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What are the computational tasks that an executive controller for visual attention
must solve? This question is posed in the context of the Selective Tuning model of
attention. The range of required computations go beyond top-down bias signals or
region-of-interest determinations, and must deal with overt and covert fixations, process
timing and synchronization, information routing, memory, matching control to task,
spatial localization, priming, and coordination of bottom-up with top-down information.
During task execution, results must be monitored to ensure the expected results. This
description includes the kinds of elements that are common in the control of any kind of
complex machine or system. We seek a mechanistic integration of the above, in other
words, algorithms that accomplish control. Such algorithms operate on representations,
transforming a representation of one kind into another, which then forms the input to
yet another algorithm. Cognitive Programs (CPs) are hypothesized to capture exactly such
representational transformations via stepwise sequences of operations. CPs, an updated
and modernized offspring of Ullman’s Visual Routines, impose an algorithmic structure
to the set of attentional functions and play a role in the overall shaping of attentional
modulation of the visual system so that it provides its best performance. This requires
that we consider the visual system as a dynamic, yet general-purpose processor tuned
to the task and input of the moment. This differs dramatically from the almost universal
cognitive and computational views, which regard vision as a passively observing module
to which simple questions about percepts can be posed, regardless of task. Differing
from Visual Routines, CPs explicitly involve the critical elements of Visual Task Executive
(vTE), Visual Attention Executive (vAE), and Visual Working Memory (vWM). Cognitive
Programs provide the software that directs the actions of the Selective Tuning model of
visual attention.
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INTRODUCTION
The corpus of theories and models of visual attention has grown
rapidly over the past two decades (see Itti et al., 2005; Rothenstein
and Tsotsos, 2008; Nobre and Kastner, 2013). It has become dif-
ficult to keep track of these and even more difficult to compare
and contrast them with respect to their effectiveness at explain-
ing known phenomena and predicting new ones. Surprisingly,
few have attempted to go beyond the creation of saliency maps
or re-creation of single cell response profiles. Larger efforts aimed
at connecting visual attention with its executive controller or
with real-world tasks such as recognition, motor behavior or
visual reasoning, are not common. Such a larger scale effort is
precisely our long-term goal and a first step will be proposed.
The key question addressed is: What are the computational tasks
that an executive controller for visual attention must solve? The
answer to this question would play a major role in any cognitive
architecture. Unfortunately, the previous literature on large-scale
cognitive frameworks does not provide much guidance as can be
seen from the following synopsis. A great review can be found in
Varma (2011).

Dehaene and Changeux (2011), in an excellent review paper,
point out that “Posner (Posner and Snyder, 1975; Posner and
Rothbart, 1998) and Shallice (Shallice, 1972, 1988; Norman and
Shallice, 1980) first proposed that information is conscious when
it is represented in an executive attention or supervisory attentional
system that controls the activities of lower-level sensory-motor
routines and is associated with prefrontal cortex. In other words,
a chain of sensory, semantic, and motor processors can unfold
without our awareness, [. . ..] but conscious perception seems
needed for the flexible control of their execution, such as their
onset, termination, inhibition, repetition, or serial chaining.” This
viewpoint puts our effort squarely on the same path as those that
address consciousness, however we will stop short of making this
link. Our focus is to develop this supervisor for attention so that
it is functionally able to provide a testable implementation that
uses real images. It can be considered in larger roles as Dehaene
and Changeux suggest but we reserve further discussion on this
for future work. It might be that by defining concrete mecha-
nisms for executive attention, contributions to our understanding
of consciousness will emerge.
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Two of the best-known cognitive architectures are SOAR
(Laird et al., 1987) and ACT-R (Anderson and Lebiere, 1998).
Within SOAR, designed to provide the underlying structure that
would enable a system to perform the full range of cognitive tasks,
an attentional component was defined named NOVA (Wiesmeyer
and Laird, 1990). Attention is claimed to precede identification,
is a deliberate act mediated by an ATTEND operator, and func-
tions as a gradient-based, zoom lens of oval shape that separates
figure from ground. Attended features move on to recognition.
This reflects an “early selection” conceptualization (Broadbent,
1958). ACT-R, designed with the same goals as SOAR, defines
perceptual-motor modules that take care of the interface with the
environment. Perception operates in a purely bottom-up manner
and is assumed to have the function of parsing the visual scene
into objects and their features. Attention then is used to select
objects and recognize them in a manner that combines a spotlight
model with search guidance. The firing of production rules con-
trols shifts of attention. This model also reflects an early selection
strategy.

More recently, massive neuronal network simulations have
become possible not in small part due to increased comput-
ing power and large engineering feats. Zylberberg et al. (2010)
develop a large-scale neural system that embodies attention in
the form of a router whose job is to set up the precise map-
ping between sensory stimuli and motor representations, capable
of flexibly interconnecting processors and rapidly changing its
configuration from one task to another. This captures the infor-
mation routing part of the problem, but does not include the
dynamic nature of attentive single neuron modulations. Eliasmith
et al. (2012) describe another large-scale neural model, impressive
for its ability to generalize performance across several tasks. The
entire vision component is modeled using a Restricted Boltzmann
Machine as an auto-encoder, but attention is not used. The major
brain areas included in the model are modeled using abstract
functional characterizations and are structured in a feed-forward
processing pipeline for the most part. Each of these, and in
fact most major proposals, view the visual system as a passively
observing, data-driven classifier of some sort, exactly the kind of
computational system that Marr had envisioned (Marr, 1982) but
not of the kind indicated by modern neurobiology. Specifically,
the enormous extent of inter-connectivity and feedback con-
nections within the brain (Markov et al., 2014) seem to elude
modeling attempts and their function remains a major unknown.

On the neuroscience side, there have been three recent
attempts to capture the essence of top-down control for visual
attention; executive control has been of interest for some time
(e.g., Yantis, 1998; Corbetta and Shulman, 2002; Rossi et al.,
2009, and many others). They also provide steps toward under-
standing the role of the feedback connections. In Baluch and
Itti (2011), a map of brain areas and their top-down attentive
connections is presented. They nicely overview a number of atten-
tional mechanisms but it is odd that no top-down attentional
influences are included for areas V1, V2, and LGN, areas where
attentional modulation has been observed (e.g., O’Connor et al.,
2002). By contrast, Miller and Buschman (2013) describe several
pathways for top-down attention, all originating in frontal cor-
tex and influencing areas LIP, MT, V4, V2, V1. They provide a

good picture of top-down attentional connections but not much
on exactly how this influence is determined and executed. Finally,
Raffone et al. (2014) take an additional important step by defin-
ing a visual attentional workspace consisting of areas FEF, LIP
and the pulvinar, this workspace being supported by a global
workspace in LPFC. This more complex structure likely comes
closest to what we seek too, but Raffone et al. do not provide
mechanistic explanations as to how this concert of areas operate
in a coordinated fashion. Such work subscribes to the philosophy
that by combining experimental observations, one can develop
an understanding without detailing workable mechanisms. Our
perspective is exactly the opposite: we will proceed by trying
to determine what needs to be solved first (see Marr’s compu-
tational level of analysis Marr, 1982) and how those solutions
may come about (Marr’s algorithmic and representational level).
Experimental observations play the role of constraining the set of
possible solutions (see Tsotsos, 2014).

Nevertheless, the past work reviewed above has value for our
efforts. We notice that each of the above works embody the idea
that there exists a sequence of representational transformations
required to take an input stimulus and transform it into a repre-
sentation of objects, events or features that are in the right form
to enable solution of a task. This concept is key and points us
to Ullman’s Visual Routines (VRs). Ullman presented a strategy
for how human vision might extract shape and spatial relations
(Ullman, 1984). Its key elements included:

• VRs compute spatial properties and relations from base repre-
sentations to produce incremental representations,

• base representations are derived automatically, are assumed
correct, and describe local image properties following Marr’s
2.5D Sketch (1982),

• VRs are assembled from elemental operations,
• elemental operations are: shift of processing focus, indexing,

boundary tracing, marking, and bounded activation,
• universal routines operate in the absence of prior knowledge

whereas other routines operate with prior knowledge,
• mechanisms are required for sequencing elemental operations

and selecting the locations at which VRs are applied,
• attentive operations are critical and based on Koch and Ullman

(1985).
• new routines can be assembled to meet processing goals,
• a VR can be applied to different spatial locations,
• VRs can be applied to both base and incremental representa-

tions.

Why is the visual routine a useful concept? The key requirement
for a solution to our goal is an approach that is centered on the
visual representations important for the completion of perceptual
tasks, and transformations between representations that traverse
the path from task specification to stimulus presentation to task
completion. VRs depend on visual representations and represent
algorithms for how one representation is transformed to another
toward the overall task satisfaction and as such present us with a
starting point for our goal. We will generalize this concept beyond
its utility for shape and spatial relation computation, but first look
at previous developments of VRs.
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A number of researchers have pursued the visual routines con-
cept. Johnson (1993) and McCallum (1996) looked into how
VRs may be learned, using genetic programming and reinforce-
ment learning. Horswill (1995) developed a system that performs
visual search to answer queries in a blocks world. He included a
set of task-specific weights to compute a saliency map, a set of
markers that hold the centroids of regions, and a return inhi-
bition map that masks out regions that should not be selected.
Brunnström et al. (1996) propose an active approach including
an attentional mechanism and selective fixation. They define VRs
that can rapidly acquire information to detect, localize and char-
acterize features. Ballard et al. (1997) emphasize the need for
an attentive “pointing device” in visual reasoning. Rao’s (1998)
primitive VR operations are: shift of focus of attention; operations
for establishing properties at the focus; location of interest selec-
tion. These enable VRs for many visuospatial tasks. Ballard and
Hayhoe (2009) describe a gaze control model for event sequence
recognition. They highlight problems with saliency map methods
for task-based gaze control. VRs also found utility in practi-
cal domains: control of humanoids (Sprague and Ballard, 2001);
autonomous driving (Salgian and Ballard, 1998); natural lan-
guage interpretation and motor control (Horswill, 1995); control
of a robot camera system (Clark and Ferrier, 1988).

Neurobiologists have also embraced VRs. Roelfsema et al.
(2000, 2003) and Roelfsema (2005) have provided neurophysio-
logic support. They discovered neurons in motor cortex selective
for movement sequences. They also monitored the progression
of a sequence by recording activity of neurons in early visual
cortex, associating elemental operations with changes in neuron
response. They thus suggested an enhanced set of VRs: visual
search, cuing, trace, region filling, association, working memory,
suppression, matching, and motor acts. This work forms a nice
stepping-stone onto the path we will take.

However, almost everything has changed in our knowledge
of vision and attention since Ullman described visual routines
in 1984 and this necessitates at least an update of its con-
ceptualization. We know that attention is more complex than
region-of-interest selection for gaze change. It also involves top-
down priming of early visual computations, feedback processing,
imposes a suppressive surround around attended items to ignore
background clutter and modulates individual neurons to opti-
mize them for the task at hand both before the stimulus is
presented as well as during its perception. Attentive modula-
tion can change the operating characteristics of single neurons
virtually everywhere in the visual cortex (see Itti et al., 2005;
Carrasco, 2011; Nobre and Kastner, 2013). Moreover, we know
the time course of attentive effects differs depending on task;
attentional effects are seen after Marr (1982) limit of 160 ms.
Further we now know there are no independent modules, as
Marr believed, because most neurons are sensitive to more than
one visual modality/feature. We also know that the feedforward
pass of the visual cortex has limits on what can and cannot be
processed. It is not the case that this feedforward pass, as Marr
had thought, suffices to compute a complete base representation
on which any additional reasoning can take place. If anything,
that feedforward pass is only the beginning of the act of per-
ception (Tsotsos, 1990, 2011; Tsotsos et al., 2008). The view that

is becoming more accepted is that vision is a dynamic process.
For example, Di Lollo et al. (2000) conclude that mismatches
between the reentrant visual representations and the ongoing
lower level activity lead to iterative reentrant processing. Lamme
and Roelfsema (2000) provide a more general view of this idea
with motivations from neurophysiology. They show the activ-
ity of cortical neurons is not determined by this feedforward
sweep alone. Horizontal connections within areas, and higher
areas providing feedback, result in dynamic changes in tuning.
The feedforward sweep rapidly groups feature constellations that
are hardwired in the visual brain, and in many cases, recurrent
processing is necessary before the features of an object are atten-
tively grouped. Cichy et al. (2014) provide a comprehensive view
of object recognition during the first 500 ms of processing show-
ing that early visual representations (while the stimulus is still on)
develop over time and are transient while higher level represen-
tations (with greater temporal duration than the stimulus) and
various categorical distinctions emerge with different and stag-
gered latencies. Rather than being purely stimulus-driven, visual
representations interact through recurrent signals to infer mean-
ing (Mur and Kriegeskorte, 2014). As a result, the vision system
is far more complex than Ullman had considered and the control
issues become critical.

WHAT DO COGNITIVE PROGRAMS HAVE TO CONTROL?
Our original question was “What are the computational tasks
that an executive controller for visual attention must solve?” and
we posed it in the context of the Selective Tuning (ST) model.
ST functionality includes not only the often seen top-down bias
signals or region-of-interest determinations, but also overt and
covert fixation change, parameter determinations, information
routing, localization, priming, and coordination of bottom-up
with top-down information. Elements that seem necessary but
not currently within ST include representations of task, short-
term memory, and task execution. During task execution, results
must be monitored to ensure the expected results are obtained.
Similar elements are common in the control of any kind of com-
plex system and typically, such tasks are represented within algo-
rithms designed to accomplish control. Such algorithms operate
on representations, transforming a representation of one kind
into another, which then forms the input to yet another algo-
rithm. Cognitive Programs are hypothesized to capture exactly
such representational transformations via stepwise sequences of
operations. Cognitive Programs (CPs), an updated and modern-
ized offspring of Ullman’s seminal Visual Routines, provide an
algorithmic structure to the set of attentional functions and play a
role in the overall shaping of attentional modulation of the visual
system so that it provides its best performance. We consider the
visual system as a dynamic, yet general-purpose processor, tuned
to the task and input of the moment. This differs dramatically
from what is most common in previous theories of cognition
and current computational vision, which regard vision as a pas-
sively observing module to which simple questions about percepts
can be posed, with the tacit assumption that this suffices for any
task. Just and Varma (2007) make exactly the same point after
reviewing how recent brain imaging results impact the design
of complex cognitive systems. It is important to note that for
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the balance of this presentation, the motivation for the compo-
nents of Cognitive Programs arises exclusively from the functional
needs of the ST attentional process in its expanded role of tuning
the visual system for a given task.

First, let us make the notion of a Cognitive Program more
concrete. Ullman defined his visual routines as sequences of
elemental operations as described earlier in this paper, and
he distinguished universal routines from “regular” ones. Here,
Cognitive Programs will be of two types also, but the similar-
ity ends there. The first type is termed methods, and whereas
Ullman suggested that universal routines can be usefully applied
to any scene to provide some initial analysis, and transform
input into a representation that is then amenable to the reg-
ular kind of routine, here methods cannot be applied without
some degree of adaptation to task and/or input (including sen-
sor) characteristics of the moment. For example, a CP method
that encodes how to perform visual search needs a specification
of the target being sought. It might also be tuned to over-
all light levels, any context information available, and so on,
all useful information for tuning the attentive behavior of the
system.

Scripts are the executable versions of tuned methods and can
be used directly to provide the necessary information to initiate,

tune, and control visual processing. Here, all CPs do more than
transform one representation into another. They may also encode
decision-making elements and set control signals in addition
to sequencing representational transformations. The elemental
operations differ from Ullman’s VRs as well. CPs are composed
of accesses to memory (both read and write), yes-no decision
points decided by the execution of particular functions, and
determination of control signal settings. CPs can be formed by
the composition of other CPs. Whereas Ullman’s VRs included
high-level actions such as boundary tracing as elemental opera-
tions, here, tracing will be composed of more primitive elements
and will result in a CP of its own. This is simply one example
of how CPs may be considered as a more fine-grained version
of VRs.

A sample CP may help clarify their form. Figure 1 shows a
simple CP method, one intended for the visual task of discrim-
ination. Acronyms and some components are not fully defined
until a subsequent section; this example is given in order to show
only the form of CPs and the kinds of elemental operations that
will come into play. Discrimination, following Macmillan and
Creelman (2005) is defined as a task where a yes-no response
is required on viewing a display with a stimulus drawn from
one of two classes, and where one class may be noise. As can

FIGURE 1 | A graphical depiction of the cognitive program for a visual

discrimination task. The traversal of the graph from start to end provides
the algorithm required to execute a discrimination task. The kinds of
operations involve several instances of moving information from one place
to another (in red), executing a process (in green), making a selection (in
blue), or setting parameters (in orange). In words, this algorithm has the
following steps: (i) the visual task executive receives the task specifications;
(ii) using those specifications, the relevant methods are retrieved from the
methods longe-term memory; (iii) the most appropriate method is chosen
and tuned into an exectuable script; (iv) the script is then executed, first
activating in parallel the communication of the task information to the
visual attention exectutive and initiating the attentive cycle; (v) the visual

hierarchy is primed using task information (where possible) and in parallel
attention is disengaged from the previous focus; (vi) the visual attention
executive sets the parameters for executing the competition for selecting
the focus of attention; (vii) disengage attention involves inhibiting the
previously attended pathways and any previously applied surround
suppression is also lifted (note that steps v–vii are executed in parallel
before the visual stimulus appears, to the extent possible); (viii) the
stimulus flows through the tuned visual hierarchy in a feed-forward
manner; (ix) the central focus of attention is selected at the top of the
visual hierarchy; the central focus of attention is communicated to the
visual task exectuive that then matches it to the task requirements; (x) if
the selected focus and the task requirements match, the task is complete.
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be seen from the figure, the kinds of operations involve several
instances of moving information from one place to another (in
red), executing a process (in green), making a selection (in blue),
or setting parameters (in orange). The first step is for the visual
task executive (vTE) to receive the specification of the task (from
an unspecified source external to this model). The details of the
task can be used as indices into the methods long-term mem-
ory (mLTM) in order to select and fetch the most appropriate
method. This implies that the memory itself is organized in an
associative manner that reflects key task elements. The chosen
method is then tuned using the task specification and becomes
an executable script. The script initiates the attentive cycle, and
sends the elements of the task that are required for attentive tun-
ing to the visual attention executive (vAE). The vAE then primes
the visual hierarchy (VH) with the appropriate top-down sig-
nals that reflect expectations of the stimulus (e.g., the display
will consist of a ring of 8 items) or instructions to the subject
(e.g., search for the green item) and also sets any parameters
needed for stimulus competition for attention. How is it possi-
ble to communicate a “cue” to a subject? One way is to simply
show the cue; it would be processed by exactly the same system,
attended, and the resulting output representation (later termed
attentional sample) used as the basis for priming the system for
the upcoming stimulus. While priming is occurring, attention
is also being disengaged from its previous focus, and here dis-
engage means that any attentive spatial surround suppression
(Hopf et al., 2010) or feature surround suppression (Störmer
and Alvarez, 2014) imposed for previous stimuli is lifted, and
any previously attended pathways are inhibited (implementing
an object-based inhibition of return). This last set of functions
gives an excellent example of predictions this kind of analysis
provides. The notion of disengaging attention is a common one
in the literature but it has not previously been operationalized.
Here, an operational definition is presented, amenable to exper-
imental verification, and functionally consistent with the needs
of ST. Continuing with the example, once all of this is complete,
the feedforward signal appears and traverses the tuned VH. In
other words, these actions would occur before stimulus onset,
consistent with Müller and Rabbitt’s (1989) conclusion that in
order for priming to be effective subjects must be informed of
it 300–80 ms before stimulus onset. Once the feedforward pass is
complete, ST’s θ-WTA process (a winner-take-all decision process
based on a binning threshold θ that selects a spatially contigu-
ous set of largest values within some retinotopic representation,
such as the responses of a specific neural selectivity or filter
across the visual field—see Tsotsos et al., 1995; Rothenstein and
Tsotsos, 2014) makes a decision as to what to attend and passes
this choice on to the next stage. The vTE, which is monitoring
the execution of the script, then takes this choice, compares it to
the task goals, and decides on whether the discrimination task
is completed in a positive or negative manner and the task is
complete.

It may seem that a neural realization of such an abstract and
complex process is doubtful. However, recently, Womelsdorf et al.
(2014) have detailed a broad variety of simple neural circuit
elements that provide precisely the kinds of functionality CP’s
require, including gating, gain control, feedback inhibition and

integration functions. An important future activity is to see how
to assemble such circuit elements into the functions described
here for CPs.

Now it is clear how CP’s are the software for the vision exec-
utive; the example of Figure 1 is a flowchart representing the
algorithm that may solve discrimination. There is no illusion here
that this specification is all that is needed. Much additional pro-
cessing is required by each of the components, but the additional
computations are all known and fit into the existing ST method-
ology. However, at an abstract level, this description suffices. In
comparison with Ullman’s visual routines, this description has a
finer grain of detail.

A brief overview of ST is in order. For a full description of ST
see Tsotsos (2011), Rothenstein and Tsotsos (2014)—those details
will not be repeated here. The roots of ST lie in a set of formal
proofs regarding the difficulty of comparing one image to another
using the methods of computational complexity (Tsotsos, 1989,
1990). It was shown that a passive, feedforward pass was insuffi-
cient to solve the task in its general form, given the resources of
the human brain. This paradox—the human brain is very good
at solving this problem—underlies the implausibility of vision as
a passive observer and points to a dynamically modifiable, active
vision process. Further, the range of visual tasks humans perform
require a time course often longer than that provided by a sin-
gle pass through the visual cortex. This characteristic, with the
flexibility to tune or parameterize, functionally re-purposing the
processing network for each pass, distinguishes ST from its com-
petitors (recurrence in a dynamical system or in a neural network
is not the same).

In Figure 2, a caricature of the visual processing hierarchy is
shown for descriptive purposes. It is intended that this simple
4-level structure represent the full ventral and dorsal visual net-
works and from here on, the acronym VH refers to this. The
manner in which ST operates on a visual hierarchy shows how
feedforward and recurrent traversals are inter-leaved. Within ST,
the basic attentive cycle consists of a first stage, labeled B in
Figure 2, that represents a task-based priming stage. The time
period of this stage can range from 300 to 80 ms before stim-
ulus presentation, as described along with Figure 1. That is, if
during an experiment some priming signal is shown to a sub-
ject within that time period, there is enough time for it to be
processed so that it affects the perception of the test stimulus.
Here, not only is this scenario covered, but also any prim-
ing can be included, such as the impact of world knowledge;
it is assumed that in order to affect processing, a top-down
traversal of VH would be required based on the content of
the priming stimulus. The next stage, C, is the stimulus-driven
feedforward processing stage (requiring about 150 ms for a full
traversal), followed by selection and task-specific decision. Then
stage D, a recurrent tracing, localization and surround suppres-
sion stage (needing about 100–150 ms for a full top-down pass),
and E, a modified feedforward processing stage that permits a re-
computation of the stimulus with background clutter suppressed
with the intent of optimizing neural responses to the attended
item.

Each of the stages is parameterized differently depending on
task. Some of the stages may not be needed for a given stimulus
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FIGURE 2 | The different stages of processing of the visual hierarchy

needed for different visual tasks. The five components of the figure
represent processing stages ordered in time, from left to right. (A) In
the first stage, the network is portrayed as “blank,” that is, without
stimulus or top-down influences, as it might be prior to the start of an
experiment, for example. (B) The second stage shows the network
affected by a top-down pass tuning the network with any priming
information to set up its expectation for a stimulus to appear, when
such information is available. Here, the network is set up to expect a

stimulus that is centrally located. (C) At this point, the stimulus appears
and is processed by the tuned network during a single feedforward
pass. (D) If the required task for this stimulus cannot be satisfied by
the first feedforward pass, the recurrent localization algorithm is
deployed that traverses the network in a top-down manner, identifying
the selected components while suppressing their spatial surrounds. (E)

A subsequent feedforward pass then permits a re-analysis of the
attended stimulus with interfering signals reduced or eliminated. See
text for further explanation.

and task. If the decision stage C, for example, determines that the
task is satisfied by the output of the first feedforward stage, then
no further stages are needed. For the visual tasks of discrimina-
tion, categorization, or identification (in all cases following their
definitions in Macmillan and Creelman, 2005; Tsotsos, 2011),
stages A–C usually suffice. For the tasks of within-category identi-
fication, A–D are needed with the option of stage D requiring only
a partial recurrent pass. Full localization tasks require a complete
stage D, while segmentation, visual search, and other more com-
plex tasks require all stages and perhaps multiple repetitions of
the cycle. These stages are more fully described in Tsotsos et al.
(2008), Tsotsos (2011). Any controller will have to manage these
differences.

The requirement for an additional top-down pass for local-
ization is not inconsistent with the claims of Isik et al. (2014).
There, it is shown that IT neural representations encode posi-
tion information that can be decoded by a classifier, and thus the
authors conclude that position is represented with a latency of
about 150 ms, consistent with a feedforward progression through
the visual hierarchy. In ST, it is the recurrent localization pro-
cess that replaces the role of the classifier, and in contrast to
current classifiers presents a biologically plausible mechanism
(and is partially supported experimentally, Boehler et al., 2009).
It also provides a mechanism for tracing down to earlier levels,
functionality that classifiers do not possess, and thus providing
more detailed position information if required. This highlights
the conceptual difference between the time at which informa-
tion is available from which position may be computed—which
the Isik et al. paper well documents—and the time at which that
information is decoded and made usable for processes needing
position information, which is what ST can accomplish. Further,
a simple classifier cannot easily determine position from a spatial

representation containing multiple objects; a selection method is
needed, and ST provides this.

There is one important concept to introduce at this
point, namely that of the Attentional Sample (AS), which
was mentioned earlier. During the recurrent tracing stage
(Figure 2D), θ-WTA decision processes at each level of the
hierarchy select the representational elements computed at that
level that correspond to the attended stimulus1. It will not always
suffice to make this selection at the highest level, say at the level
of object categories for example. Some tasks will require more
details, such as locations of object parts, or feature characteristics.
In general, the AS is formally a subset of the full hierarchy, that
is, the set of neural pathways from the top of the hierarchy to the
earliest level including all intermediate paths, and where at every
level there is a connected subset of neurons with spatially adjacent
receptive fields that represent the selected stimulus at that level
of representation. The recurrent localization process will select
these portions of the representation. Multiple stimuli, that are dis-
tinguishable from one another on the basis of their constituent
features, are not typically selected together as part of a single AS.
Since the selection occurs in a top-down fashion, each selection
becomes part of the overall attentional sample that represents
what is being attended and it can be added to working memory, as
will be seen below. Figure 3 provides an illustration of the concept
of an attentional sample with its components highlighted on the
appropriate processing stage in Figure 2, while Figure 4 shows the

1This process was first described in Tsotsos (1991), and is fully detailed
in Tsotsos (2011) and Rothenstein and Tsotsos (2014). Its mathematical
properties, under the assumptions of the overall model, plus a strategy for
monitoring and correcting the top-down traversal are also detailed in those
presentations.
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FIGURE 3 | The visual hierarchy is shown with the elements within

each layer selected by ST’s recurrent localization process, which

together are identified as the Attentional Sample.

AS computed by the functioning model. Figure 4 shows a snap-
shot of how ST attends to a rotating object in an image sequence.
Not only is the object selected as a portion of the input image—
this is a common result of most attention models—but ST also
connects that input selection to the particular neurons that have
played a role in its selection throughout the processing hierarchy.
In other words, if each level of processing computes selectivity of
a different kind of feature abstraction (velocity, direction, velocity
gradient, rotation/expansion/contraction, etc.), this feature set is
localized within the hierarchy and can be thought of as the feature
vector that best describes what is attended. It is this attentional
sample that is then used by other visual computations for fur-
ther processing. A classifier might consider this AS as its input.
To draw a further comparison to Isik et al. (2014), the position
information Isik et al. refer to is what is represented at the top
level of the hierarchy only. It is position at its coarsest spatial res-
olution. ST on the other hand, provides not only that but also
position at increasingly higher spatial resolutions through the
hierarchy, to the level needed by task requirements.

EXTENSIONS OF SELECTIVE TUNING TO ENABLE COGNITIVE
PROGRAMS
A new functional architecture, based on Selective Tuning, for
executive control via a Cognitive Program strategy can now be
proposed (and is an extension of Kruijne and Tsotsos, 2011;
Tsotsos, 2013). It must be stressed that this architecture was devel-
oped not by examining the literature to see what functions are
attributed to, for example, working memory, or other functional
units. Rather, the only components of function included are those
that the algorithm for Selective Tuning requires (e.g., computa-
tion of its various parameters or control signals). This is a risky
approach because it might seem that there are obvious missing
pieces or inconsistencies. However, it is a unique approach in
that it uses the ST foundation, which has been proven in many
ways and provides a strong functional base, something that purely
experimental work does not. In other words, here we present
a strategy designed in a top-down manner as required by an
existing successful algorithm, with the ultimate goal of trying to

FIGURE 4 | An actual model output from a real image sequence

showing the identification of the attentional sample as the set of

intersection points of the purple lines (the neural connections traced

by the recurrent localization process) and each of the feature map

representations (the blue rectangles each represent one feature filter

and within each, the colored areas denote responses of varying

strength to input stimuli). Full detail on how this example is computed
appears in Tsotsos et al. (2005a). Briefly, for the purpose required here, the
input image is at the lower end of the diagram, is processed first by a set of
filters representing area V1 motion processing, whose output then splits to
continue to further processing levels. On the left is the further abstraction
of translational computation at coarser spatial resolutions (areas MT, MST,
and 7a) while the right hand side is concerned with computation for spatial
velocity gradients, spiral motion (rotation, expansion, etc.) and full field
egomotion (areas MT, MST, and 7a). In total, there are 654 separate filter
types in this hierarchy. The recurrent localization process begins at the top,
selects strongest responses, and then refines that selection tracing back
the neural inputs that are responsible for that strongest, top-level response
(Tsotsos, 2011).

discover new components or functions that might stand as pre-
dictions for future experimental work. As such, the architecture
stands as a hypothesis and there is no claim whatsoever that this
functional architecture suffices to explain the existing literature in
its full breadth and detail. However, it is claimed that it will suf-
fice to augment ST to enable it to execute a broad family of visual
tasks in a manner that is extensible to more complex tasks and is
consistent with much (but perhaps not all) of the relevant aspects
of human visual performance.

Figure 5 gives the block diagram of the major components
needed and their communication connections. Brief descriptions
of each follow. Evidence from primarily human studies as to
the functionality of such components is detailed in Kruijne and
Tsotsos (2011) and, due to space limits, will not be repeated here.

The visual hierarchy, (VH), in a form that is amenable to the
ST method of attention, represents the full ventral and dorsal
streams of the visual processing areas. Partial implementations
have been previously reported (Tsotsos et al., 2005a; Rodríguez-
Sánchez and Tsotsos, 2012). The qualification of “amenable to
the ST method of attention” is important. The majority of cur-
rent popular visual representations such as HMAX (Riesenhuber
and Poggio, 1999) or Convolution Nets (LeCun and Bengio,
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FIGURE 5 | The abstract, block-diagram, structure of the functional

components required to support the executive control of attentive

processing with communication channels indicated by the red arrows.

In Figure 6, this block-diagram is further detailed with the internal
components for each, using the same block colors. The arrows without
endpoints connect to external components.

FIGURE 6 | The details of the architecture and communication pathways required for Cognitive Programs to be interpreted as controlling sequences

of instructions for visual task execution.
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1995) contain components that make them entirely unsuitable for
attentive processing of the kind ST employs, among them feed-
forward max-pooling operations. Since ST requires a top-down,
recurrent max-finding operation, methods that choose maximum
responses on the feedforward pass make their decisions too early
(and against Marr’s principle of least commitment, 1982) and
prevent the recurrent method of ST, or perhaps even any recur-
rent process at all. Arguments as to why ST’s recurrent version
is more consistent with known neurobiology are provided in
Tsotsos (2011).

The Fixation Control mechanism (FC) was first described in
Tsotsos et al. (1995) and a cursory implementation was shown.
It has since been further detailed and completely implemented
(Zaharescu et al., 2005; Tsotsos, 2011; Wloka, 2012), but its
details will not be included here. The fixation control mechanism
includes two important representations. The first is the Peripheral
Priority Map (PPM) that represents the saliency of the peripheral
visual field, biased by task and computed using the AIM algo-
rithm (Bruce and Tsotsos, 2009). The other is the History Biased
Priority Map (HBPM) which combines the focus of attention
derived from the central visual field (cFOA—defined as the image
region with strongest response profile at the highest levels of rep-
resentation within the visual hierarchy) after processing by the full
visual hierarchy and the foci of attention derived from the periph-
eral visual field (pFOA), i.e., the top few most salient items of the
PPM. The point is to provide a representation that includes cen-
tral fixation items (that do not require gaze change), peripheral
fixation items (that do require gaze change), and task influence
on these, on which computations of next target selection can be
performed.

The Long Term Memory for methods (mLTM) stores CP
methods, as described earlier. Where CPs might come from is
not addressed here; we may assume that they are learned through
some unspecified process external to this framework. Figure 1
shows an example method (and was detailed earlier). An impor-
tant characteristic of mLTM is that is will require a powerful
indexing scheme to enable fast search among all of the methods
for the particular ones most relevant to the task at hand. That is,
in an associative manner, elements of the task description should
quickly identify relevant methods.

Visual Working Memory (vWM) contains at least two repre-
sentations. Within the vWM is the Fixation History Map (FHM)
that stores the last several fixation locations. Each decays over
time but while active provides the location for location-based
inhibition-of-return (IOR) signals. This inhibition is intended to
bias against revisiting previously seen locations (Klein, 2000) but
can be over-ridden by task demands. The second representation
is the Blackboard (BB), introduced in Tsotsos (2011) and where
more details can be found. The BB stores the current attentional
sample (the selected locations, features, concepts at each level of
the VH as described earlier) determined by the recurrent atten-
tional localization process so that it may be used by all other
components.

Task Working Memory (tWM) includes the Active Script
NotePad which itself might have several compartments. One
such compartment would store the active scripts with pointers
to indicate progress along the sequence. Another might store

information relevant to script progress including the sequence
of attentional samples and fixation changes as they occur dur-
ing the process of fulfilling a task. Another might store relevant
world knowledge that might be used in executing the CP. The
Active Script NotePad would provide the vTE with any infor-
mation required to monitor task progress or take any corrective
actions if task progress is unsatisfactory.

The vTE reads tasks, selects task methods, tunes methods into
executable scripts, deploys scripts to tune the vision processes,
and monitors and adapts script progress. It receives input in the
form of a task encoding from outside the structure of Figure 5.
Sub-elements include the Script Constructor that tunes methods
into scripts, the Script Executor that moves along the script step
by step, sending the appropriate commands to the correct places,
and the Script Monitor. The Script Monitor checks each step of
the script to ensure the appropriate results are achieved. The full
details of task execution are represented by the attentional sam-
ple AS, and the sequence of AS’s, fixations, and other information
stored in the Active Script NotePad. In other words, it has access
to the history of important computations performed and their
results during the process of performing the task. If those details
do not confirm script success, there might be remedial action
taken by making small alterations to the script or replacing the
current script by a different one.

The vAE contains a Cycle Controller, algorithms to trans-
late task parameters into control signals, and communicates with
external elements. The Cycle Controller is responsible for initi-
ating and terminating each stage of the ST process (shown in
Figure 2). For example, it would initiate the θ-WTA process for
the top of the VH in order to determine the focus of attention
in the central visual field (cFOA). The vAE also initiates and
monitors the recurrent localization process of Figure 2D. This
process is fully detailed in Rothenstein and Tsotsos (2014). There,
we present the implementation of ST’s neural encoding scheme
integrated with attentional selection. We show that it models fir-
ing rates observed in experimental work on single cells as well
as across hierarchies of neurons. The Cycle Controller cycles
repeatedly until the task is complete, a determination that is made
by the vTE.

Figure 6 shows the details of the major components shown
in Figure 5 and graphically links the details of the descriptions
above to each other. Importantly, it shows the various control
signals and information pathways identified to enable ST to func-
tion. The figure highlights several functional components that
also stand as experimental predictions, among them:

• there are two kinds of IOR, a location-based IOR and an object-
based IOR, each arising from different processes and appearing
at different times during an attentive cycle.

• feature-based attention and object-based attention arise from
selections on different representations, and thus appear at
different times during an attentive cycle.

• the commonly used notion of “disengaging attention” is
defined as a particular set of actions, namely, lifting surround
suppression, both spatial and featural, on the previous focus of
attention, and inhibition of the neural pathways involved in the
previous focus of attention (this is object-based IOR).
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• computation of saliency is performed only in the periph-
ery (outside 10◦ or so of visual angle) based on the early
representations of the VH.

• selection of feature-based attention foci is based on the
Peripheral Priority Map.

• selection of object-based attention foci is based on the cen-
tral attentional field (central 10◦ or so) of the highest layers of
the VH.

There are more characteristics that stand as experimental predic-
tions. One dimension of prediction that is not included is that
of associating specific brain areas to the functions in the figure.
Although it is possible to make some associations (for example,
VH represents the set of ventral and dorsal visual areas, the BB
may be part of the pulvinar, the PPM and HBPM may be area
V6, the FHM may be part of FEF—justifications for these appear
in Tsotsos, 2011), we refrain from emphasizing these. The rea-
son is simply that it is more important to confirm the function of
each component and of the framework as a whole. Once we have
strong evidence that the correct functional pieces are included, we
can start to consider which brain areas might correspond.

It is important to ensure that there is sufficient justification
for the decision to functionally separate the elements described
in this section. For example, why separate the tWM from the
vWM? Or the vAE from the vTE? In both cases, the intent is

clear. The tWM is intended to keep track of any information that
relates to status and progress relating to completion of the task
at hand. Think of it as the storage for each of the major check-
points that must be satisfied during task execution, whether due
to visual, motor, reasoning or other actions. The vMW, on the
other hand, stores all the actual visual information extracted from
the input stream and processing by the VH, whether they corre-
spond to components of task checkpoints or not. It corresponds
to whatever is seen and remembered for short-term processing
and provides input to the determination of whether or not check-
points are satisfied. The vAE and vTE have a similar distinction.
The vAE applies its processing to the VH only; it controls the VH
to adapt it to the task and input. The vTE is not concerned with
this but focuses on setting up all the task components into an exe-
cutable script, and of course, this includes the attentional aspects.
Functionally it makes some sense to have separate components in
both cases, even though it may appear as if it might be possible
to embed the vWM within the tWM and the vAE within the vTE.
There is little or no empirical evidence of which we are aware for
either strategy in the brain; it is clear that from a pure modeling
perspective either approach can be made to function correctly.
The separation suggested is a logical one and would stand as a
prediction for future experimental work.

Figure 7 shows a set of linked method CPs, extensions to the
Discrimination CP described earlier. The Discrimination CP has

FIGURE 7 | A graphical depiction of the flow of commands of 5

different CP’s, one built upon another, together providing a

non-trivial, yet far from complete, description of how some simple

visual tasks may be controlled. Each CP is denoted by its color. Each
CP beyond the Discrimination one, involves the composition of more
than one CP.
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been previously described while the Visual Search: Overt CP will
be used in the example of the next section. The Visual Search:
Covert CP is a straightforward extension of Discrimination while
the Localize/Reinterpret CP reflects the recurrent localization
mechanism of the descriptions accompanying Figures 2, 3.

THE CURVE TRACING EXAMPLE
We turn now to a simple example, one that has appeared in the
context of visual routines previously (Jolicoeur et al., 1986). Their
main experimental task was to quickly decide whether two Xs
lay on the same curve or on different curves in a visual display.
Mean response time for “same” responses increased monoton-
ically with increasing distance along the curve between the Xs.
The authors, based on this and similar results on a related experi-
ment, concluded that humans can trace curves in a visual display
internally at high speed (the average rate of tracing was about 40◦
of visual angle per second). The curves were displayed approxi-
mately foveally, with the distance between the Xs being between
2.2◦ and 8.8◦ of visual angle. There were no cross points of the
curves, and it seems the curves were “simple” and not overly close
to one another nor convoluted in shape. The authors conclude
that curve tracing is a basic visual process. Here, we show how the
CP strategy can provide an explanation for curve tracing but in
order to make the demonstration more interesting, the display is
assumed to be large enough to require eye movements. The same
strategy, as should be apparent, can deal with smaller displays as
Jolicouer et al. use, that do not require eye fixation changes.

The sequence of figures below (Figures 8–14) show the steps
executed by the model in order to achieve a single step of trac-
ing; details are in the figure captions. Clearly, several steps such
as these are required to complete the task. Using the CP’s of
Figure 6, the details required for curve tracing can be seen in the
Visual Search: Overt network, although the task specific compo-
nent of tracing is not specifically shown. Smaller displays might
only require the Visual Search: Covert CP.

FIGURE 8 | Suppose the task is to trace this curve. The current fixation
is at the red dot, the visual processing hierarchy has been biased to be
more selective to curved lines, and the curve portion highlighted in red has
already been tracked and this is recorded in the Active Script NotePad.

How does this differ from previous explanations of human
curve-tracing behavior? It is a more detailed and generaliz-
able explanation than what was previously presented by Ullman
(1984), Jolicoeur et al. (1986) or Roelfsema et al. (2000).
Specifically, Roelfsema et al. (2000) propose that attentional
mechanisms realize an attentional label that spreads along the
activated units that belong to the target object or region, bind-
ing them into a single representation. Ullman’s operations can all
be re-interpreted using this spread of the attentional label, either
along a curve or over a region. Although this is a sensible proposal
it describes the process at one level of representation, that is, it
assumes that all required data and computation can be performed
within the representation of a curve. How this might generalize
to other kinds of visual tasks is an open question. The difference
with our approach is that the generalization to a broad set of tasks
is more apparent.

DISCUSSION
In addition to comparisons to the various theories and systems
already mentioned, here a further comparison can be made with

FIGURE 9 | This figure represents the central attentional field (the

central 10◦ or so of the image) representation at the top of the VH. The
curve at current fixation has already been attended; the attentional sample
in BB contains its details. The central field is examined via the θ -WTA
mechanism to find largest responding element other than the current
fixation; the already tracked curve has been suppressed by the inhibition of
return mechanism. The green dot is selected as the central attentional
focus.

FIGURE 10 | The figure represents the Fixation History Map. The FHM
represents the previous fixation (red dot) and the already traced portion of
the curve in red. These provide the inhibition of return bias for the HBPM.
Note how the FHM represents a spatially larger area than the visual field
because it must also include extra-retinal space in order to reduce the
possibility of incorrect gaze oscillatory behavior.
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FIGURE 11 | This figure shows the contents of the Peripheral Priority

Map. The PPM gives the salient locations outside the central attentional
field. The locations would be added to the HBPM. Note that higher saliency
is represented by darker shading.

FIGURE 12 | This shows the History Biased Priority Map. Once the next
central focus (green dot), FHM, and PPM are all combined into the HBPM,
this representation can now serve as the basis for selecting the next
fixation.

the Neural Theory of Visual Attention (NTVA) (Bundesen et al.,
2005; Kyllingsbæk, 2006). At the outset, the Cognitive Programs
that control ST (let’s term this as CP-ST for ease of referral)
embody major differences when compared to NTVA, both in
approach and in goals. NTVA is purely a theory of visual atten-
tion, not addressing how vision functions and assuming that the
visual system uses the Gestalt principles to segment, in an unspec-
ified manner, the visual scene into objects as part of its first wave
of processing. NTVA then describes how objects and features are
subsequently selected in the second wave of processing. In con-
trast, CP-ST attempts to represent the visual process itself, using
abstractions of its elements, neurons and synapses, as well as a full
set of selection mechanisms. Secondly, the NTVA system relies

FIGURE 13 | The HBPM is shown again. The choice of next fixation is
computed from the set of salient peaks with the additional constraint that
the next fixation must lie along the curve and be connected to the previous
fixation along a portion of the curve not already inhibited. This is the yellow
dot and the choice would lead to a saccade.

FIGURE 14 | The FHM is shown, updated to center the new fixation.

Further processing requires the decision to disengage attention from the
current fixation, attention to be disengaged while the saccade is executed,
the central field moves, the new visual field is processed, the already
determined central fixation is attended, the attentional sample is recorded,
and the process repeats.

on the concept of resource allocation at the heart of attentional
processing, following many previous works going back to the ear-
liest explanations of attention (Tsotsos et al., 2005b). During the
two waves of processing in NTVA, the first allocation of pro-
cessing resources is at random while in the second pass they
are allocated according to attentional weights that are computed
for each object in the visual field such that the number of neu-
rons allocated to an object increases with its attentional weight.
There is no similar neurons-to-visual-object allocation within
CP-ST. The processing architecture is constant throughout pro-
cessing and only its parameters change that make some neurons
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more or less selective and connections more or less transmissive.
NTVA uses only two mechanisms to accomplish its goals, filter-
ing (selection of objects) and pigeonholing (selection of features).
CP-ST employs many mechanisms in each of the suppression,
selection (filtering and pigeon-holing are two of ST’s 8 selection
mechanisms) and restriction categories (see Tsotsos, 2011). It is
difficult to see how NTVA can account for the top-down latency
of attentional modulation, for the attentive suppressive sur-
round, for receptive field narrowing, for inhibition of return, and
other aspects of attention as a result while CP-ST inherits these
from ST.

A major strength of NTVA is the quantitative comparisons
possible using its two major equations, as is illustrated in
Bundesen et al. (2005), covering a wide range of effects observed
in the firing rates of single cells in primates. CP-ST has yet to
prove itself—it is a hypothesis at this stage; however ST recently
has shown these same effects (Rothenstein and Tsotsos, 2014) and
has the additional strength that it can accept real images and pro-
cess them, exhibiting attentive behavior as would an experimental
subject. There are 10 free parameters for the basic ST equations
(Rothenstein and Tsotsos, 2014). The CP-ST framework, however,

would have more and at this stage it is unknown what they may
be. TVA on the other hand, on which NTVA is based, has a smaller
number of parameters, 4 (Andersen and Kyllingsbæk, 2012).
Although an ability to represent behavior with as few parameters
as possible is an important consideration, it cannot be expected
that that complex behavior comes without a price. The trick is to
not have more free parameters than needed; it’s an Occam’s Razor
issue. In general, most models are not currently detailed enough
for a comparison on this point. Summarizing this comparison,
it would be an interesting and likely valuable research project to
detail the connections between NTVA and CP-ST and to see if
unification might lead to a productive result.

The Cognitive Programs framework, although containing ele-
ments seen in other models, provides an implementable (see
Kotseruba and Tsotsos, 2014) model that we hypothesize exhibits
task behavior comparable to the behavior of human subjects
performing the same tasks.

CONCLUSIONS
This paper began with a question: What are the computational
tasks that an executive controller for visual attention must solve?

FIGURE 15 | The abstract, block-diagram structure of the functional components of Figure 5 is shown, this time with summaries of the main tasks

that each must perform.
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The answer is not a simple enumeration of tasks as one might
have hoped. Rather, exploring this question has led to a complex
set of inter-connected and cooperating functional components,
each a hypothesis with several sub-hypotheses within. Figure 15
summarizes the tasks that our controller must address—in other
words, this is the answer to our original motivating question—
using the same figure structure as Figures 5, 6. Within each box,
the major tasks that must be performed are listed and these arise
from the detailed structure of Figure 6.

The value of a hypothesis rests solely with the possibility
of testing its validity and here it is important to ensure the
proposed components can be tested. Testing would proceed
computationally to ensure computational performance with
respect to human behavior is satisfactory as well as experimen-
tally in search of evidence supporting the many predictions of
the overall theory. The task would be daunting if the frame-
work of Figure 6 was composed of entirely new components.
However, the fact that so many components have already been
examined with success gives the hypothesis represented by the
overall integration some degree of plausibility.

The full system of Figure 6 can be best tested via compu-
tational implementation. A success would provide an existence
proof that all of these components perform their intended func-
tion and that in concert they function as a controller for visual
task execution. Such a test is not easy to conduct but it is impor-
tant that any test use images and a non-trivial task. This has
been accomplished to a large degree through a computer sys-
tem that plays a video game (Kotseruba and Tsotsos, 2014). This
implementation did not test all of the elements of Figure 6 but
does test the subset required for the game and also demon-
strates that the form of the CP’s presented in Figures 1, 7 is
feasible.

With respect to the CP’s shown in Figure 7, it is important
to note that all of these represent computationally confirmed
processes. That is, they are simply encodings of the algorithms
presented in our past publications. In some cases elements are
also supported by experiment. For example, the Localization
function includes sub-components of an attentive suppressive
surround and also requires this to be a result of recurrent pro-
cesses. These two elements have experimental support (Hopf
et al., 2006; Boehler et al., 2009). However, the extraction of the
attentional sample from the Localization function and its use
within the BB of the CP framework does not yet have experi-
mental support. The Visual Search CP’s generally encode behavior
that is well documented experimentally in the visual search liter-
ature and also is shown to be a characteristic of ST (Rodríguez-
Sánchez et al., 2007; Tsotsos, 2011). Finally, the VH of Figure 4
is also defined and shown to perform under attentive conditions
(Tsotsos et al., 1995, 2005a; Tsotsos, 2011; Rodríguez-Sánchez
and Tsotsos, 2012; Rothenstein and Tsotsos, 2014). The fixation
control (FC) component has also been implemented and success-
fully tested (Tsotsos et al., 1995; Zaharescu et al., 2005; Bruce
and Tsotsos, 2009; Wloka, 2012) with all of its sub-components
included. Attentive behavior and predictions of Selective Tuning
has been extensively tested both with computational and human
experiments (detailed in Tsotsos, 2011; Rothenstein and Tsotsos,
2014).

Cognitive Programs grew out of Ullman’s Visual Routines, but
represent a generalized and updated conceptualization. Although
many aspects of the CP framework have been successfully tested,
some computationally and some experimentally, the full frame-
work awaits testing as do the many experimental predictions that
it expresses. The main hypothesis presented by this paper then is
that the Cognitive Programs framework, built upon the substrate
of the Selective Tuning model, suffices to provide an executive
controller for ST, and that it also offers a testable, conceptual
structure for how visual task execution might be accomplished.
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