P1m peak showed dipolar topogra-
phies in both hemispheres, while the difference between the two
conditions showed a more complex topography. This implies
the complexity of the endogenous neural activity overlapping to
the exogenous (e.g., stimulus-driven) AER. The auditory cortical
source was modeled successfully with a pair of equivalent current
dipoles with an upward orientation corresponding to vertex-
positive in bilateral temporal lobes for all the participants. The
source waveforms based on the individual dipole model exhibited
consistent time courses of auditory cortex activity. The first pre-
dominant peak around 90–100 ms after the stimulus onset was
followed by two smaller positive peaks at approximately 200 and
300 ms latency.

Figure 4 shows the auditory cortex source waveforms and the
planned pair-wise comparisons using non-parametric permuta-
tion across all the combinations of the conditions separately for
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FIGURE 5 | Time courses of latent variables accounting for the contrast

between three metric conditions. The partial least squares analysis (PLS)
was performed for contiguous 100 ms time intervals for (A) upbeat positions

(PivotUp3, Up2, and Up3) and (B) downbeat positions (PivotDown2, Down2,
and Down3). Asterisks indicate that the first latent variable was significant by
the PLS permutation test (p < 0.05).

upbeats and downbeats. First, the amplitude of the AER in the
PivotDown2 in the hemiola condition was larger around the first
peak (80–120 ms) and the second peak (200 ms), compared to
those to downbeat in march and waltz in the left auditory cortex.
In the right auditory cortex, the difference was only significant
in the second peak (200 ms). Consistently for both hemispheres,
a closer look on the time window 30–50 ms before the down-
beat revealed a significant difference between hemiola and simple
march and waltz conditions. The bottom panel of Figure 4 shows
that for both downbeats and upbeats, march and waltz conditions
were significantly different too, but in a distinct time window
from those pivot vs. non-pivot comparison.

SOURCE ACTIVITIES ACROSS THE WHOLE BRAIN
The first LV consistently explained about 60% of covariance in
all eight PLS analyses (61.8, 65.8, 66.0, and 61.9% for the upbeat
comparisons, and 55.6, 53.9, 53.8, and 60.9% for downbeat com-
parisons). Non-parametric permutation tests revealed that the
first LV was significant for the upbeat in the 100–200 ms (p =
0.0448), 200–300 ms (p = 0.0199), and 300–400 ms intervals
(p = 0.0448), as well as the downbeat 0–100 ms (p = 0.0249),
and 300–400 ms intervals (p = 0.0149). As illustrated in Figure 5,
the contrast pattern was expressed dominantly as a shift of the
pivot-related brain activity for both upbeat and downbeat com-
parisons. First, in the upbeat comparison, the brain response
at the PivotUp3 resembled that in Up3 in the waltz condition

during the first to third time windows, then at the fourth win-
dow it became more similar to the Up2 in the march condition
(Figure 5A). In the downbeat comparison, this shift occurred
earlier; the brain activity at PivotDown2 was in the first time
window similar to Down3, but quickly approached Down2 in
march condition and completely overlapped Down2 in the third
time window (Figure 5B). Notably, in the fourth window, Down2
approached to Down3, but the PivotDown2 stayed separately
from either. These contrast patterns illustrate two main findings.
First, the overall spatiotemporal patterns of brain activities in
march and waltz stayed far apart throughout the time windows
across upbeat and downbeat positions. Second, the shift of the
brain activity at the hemiola transition point commenced already
at the upbeat position and continued after the downbeat.

We examined the brain areas that contributed to transition-
related differences expressed in the above described contrast
pattern. Figure 6 illustrates the brain areas with the significant
first LV for the upbeat (100–200, 200–300, and 300–400 ms)
and the downbeat (0–100 and 300–400 ms) comparisons. The
focal points spread widely bilaterally including temporal, frontal,
parietal lobes and subcortical structures such as the cerebel-
lum and basal ganglia (Tables 1, 2, for upbeat and downbeat
comparisons). The areas included superior, middle, and inferior
temporal gyri, parahippocampal gyri, precentral and postcentral
gyri, superior, middle, and medial frontal gyri, anterior cingulate
and cingulate gyri, inferior parietal lobules, caudate, lentiform
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FIGURE 6 | Brain areas contributing to the contrast between the three

metric conditions at the time windows (A) 100–200 ms, (B)

200–300 ms, and (C) 300–400 ms after the upbeat onset, and (D)

0–100 ms and (E) 300–400 ms after the downbeat onset. The color
indicates the bootstrap ratio of a given voxel as the spatial component of
the PLS-identified brain-LV. Only the areas where absolute value of the
bootstrap score was larger than 3.0, where the contrast was found
significant, are shown. Note that thresholding resulted in only cold colored
areas correlating with the negative sign of the design-LV values in the
contrast pattern indicated in the Figure 5. The anatomical labels are taken
from the local maxima and minima of these voxels in Tables 1, 2,
respectively. Abbreviation: ACg, anterior cingulate; Caud, caudate; CgG,
cingulate gyrus; Cl, claustrum; Crb, cerebellum; Cu, cuneus; FG, fusiform
gyrus; IPL, inferior parietal lobule; ITG, inferior temporal gyrus; LG, lingual
gyrus; LN, lentiform nucleus; MdFG, medial frontal gyrus; MFG, middle
frontal gyrus; MTG, middle temporal gyrus; PCg, posterior cingulate; PHG,
parahippocampal gyrus; PreCG, precentral gyrus; PreCu, precuneus; Th,
Thalamus; STG, superior temporal gyrus.

nucleus, thalamus, and cerebellar regions. Interestingly, only the
areas showing a negative bootstrap ratio surpassed the threshold
(Figure 6). These are the areas associated with march process-
ing rather than waltz, and consequently, neural processing of the
switch from waltz to march in the hemiola condition.

DISCUSSION
Our present data confirmed that both maintaining a subjec-
tive meter as well as intentionally switching the subjective meter

context while listening to identical metronome clicks result in
significant modulation of spatiotemporal patterns of neural activ-
ities expressed as AERs. Note that these responses represent neural
activity that is precisely phase-locked to the stimulus onset. Based
on well-documented characteristics of the AER waveform related
to the stimulus condition, it is no surprise that the tempo-
ral patterns of the waveforms in the bilateral auditory cortices
were in general very similar across all conditions, as charac-
terized by the prominent positive P1 peak and two subsequent
smaller peaks. Despite identical stimuli, significant differences
between response waveforms were found, corresponding to the
contrasting, endogenous metric contexts. We also identified the
brain areas corresponding to the significant contrasts between the
conditions, hemiola, and simple march and waltz.

Interestingly, in the auditory cortical source activities the
march vs. waltz contrast was more pronounced around the
upbeat-associated P1 peak, while hemiola vs. simple meter con-
trasts were more prominent around the downbeat-associated
responses. Since the metric transition occurs in time windows dis-
tinct from those differentiating stable march and waltz meters,
our data suggest that the switch itself requires recruitment of
additional endogenous processes. Additionally, the simple march-
waltz contrast shown here replicated and extended findings in
previous studies of endogenous metrical hierarchies (Fujioka
et al., 2010; Nozaradan et al., 2011). The current results were
based on source waveforms that preserved the polarity informa-
tion of neural activities, a process that was not feasible in previous
MEG beamformer (Fujioka et al., 2010) or EEG spectral power
analyses (Nozaradan et al., 2011). In the current study, the pos-
itive peak responses in the hemiola condition were larger than
the simple march and waltz conditions, a finding which might
be related to additional computation or inputs to the auditory
cortex for establishing a complex metric scheme required for
hemiola. Effects of attention and memory related modulation of
the AER from frontal, medial, temporal, and parietal lobes have
been documented on the components as early as N1 to endoge-
nous component such as P300 (Herrmann and Knight, 2001). In
particular, recent research examining temporally-oriented atten-
tion showed attenuated N1 and enhanced P2 components when
the stimulus was presented at a time that could be predicted
from a preceding rhythm (Lange, 2009; Costa-Faidella et al., 2011;
Sanabria and Correa, 2013). A similar effect might explain the
enhanced positive peaks after the downbeat onset in the hemiola
condition, because an attenuated N1 would result in an appar-
ent increase of P1 at the same latency in our data. For the march
and waltz conditions without the metric switch, such a strong
temporally-oriented attention might not be necessary because of
its steady structure.

Most important and novel are our findings about the timing
of the AER, which started to differ before the metric transition
point, and continued to achieve the shift through the pivot down-
beat time window, both shown in the auditory cortical sources
(Figure 4) and the whole brain activity pattern (Figure 5). In our
PLS results, the brain activity pattern at the pivot upbeat onset
was initially almost equivalent to that in the waltz condition,
but later became more similar to those in the march condi-
tion, before the pivot downbeat onset. From the DAT point of
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Table 1 | Brain locations associated with the upbeat contrast in the time window in the 100–200 ms, 200–300 ms, and 300–400 ms expressed in

Talairach brain atlas coordinate system (x:RL[mm], y:AP[mm], z:IS[mm]).

Time window Lobe Location Hemisphere x [mm] y [mm] z [mm] Bootstrap ratio

(A)

100–200 ms Temporal Middle temporal gyrus Right −71 32 −11 −3.092

Temporal Superior temporal gyrus Left 33 −4 −42 −4.024

Temporal Superior temporal gyrus Left 49 −19 −17 −3.620

Temporal Superior temporal gyrus Right −64 32 14 −4.216

Parietal Inferior parietal lobule Right −40 41 29 −3.766

Parietal Postcentral gyrus Left 49 17 30 −3.004

Parietal Postcentral gyrus Right −24 35 62 −3.677

Occipital Lingual gyrus Left 24 95 −6 −3.304

Occipital Middle occipital gyrus Left 33 64 12 −4.906

Occipital Middle occipital gyrus Right −48 72 4 −3.662

Occipital Precuneus Left 16 73 44 −5.588

Occipital Precuneus Left 1 49 37 −5.194

Occipital Superior occipital gyrus Right −32 81 27 −3.326

Limbic Thalamus Right −16 16 14 −4.357

Frontal Inferior frontal gyrus Right −48 −49 1 −7.366

Frontal Inferior frontal gyrus Right −59 −18 1 −3.288

Frontal Medial frontal gyrus Right −8 −40 25 −5.404

Frontal Middle frontal gyrus Left 40 −7 56 −5.219

Frontal Middle frontal gyrus Left 24 −34 0 −3.627

Frontal Middle frontal gyrus Left 47 −49 −15 −3.159

Frontal Middle frontal gyrus Right −48 −32 25 −5.12

Frontal Precentral gyrus Right −48 −1 31 −4.529

Frontal Rectal gyrus Right −1 −27 −29 −4.170

Frontal Superior frontal gyrus Left 23 −69 15 −3.139

Frontal Superior frontal gyrus Right −16 −65 10 −3.007

Cerebellum Cerebellar tonsil Left 49 61 −45 −3.302

Cerebellum Cerebellar tonsil Right −8 54 −37 −3.103

Cerebellum Culmen Left 0 47 −5 −4.892

Cerebellum Tuber Left 33 86 −30 −4.457

Basal ganglia Lentiform nucleus Left 24 −10 −8 −3.062

(B)

200–300 ms Temporal Superior temporal gyrus Left 59 −10 −9 −3.216

Temporal Superior temporal gyrus Left 69 41 5 −3.134

Temporal Superior temporal gyrus Right −40 57 29 −3.715

Parietal Paracentral lobule Right −24 42 53 −3.627

Parietal Postcentral gyrus Left 41 43 61 −3.402

Occipital Cuneus Left 1 103 −5 −4.081

Occipital Precuneus Left 41 73 44 −3.485

Occipital Precuneus Left 8 82 51 −3.139

Limbic Cingulate gyrus Left 0 −24 32 −3.44

Limbic Cingulate gyrus Right −24 0 31 −4.068

Limbic Cingulate gyrus Right −24 25 30 −3.678

Frontal Precentral gyrus Right −48 1 55 −3.815

Frontal Superior frontal gyrus Right −8 −58 −23 −3.46

(C)

300–400 ms Temporal Inferior temporal gyrus Left 57 23 −18 −5.549

Temporal Middle temporal gyrus Left 40 −3 −34 −4.842

Temporal Middle temporal gyrus Left 57 65 28 −4.815

Temporal Middle temporal gyrus Right −64 48 −3 −5.572

Temporal Parahippocampal gyrus Right −40 23 −18 −3.373

(Continued)
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Table 1 | Continued

Time window Lobe Location Hemisphere x [mm] y [mm] z [mm] Bootstrap ratio

Temporal Superior temporal gyrus Right −48 16 6 −3.902

Temporal Superior temporal gyrus Right −61 −10 0 −3.446

Parietal Inferior parietal lobule Left 65 34 43 −3.645

Occipital Cuneus Left 0 96 19 −4.63

Occipital Fusiform gyrus Right −32 71 −13 −5.148

Occipital Middle occipital gyrus Left 32 88 11 −3.095

Occipital Middle occipital gyrus Right −48 80 12 −3.467

Occipital Precuneus Left 0 74 52 −3.885

Limbic Anterior cingulate Left 16 −33 17 −3.374

Limbic Thalamus Left 0 6 −1 −3.337

Frontal Inferior frontal gyrus Right −32 −11 −17 −3.418

Frontal Medial frontal gyrus Right 0 −29 41 −5.086

Frontal Middle frontal gyrus Left 32 −32 41 −3.183

Frontal Middle frontal gyrus Right −32 −16 32 −3.216

Frontal Middle frontal gyrus Right −32 −57 10 −3.103

Frontal Precentral gyrus Left 49 −10 7 −4.314

Frontal Precentral gyrus Left 41 19 69 −3.987

Frontal Rectal gyrus Right −8 −42 −24 −3.718

Frontal Superior frontal gyrus Left 8 −7 71 −3.193

Frontal Superior frontal gyrus Right −24 −48 33 −4.317

Cerebellum Inferior semi-lunar lobule Right −45 77 −43 −3.299

Cerebellum Pyramis of vermis Left 0 70 −29 −3.434

The list indicates the local maxima/minima of the bootstrap ratio obtained (<−3 or >3) by the first latent variable (brain-LV) in the PLS analysis.

view, the ongoing oscillators to signify each meter should be run-
ning in parallel for ternary and binary, but an additional force
would be necessary to indicate which meter defines the fore-
ground scheme while the other is kept in the background. In other
words, inhibitory mechanisms seem to be necessary to suppress
the ongoing ternary oscillator and switch the emphasis onto the
binary one. The finding that this shift occurred already before
the pivot downbeat strongly supports our general hypothesis that
meter-related timing mechanisms are used to predictively orient
attention to future events.

A remaining question is how the transition is managed cog-
nitively and what its neural correlates are. On one hand, the
participants could perform this task by simply repeating a 12-
beat pattern without invoking a march or waltz context instead of
consciously switching between meters half way through. Indeed,
the literature about behavioral data suggests that people perform
initially poorly in the polyrhythmic tapping task but later they
learn the task well such that the tapping pattern achieves antici-
patory asynchrony typically observed in the simple sensorimotor
synchronization task (e.g., one tap for each metronome click)
(Tajima and Choshi, 2000). This point of view suggests that our
results might be related to the learned motor sequence and its
imagery, instead of any timing processing. In fact, even though
we have analyzed only the MEG data during the listening task,
that segment was always alternated with the production task.
Thus, it is possible that our participants may have also addition-
ally covertly rehearsed the motor sequence, resulting in motor
related activities captured in our analysis. However, even with-
out any motor imagery, motor-related areas were active in rhythm

listening as observed in fMRI (Grahn and Brett, 2007; Chen et al.,
2008; Bengtsson et al., 2009; Grahn and Rowe, 2009). Also this
explanation cannot entirely account for the reason why the hemi-
ola upbeat or downbeat is differently processed from march or
waltz upbeat or downbeats.

As an alternative explanation, we propose that our inner
clock system may have the capacity to alternatingly maintain
two meters in parallel and the related endogenous activities
are captured here. Results from recent fMRI studies using fin-
ger tapping tasks corroborate this concept. Compared to simple
isorhythmic tapping, performing polyrythmic tapping involves
differential activities in the fronto-parietal and motor-related
networks (sensorimotor cortex, medial premotor cortex, pari-
etal cortex, basal-ganglia, and cerebellum) (Thaut et al., 2008).
Bimanual coordinated tapping on polyrhythm also resulted in
the similar brain activity pattern (Ullén et al., 2003). Even if fin-
ger tapping was made isochronously, doing so while listening
to another rhythm as auditory stimuli recruited fronto-parietal
attention network such as inferior frontal gyrus, supramarginal
gyrus/inferior parietal lobule (Vuust et al., 2006), and anterior
cingulate gyrus (Vuust et al., 2011). The latter two studies offer
particularly powerful support to the concept that these areas are
involved in maintaining a polyrhythmic context (e.g., multiple
meters) in one’s mind rather than execution of movements or
simple memorization of the pattern itself. Furthermore, fMRI
studies demonstrate that during listening to naturalistic music,
rhythmic cues are associated with medial temporal lobe and cin-
gulate (Alluri et al., 2012) as well as parietal cortex (Abrams et al.,
2013), in addition to the auditory-motor and the frontal-parietal
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Table 2 | Brain locations associated with the downbeat contrast in the time window in the 0–100 ms, and 300–400 ms, expressed in Talairach

brain atlas coordinate system (x:RL[mm], y:AP[mm], z:IS[mm]).

Time window Lobe Location Hemisphere x [mm] y [mm] z [mm] bootstrap ratio

(A)

0–100 ms Temporal Inferior temporal gyrus Left 57 55 −4 −3.794

Temporal Inferior temporal gyrus Left 69 23 −19 −3.383

Temporal Middle temporal gyrus Left 48 77 27 −4.141

Temporal Middle temporal gyrus Right −48 64 4 −3.136

Temporal Middle temporal gyrus Right −62 31 − 10 −3.075

Temporal Parahippocampal gyrus Left 33 29 −19 −3.691

Temporal Superior temporal gyrus Left 33 −4 −42 −5.080

Parietal Inferior parietal lobule Left 53 42 55 −3.462

Parietal Supramarginal gyrus Right −58 49 29 −3.725

Occipital Cuneus Left 0 95 31 −3.939

Occipital Cuneus Right −14 88 11 −3.065

Occipital Precuneus Left 0 59 19 −3.504

Occipital Precuneus Right −27 41 37 −5.859

Occipital Precuneus Right −28 82 42 −3.523

Limbic Anterior cingulate Right 0 −35 9 −4.135

Limbic Anterior cingulate Right −9 −17 −9 −3.937

Limbic Cingulate gyrus Left 8 9 46 −3.897

Limbic Thalamus Left 16 24 −1 −3.481

Frontal Inferior frontal gyrus Right −40 −33 8 −3.671

Frontal Inferior frontal gyrus Right −63 −17 21 −3.265

Frontal Middle frontal gyrus Left 41 −43 −7 −4.597

Frontal Precentral gyrus Left 8 19 71 −3.594

Cerebellum Culmen Left 9 63 −10 −3.995

Cerebellum Culmen Right −8 31 −19 −3.417

Cerebellum Declive Left 40 87 −21 −3.111

Cerebellum Inferior semi-lunar lobule Left 17 78 −45 −4.689

Cerebellum Tuber Left 50 62 −28 −6.011

Cerebellum Tuber Right −39 85 −29 −4.848

Basal ganglia Lentiform nucleus Left 19 −2 −4 −3.912

(B)

300-400ms Temporal Middle temporal gyrus Left 57 40 −3 −4.321

Temporal Parahippocampal gyrus Left 24 48 5 −3.855

Temporal Superior temporal gyrus Right −56 15 6 −3.907

Parietal Paracentral lobule Left 16 34 53 −3.648

Parietal Postcentral gyrus Left 57 16 14 −4.707

Parietal Postcentral gyrus Left 57 26 38 −3.923

Occipital Cuneus Left 8 96 19 −4.338

Occipital Inferior occipital gyrus Right −32 87 −13 −5.705

Occipital Lingual gyrus Right −8 99 −14 −4.159

Occipital Middle occipital gyrus Left 32 95 10 −3.023

Occipital Middle occipital gyrus Right −48 63 −4 −3.537

Occipital Precuneus Right −8 66 44 −3.386

Limbic Cingulate gyrus Left 0 25 30 −5.900

Frontal Medial frontal gyrus Left 0 19 69 −3.438

Frontal Middle frontal gyrus Left 41 −7 56 −3.939

Frontal Middle frontal gyrus Right −32 −41 9 −4.553

Frontal Middle frontal gyrus Right −48 −16 32 −3.789

Frontal Precentral gyrus Left 57 −9 7 −5.053

Frontal Superior frontal gyrus Left 33 −48 25 −3.777

Frontal Superior frontal gyrus Left 19 −71 10 −3.214

(Continued)
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Table 2 | Continued

Time window Lobe Location Hemisphere x [mm] y [mm] z [mm] bootstrap ratio

Frontal Superior frontal gyrus Right −8 −69 −14 −3.639

Basal ganglia Caudate Left 8 −25 8 −5.653

Basal ganglia Caudate Right −24 8 22 −5.039

Basal ganglia Claustrum Left 33 −2 −1 −4.439

The list indicates the local maxima/minima of the bootstrap ratio (<−3 or >3) obtained by the first latent variable (brain-LV) in the PLS analysis.

networks. Together with other available evidence, our current
results strengthen this working model by showing the metric
transition is also processed in these similar neural resources,
namely, auditory-motor, frontal-parietal, and medial-limbic net-
works. Since our task used only a fixed number of cycles to
repeat, future research could ask how people may differently per-
form in voluntary metric switching in an improvizational context,
compared with a prescribed one like ours.

Where in the brain are these transitions processed? The sig-
nificant contrast between march and waltz is shown in the
auditory-motor brain areas especially in the time windows where
the hemiola metric transition was not yet to occur (100–200 ms in
the upbeat comparison, 0–100 ms in the downbeat comparison;
Table 1A and Figure 6A, Table 2A and Figure 6D, respectively).
Thereafter, frontal and parietal lobes and cingulate cortex con-
tributed significantly to the brain activity patterns where the
transition modulated the brain activities, as expressed by the shift
of the hemiola condition from waltz to march in the upbeat,
and downbeat position (Table 1C and Figure 6C, Table 2B and
Figure 6E, respectively). This is in line with our prediction that
metric switching demands would resemble task switching in exec-
utive functions which typically engaging these areas. Interestingly,
this may also be related to a recent fMRI finding which demon-
strated the involvement of frontal-parietal and temporal-parietal
axes such as medial frontal cortex and precuneus in the higher-
order language information processing (e.g., a longer temporal
structure integration such as at paragraph level, as opposed to
sentence or word level) (Lerner et al., 2011). However, while
similar hierarchical complexity and a longer temporal integra-
tion demands also occur in the hemiola pattern, the long stimuli
duration of the spoken story (tens of seconds) and complex
phonetic meter used in their study might recruit additional or
different cognitive processes than pure ‘temporal information.’
Still, when listening to spoken language or music, anticipatory
processes are most likely in operation. It would be of interest
to examine how musical metric-related processes, which require
these executive functions and timing processing are different from
language-related anticipatory processes.
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