frontiers in
PSYCHOLOGY

METHODS ARTICLE
published: 10 November 2014
doi: 10.3389/fpsyg.2014.01279

=

Randomly stopped sums: models and psychological

applications

Michael Smithson * and Yiyun Shou

Research School of Psychology, The Australian National University, Canberra, ACT, Australia

Edited by:
Holmes Finch, Ball State University,
USA

Reviewed by:

Haiyan Bai, University of Central
Florida, USA

Judit Antal, College Board, USA

*Correspondence:

Michael Smithson, Research School
of Psychology, The Australian
National University, Bldg. 39 Science
Rd., Canberra, ACT 0200, Australia
e-mail: michael.smithson@

This paper describes an approach to modeling the sums of a continuous random variable
over a number of measurement occasions when the number of occasions also is a random
variable. A typical example is summing the amounts of time spent attending to pieces
of information in an information search task leading to a decision to obtain the total
time taken to decide. Although there is a large literature on randomly stopped sums in
financial statistics, it is largely absent from psychology. The paper begins with the standard
modeling approaches used in financial statistics, and then extends them in two ways.
First, the randomly stopped sums are modeled as “life distributions” such as the gamma
or log-normal distribution. A simulation study investigates Type | error rate accuracy and
power for gamma and log-normal versions of this model. Second, a Bayesian hierarchical
approach is used for constructing an appropriate general linear model of the sums. Model
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diagnostics are discussed, and three illustrations are presented from real datasets.
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This paper presents an approach to modeling the sums of a
continuous random variable over a number of measurement
occasions when the number of occasions also is a random vari-
able, based on models of this kind used in financial statistics.
These sums are known as “randomly stopped sums.” Typical
examples of randomly stopped sums in psychology are summing
the durations of fixations in an eye-tracking study for each subject
to obtain the total amount of time spent attending to a stimu-
lus, summing the amounts of time spent attending to pieces of
information in an information search task leading to a decision to
obtain the total time taken to decide, or summing the amounts of
money spent per month on a particular type of consumer item.
Although there is a large literature on this kind of variable in
financial statistics, it is almost completely absent from psychol-
ogy. Our treatment departs from standard methods for modeling
sums of magnitudes (usually losses or gains) in financial portfo-
lios in two respects. First, it emphasizes combining effects from
the frequency and magnitude models in the models for the sums.
Second, it incorporates a Bayesian hierarchical approach to con-
structing an appropriate general linear model for the conditional
distribution of the sums.

We begin by presenting an example of this model, after which
we develop the model framework and briefly review the meth-
ods used in financial statistics for parameter estimation. We then
present an example to illustrate the model and also demonstrate
its utility. Thereafter, a section on model estimation and diagno-
sis describes a simulation-based method and a Bayesian MCMC
method for parameter estimation, and describes some advantages
for the Bayesian approach over the simulation approach. This
section also includes a third example, illustrating the Bayesian
method. We then report a simulation study investigating Type I
error rate accuracy and power for the gamma and log-normal

versions of the model. The paper concludes with an example
of a three-level model highlighting the advantages of a Bayesian
approach to hierarchical models.

1. MODEL FRAMEWORK

1.1. MOTIVATING EXAMPLE

To our knowledge, the paper by Aribarg et al. (2010) presents
the only example of a randomly stopped sums model in the psy-
chological literature. Their model is a special case of the models
elaborated in this paper, so we will begin by describing their
model and its application. They investigated the relationship
between consumers’ attention to print advertisements and sub-
sequent advertisement recognition measures, using eye-tracking
to measure attention. Their study had I = 185 subjects, ] =3
advertisement design elements (pictorial, text, and brand), L =
48 advertisements. The relevant eye-tracker data consisted of
the number of fixations and individual fixation durations for
participant i on element j of advertisement L.

Aribarg et al. proposed an attention model of gaze duration,
Siji, “as the sum of individual fixation durations through a hier-
archical randomly stopped sum Poisson model” (Aribarg et al.,
2010: 390). They assumed a Poisson distribution for the marginal
distribution of fixation frequency n;, with a parameter A;;; and
they assumed an exponential distribution for the fixation dura-
tions Zyji, where k; indexes the individual fixations for the ith
participant, with a parameter f;;. Conditional on the n;;, gaze
duration S;j; is the sum of independent identically distributed
(ii.d.) exponential random variables Zy ;. Therefore, the condi-
tional distribution of Sjj is a gamma distribution (Johnson et al.,
1995) with parameters n;; and w;j, and expectation ;1.

Finally, Aribarg et al. parameterized A;; and w;; as functions
of explanatory variables with random intercepts and coefficients,
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using the log link function for both parameters:
log (Aijt) = ) eijijim
m

log (1iit) = vij

where the x;j are the explanatory variables for the expected fix-
ation frequency. The fixation durations were modeled only with
random intercepts.

Although Aribarg et al. arrived at the conditional distribution
of gaze duration S;j, they did not describe the marginal distribu-
tion which, as we shall see, involves an infinite sum. Nor did their
model include predictors of the fixation durations. We therefore
turn now to elaborating and generalizing the randomly stopped
sums model.

1.2. GENERAL MODEL

For simplicity but without loss of generality, we consider just a
two-level data structure with J subjects, each of which has 1;
iid. continuous random variables Z;;, where ; is a realization
of an integer-valued random variable, Nj. The sum of Nj i.i.d.
continuous random variables Zj; for subject j is determined by
the distribution of Z;; magnitudes for j =1, ..., N; and the fre-
quency distribution of Nj. Denoting the sum by S; = Z; + ... +
ZNJ.]-, the sums cumulative distribution function (cdf) is

o0
F; (sj) =Pr (Sj < sj) = Z Pr (Sj < sj|N; = nj) Tnjs (1)

n=0

where 7,; = Pr(N; = n;). In turn, Pr(Sj < sj|N; = n;) is the
n-fold convolution of the cdf of the Z;;.

Suppose that in the frequency model for the jth subject, N;
has a distribution with central tendency h_l(kj) where h is an
appropriate link function, and the model for A; is

A= Zk Xk (2)

where the x;; are predictors and the oy are coefficients. Likewise,
suppose that the magnitudes for the jth subject, the Z;;, have a
distribution with a central tendency parameter E(Z;) = g_l(vij)
where g is an appropriate link function, and the model for v;; is

Vij = [j + u;, (3)

with u; ~ N (0, 0,,), and

Hj = Zm YmjYmj- (4)

Here, the y,,j are predictors and the y,,; are random coefficients,
so that

Ymj = Bm + &j, (5)

with g; ~ N (0, o¢).
Clearly there is no explicit expression for Fi(s;) in general,
so numerical methods have been developed for approximating

it. These include Panjer recursion (Panjer, 1981; Klugman
et al., 2004), a Fourier transform method for convolutions, two
Gaussian-based approximations (Daykin et al., 1994), and sim-
ulation from the distributions (Goulet and Pouliot, 2008). R
Development Core Team (2013) has a package (Dutang et al.,
2008) that implements the five aforementioned methods. The
Panjer, Fourier, and simulation methods are worth considering
in principle, whereas the two Gaussian methods are insufficient
approximations for our purposes because they are not accurate
for small to moderate sample sizes. The Fourier method is suited
only for problems with few parameters, and the Panjer recur-
sion method typically takes longer than the simulation method
and requires discretizing the magnitudes distribution, so we focus
on the simulation approach alone. Later we elaborate a Bayesian
hierarchical approach to these models.

The inputs into the simulation method are the frequency and
magnitude models described above. The output is an approxima-
tion of Fy(s;), and from this we may extract summary statistics
such as the expected value of S; and its quantiles. Moreover, the
same simulation results can be used to estimate predictor effects
on § itself. Denoting the expected value of Sj by f~!(j4sj), where
f is an appropriate link function, the simulation can provide
bootstrap estimates of the coefficients in a model that includes
predictors from both the frequency and magnitudes models:

nsj = Zk Skxkj + Zm NmYmj- (6)

We address the issue of how these coefficients may be related to
the coefficients for the frequency and magnitude models below.
We now turn to the choice of distributions for the frequencies
and magnitudes. The Aribarg et al. model had a Poisson distri-
bution for the frequencies, and an exponential distribution for
the magnitudes. A well-known problem for the Poisson distri-
bution is over-dispersion (see, e.g., Hilbe, 2011), often due to
individual differences among subjects. Three popular alternative
frequency distributions are available to deal with over-dispersion:
The negative binomial, the compound Poisson-gamma, and com-
pound Poisson-log-normal (Johnson et al., 1993). The latter two
distributions assign a gamma and a log-normal distribution,
respectively, to the A; parameter of the Poisson distribution.
There are distributions for the magnitudes whose sums also
follow known distributions conditional on Nj = n;. Perhaps the
most natural example for many psychological applications is a
gamma distribution model for the magnitudes, which yields a
conditional gamma distribution for the sums. That is, if the Z;;
are distributed gamma(pj, g;j), then the distribution of §; con-
ditional on N = n; is gamma(p;n;, gj;). We shall denote this as
the GG model. The Aribarg et al. (2010) model is a special case
because they model the magnitudes with the exponential distri-
bution. Another example, suitable when long-tailed distributions
are expected, is the inverse Gaussian (IG) distribution. If the Z;
are iid. IG(8;, k), then the distribution of S; conditional on
N = n; is 1G(n;0;, n]-zlcij). However, there is no need to restrict
ourselves to models of this kind. We shall see, for instance, that
a log-normal model for the magnitudes and a log-normal model
for approximating the sums (the LN model) can be effective, even
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though the sum of log-normal random variables does not have a
log-normal distribution.

Another convenient property that may be desirable for inter-
pretive purposes is the fact that if the frequency, magnitude, and
sums models all employ the log link, then the frequency and mag-
nitude model coefficients may be substituted into equation 6 for
the sums model coefficients, i.e., ax = 8 and Bx = ni. Moreover,
if the frequency and magnitude models share a predictor, xg,
say, then the sums model’s coefficient for this predictor will be
wk = ok + Pi. We will make use of this property throughout this
paper. Note that while the log link is not the canonical link func-
tion for the GG or IG-IG models described above (although it can
be employed with them), it is the canonical link for the LN model.

1.3. ANOTHER MOTIVATING EXAMPLE

We now present a second application of the randomly stopped
sums model, with two purposes in mind. First, we wish to illus-
trate the use of distributions other than those in the Aribarg et al.
paper. Second, and more important, we wish to demonstrate the
utility of modeling the magnitude sums, which Aribarg et al. do
not explicitly do. After all, there is no a priori guarantee that a
predictor’s effects on frequency and magnitude will “add up” to a
significant effect on the magnitude sums, especially if one or both
effects are not significant or if they are in opposing directions. The
eye-tracker study to be reanalyzed here is a test-case in point.

Owens et al. (2009) described an eye-tracker study analyzing
the eye movement patterns of users viewing a portal web page.
In their study, the saliency of one of the portal channel titles was
manipulated in two different page locations (left and right in the
center row) by modifying the color the text. These two manip-
ulation conditions were compared with a control condition in
which the title’s text color was identical to the rest of the text. The
authors found that eye movements were affected by the salient
title only when it was located on the left side of the page. However,
they based their analysis on only those subjects who had fixated
on all six channels above the page fold, and limited their analyses
to the order and number of fixations.

Here, we examine the experimental effect on the frequency
of fixations, the mean fixation duration, and the durations sum.
We use the data from all 57 participants and, for the sake of
simplicity, we ignore the channel (fixation location). We handle
over-dispersion in the frequencies via a negative binomial GLM,
which yields a; = 0.135 for the difference between the left and
control conditions (p = 0.14), and a; = 0.020 for the difference
between the right and control conditions (p = 0.83). Thus, nei-
ther condition reaches significance, although the left condition is
fairly close.

We construct a two-level LN model predicting mean fixation
duration, which yields ; = 0.111 for the difference between the
left and control conditions, and B, = 0.098 for the difference
between the right and control conditions. Again, neither effect
achieves significance, with ¢ statistics of 1.4 and 1.2, respectively.

However, do the effects of the left condition on frequency and
duration combine to a significant effect on the total gaze time?
Both of the effects for the left condition are in the same direc-
tion. The coefficient for the log mean duration is 0.111 and the
coefficient for the log frequency is 0.135, so their combined effect

should yield a coefficient of 0.246 if we model the duration sums
using the log link. The simulation method mentioned above (and
detailed in the next section) with the fixation duration sums mod-
eled as a log-normal random variable and 10,000 runs yields a
mean coefficient for the left condition effect of 0.247, very close
to what we should expect. The simulation also produces a 95%
confidence interval of [0.048, 0.444] for this coefficient. Thus,
the concatenation of a non-significant frequency effect and non-
significant mean duration effect nevertheless has resulted in a
significant effect on the duration sum. The question of when a
predictor’s effects on frequency and fixation duration combine to
produce an effect on the duration sum will be investigated fur-
ther at several points in this paper, specifically when we examine
statistical power.

2. MODEL ESTIMATION AND DIAGNOSTICS

2.1. MODELS FOR THE SIMULATION APPROACH

The usual options for modeling counts in the classical frame-
work are the Poisson and negative binomial distributions, with
the latter employed to deal with over-dispersion. In the simu-
lation approach presented here, these conventional alternatives,
and the model evaluation and diagnostic methods for them, usu-
ally will suffice. We shall see that in a Bayesian hierarchical setup
there are other possibilities such as a compound Poisson-gamma
model for dealing with multi-level data structures.

Likewise, the usual life distributions can be employed to model
the magnitude means. In our first example the exponential distri-
bution was employed, whereas in the second example a gamma
distribution was used. We discuss the choice of a distribution for
the magnitudes both in this section and later in this paper.

The procedure for simulating the sums distribution is best
explained in the setting of our two-level data structure, where
there are J subjects, each containing a random number of
magnitudes.

1. Given a marginal frequency distribution model for the N;,
randomly draw J values, n;, from this distribution.

2. Given a conditional distribution for the magnitudes Z;;, ran-
domly draw n; values for the jth subject and compute the
mean, forj=1,...,].

3. Compute the product of each mean with the corresponding r;
to obtain the J sums of the magnitudes.

Repeating these three steps many times builds up a distribution
of the vector of simulated sums. In our experience, 10,000-20,000
runs produce stable simulation results.

As indicated earlier, if the frequency and magnitude models
share all predictors and also use the same link function, then
coefficients for these predictors in modeling the sums may be
obtained via an appropriate GLM. The most obvious link func-
tion is the log, because it enables Equation (6) to hold. A natural
choice for the GLM is the GG model, for reasons given ear-
lier. Another viable choice is the LN model, even though the
sum of log-normal variables is not a log-normal random vari-
able. This kind of model tends to be favored in the financial
statistics literature, along with versions that substitute longer-
tailed distributions for the log-normal. There is a literature on
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approximating sums of log-normal variates with a log-normal
model (Dufresne, 2004) which generally views such approxima-
tions favorably. Which model is most appropriate for psycholog-
ical research probably has to be decided by modelers in specific
applications, and we shall compare them with the examples in
this paper as well as in a simulation study.

Model diagnostics in the simulation approach include the
usual diagnostics for the frequency and magnitudes models, i.e.,
goodness-of-fit measures, residuals, and associated leverage or
influence statistics. For example, the log-likelihood for the expo-
nential model of the eye-tracker fixation durations is —15341.0,
whereas for a LN model it is —1679.6, suggesting that the LN
model fits the durations better. Indeed, the correlation between
the predicted and observed magnitudes is 0.991 for the LN model
and 0.907 for the exponential model.

For the sums model, however, diagnostics are limited primarily
to informal comparisons of the simulated sums distribution with
the observed sums distribution. In the Owen et al. study, a 10,000-
run simulation yields a mean sum of 9896 and standard deviation
2961 for the LN model. The empirical sums distribution has a
mean 10461 and standard deviation 4185, indicating that the LN
model somewhat under-estimates the variance. Turning to quan-
tiles, the 25th, 50th, and 75th percentiles of the LN model are
7647, 9586, and 11806, respectively. The corresponding empirical
distribution percentiles are 7715, 9923, and 14386. These results
suggest that the LN model is more accurate in the lower quantiles
but less accurate in the upper quantiles.

Additional diagnostics may be obtained from the GLMs esti-
mated for each of the simulation runs. The distributions of the
coefficients can be examined for evidence of pathologies such as
multi-modality, skew, and overly strong influence from outliers.
For example, in the eye-tracker results, the means and medians of
the coefficients for the GLM sums are nearly identical for both the
GG and LN models, indicating the absence of skew (and a more
formal assessment of skew confirms this).

2.2. BAYESIAN RANDOMLY STOPPED SUMS MODELS

The frequentist approaches to estimating randomly stopped sums
models rely on approximating the sums distribution via simu-
lation, based on the parameter estimates in the frequency and
magnitude models. We then estimate the parameters for a condi-
tional model of the simulated sums distribution. Thus, the sums
are only indirectly modeled by this approach.

A Bayesian hierarchical modeling framework provides a more
direct approach. The observed sums are modeled by an appropri-
ate GLM, whose parameters are functions of the frequency and
magnitude models’ parameters, which are estimated simultane-
ously. As a result, we can not only obtain standard errors and
credible or highest-density intervals for the sums model param-
eters, but predictions of the sums that can be compared with the
data. Multi-level data structures are easily dealt with in this frame-
work, as will be demonstrated with a three-level data set in the
penultimate section, and a more thorough set of diagnostic and
model comparison tools are available.

We may handle over-dispersion in the frequencies by allow-
ing the Poisson distribution parameter to follow a gamma
distribution, i.e., A; ~ gammal(q, rj). The r parameter, in turn, is
a function of hyper-parameters:

ri=a/n. (7)

The shape parameter g is given an uninformative gamma prior.
The predictors presented in Equation (2) now determine ;:

log (1) = Zk X (8)

The oy coefficients are given uninformative Gaussian priors.

As mentioned earlier, a natural model for the magnitudes
has them distributed as gamma(q, rjj), with r;; = g /exp(u;).
Because this model uses the log link, the 4; are means in the log-
scale, with u; ~ N(v;, 03), and the predictors in Equation (4)
now predicting the vj:

vj = Zm Bmymj. 9)

Note that the random term for the y,,; coefficients in Equation
(4) is absorbed by the distribution model for the v;. The B, coef-
ficients are given uninformative Gaussian priors. Finally, the sums
are modeled as gamma (A;q, rjj), with rij = Ajqm/exp(its;). The
means may be written as

msj = pj + log (A.]) . (10)
Another way of viewing this equation is via equation 6, where, as
mentioned earlier, if the frequency and magnitude models share a
predictor then the sums models coefficient for this predictor will
be wr = ay + Bk.

Alternatively, the magnitudes may be modeled as log-normal
variates with means uj in the log-scale and variance o?%. Then,
the sums are modeled as log-normal variates having means jig; in
the log-scale and variance o2. As mentioned earlier, this model is
favored in the financial statistics literature.

Applying this method to the eye-tracker example using
MCMC estimation in OpenBUGS (for an overview of the BUGS
project see Lunn et al., 2009) and two chains results in models
that converge well in all parameters after a 5000 iteration burn-in.
We now apply a GG and a LN model to the eye-tracker exam-
ple. Table 1 compares the simulation and Bayesian LN and GG
model results, showing that there is reasonably close agreement
between them. The parameter estimates are similar, including the
coefficients for the sums models. The only difference between
the simulation and Bayesian models is in the standard errors
for the frequency model parameters, which is due to the use
of a negative binomial distribution for the simulation model
and a Poisson distribution for the Bayesian model (The latter
handles over-dispersion via the gamma-distributed parameter in
the Poisson model). The LN and GG models also are in fairly
close agreement on their B and w coefficients (they have iden-
tical frequency models, so have nearly identical o coefficients as
expected).

However, the LN and GG models may yield estimates and stan-
dard errors that differ enough to raise questions about hypothesis
testing or conclusions. In circumstances such as this, model diag-
nostics, evaluation, and comparison may help researchers decide
among disagreeing models.
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Table 1| Simulation vs. Bayesian models.

Simul. Estim. Model SE Bayes Estim. Model SE

LNORMAL

%) 3.666 0.065 3.678 0.033
ay 0.135 0.092 0.134 0.046
a 0.020 0.094 0.019 0.048
Bo 5.293 0.055 5.291 0.060
B 0.11 0.079 0.110 0.087
B2 0.098 0.080 0.095 0.088
wo 8.957 0.065 8.969 0.068
w1 0.247 0.099 0.244 0.097
wy 0.117 0.101 0.114 0.099
GAMMA

ag 3.666 0.065 3.657 0.022
an 0.135 0.092 0.135 0.029
o9 0.020 0.094 0.009 0.030
Bo 5.403 0.059 5.379 0.092
B 0.140 0.084 0.121 0.133
B2 0.116 0.086 0.098 0.092
wo 9.029 0.070 9.036 0.092
wq 0.276 0.099 0.256 0.132
wy 0.132 0.101 0.108 0.133

2.3. DECISION STUDY

The third example presented here is a study of deliberative deci-
sion making. Tang (2013) investigated the impact of choice set
characteristics on the time taken for participants to choose a
charity for making a donation. Subjects could examine items
of information about each charity before making their choice.
The data consist of a sequence of durations corresponding to the
amounts of time a subject spent examining the information items
before coming to a decision. The number of items the jth subject
inspected (Nj;) is a random variable, and so is the amount of time
spent on each item (Z;;).

One of the experimental variables was the similarity of the
charities to one another. Similarity had two levels, low and high.
The psychological meaning of the amount of time spent exam-
ining a piece of information arguably is quite different from the
meaning of the number of pieces of information examined by a
decision maker, and one of the researcher’s goals was to ascer-
tain whether similarity among options, a characteristic known to
make decisions more “difficult,” would differentially affect inspec-
tion time per item vs. number of items examined. He also wished
to ascertain the joint effect on the total time to decision, especially
in the event that the effects turned out to be in opposite directions
(this last possibility has some basis in the decision literature, but
we do not go into that here).

A compound Poisson-gamma GLM predicting #; from sim-
ilarity yields o = —0.069 with a 95% credible interval (CI)
[—0.330,0.201]. A two-level LN model predicting mean fixa-
tion duration from similarity yields g = 0.306 with a 95% CI
[0.064, 0.550]. The high-similarity items take significantly longer
for the subjects to process. Does this effect translate into signifi-
cantly longer total time to make a decision in the high-similarity
condition?

Using our heuristic sum of the coefficients to predict the effect
size, the coefficient for the log mean duration is 0.306 and the
coefficient for the log frequency is —0.069, so their combined
effect should yield a coefficient of approximately 0.237 if we
model the duration sums using the log link. A Bayesian hierar-
chical LN model (predicting the sum as a log-normal variate)
yields a coefficient estimate of the similarity effect equaling 0.237,
our predicted value, with 95% CI [—0.118, 0.596]. This time, the
combination of a non-significant frequency effect and significant
mean duration effect has not produced a significant effect on the
duration sum. Instead, the additional noise introduced by ran-
dom variation of the frequencies has “washed out” the effect on
the means. As in the Owen et al. eye-tracker study, this exam-
ple also underscores the importance of modeling the sums of the
Z;; rather than attempting to intuitively infer effects on the sums
from effects on the frequencies and means.

2.4. MODEL EVALUATION AND DIAGNOSTICS

The usual model diagnostics are available for the frequency and
magnitude models, and we will not dwell on those here. Instead,
we focus on diagnostics for the sums model. Both the simulation-
based and Bayesian models enable the modeler to compare the
predictive sums distribution against the observed sums distri-
bution. Both approaches also share the capacity to informally
evaluate goodness-of-fit for the fixed-effects component of the
sums model, via conventional summary statistics such as the
correlation between fixed-effects predictions and the observed
sums.

The Bayesian approach, however, has diagnostic capabilities
well beyond those of the simulation-based approach. We can
recover the predicted sums for every case, incorporating the
random intercepts, thereby enabling diagnostics via residuals,
leverage, and influence statistics. Figure 1 shows histograms of
the residuals from the decision task and eye-tracker studies sums
LN models, in the log-scale. The decision study histogram reveals
a reasonably normal-looking distribution exhibiting the afore-
mentioned downward bias. However, the eye-tracker residuals
have a few definite outliers, suggesting that these might be influ-
ential cases. Cross-validation and other resampling methods also
may be applied here, although they are computationally intensive.

Formal model comparison is not straightforward because the
usual model comparison methods, such as likelihood-ratio tests,
are not available. However, informal comparisons via goodness-
of-fit statistics may be employed. In the Bayesian approach
the posterior mean of the deviance and Deviance Information
Criterion (DIC, Spiegelhalter et al., 2002) are available for the
frequency, magnitude, and sums models simultaneously. In the
eye-tracker example, a null LN model yields a posterior mean
deviance of 1088.0 and DIC = 1091.0 for the sums, whereas when
the effects are included in the model, the sums model’s posterior
mean deviance is 1086.0 and DIC = 1090.0, indicating a small
improvement over the null model.

Likewise, different GLMs may be compared with each other
for predictive accuracy and goodness of fit. However, these indi-
cators may not always agree with one another. The correlations
between the observed means and sums and their posterior esti-
mates for the GG model are 0.903 and 0.978, respectively, while
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for the LN model the correlations are 0.991 and 0.816. The DIC
values reverse the order of performance for the sums but echo it
for the magnitude means. For the GG model the DIC values are
1106 for the sums and 29040 for the magnitudes, whereas for the
LN model are 1090 for the sums (better than the GG model) and
28560 for the magnitudes (also better).

Finally, model diagnostics may provide a basis for deciding
between disagreeing models. In the decision task study, while the
LN model estimates the effect of greater similarity on magnitudes
as 0.306 with a 95% CI of [0.064, 0.550], the GG model’s esti-
mate is 0.179 with a 95% CI of [—0.042, 0.399]. The correlations
between the observed means and sums and their posterior esti-
mates for the GG model are 0.996 and 0.999, respectively, while
for the LN model the correlations are 0.927 and 0.962, suggesting
that the GG model is superior in both estimations. This time the
DIC values reverse the order of performance for the means but
echo it for the sums. For the GG model the DIC values are 2574
for the sums and 99960 for the magnitudes, whereas for the LN
model are 2813 for the sums (worse, in agreement with the cor-
relations) but 99810 for the magnitudes (better). The balance of
evidence seems to favor the GG model. The evaluation of compet-
ing GLMs for randomly stopped sums on the basis of indicators,
such as these, remains an active area of research.

3. MODEL BIAS, TYPE | ERROR, AND POWER

The models for the sums are approximations that may not be
accurate for small sample sizes, and likewise the relationship
between their power and that of the frequency and magnitude
models is unknown. We conducted simulations to investigate
the accuracy of the Type I error-rates when the null hypothe-
sis is true, and power when it is false. The simulations required
appropriate distributions for magnitudes and frequencies. For
magnitudes, in the no-effects condition we used log-normal and
gamma distributions with means of approximately 1000 and stan-
dard deviations of about 500. Values such as these are common in
studies of human response times (measured in milliseconds) for
a simple task such as a button-press. Given this mean and stan-
dard deviation, the log-normal distribution had a mean in the log

scale of 6.81 and standard deviation of 0.447, while the gamma
distribution had a shape parameter value 4 and scale parameter
value 250.

For frequencies, we used a negative binomial distribution
because overdispersion is commonly observed in counted data.
The choice of parameter values was again based on experience
with research where our technique is likely to find applica-
tion. The negative binomial distribution can be parameterized
in terms of an event probability, 77, and scale parameter, ¢.
The expected frequency is 0 = ¢ /(1 — ) and the variance
is w?> = ¢m/(1 — )% For the no-effects condition we chose
7w = 0.5 and ¢ = 10, resulting in an expected frequency 10 and
variance 20. The simulations were run with two models for
magnitudes and sums: The log-normal and gamma models.

To simulate effects, we employed a simple two-condition
design with equal sample sizes of 25, 50, 100, and 200 in each
condition. Effect sizes for both frequency and magnitude were
in standard deviation units: 0.2, 0.5, and £0.8. These corre-
spond to Cohen’s (1988: 25-27) “small,” “medium,” and “large”
effect sizes. The positive and negative effects are needed because
of the asymmetric distributions. We expected there to be greater
power to detect decreases in expected values (negative effects)
than equivalent increases (positive effects). There were four effects
scenarios: A magnitude effect only, a frequency effect only, equal
magnitude and frequency effects in opposing directions, and
equal magnitude and frequency effects in the same direction.
Thus, for each magnitude distribution there were 24 simulations
for the first scenario, 24 for the second, 48 for the third, and 24 for
the fourth. Each simulation had 10,000 runs and the simulations
were coded in R version 2.15 (2013).

The effects from the magnitude predictors are accurately esti-
mated in both the magnitude and sums models. The effects from
the frequency predictors tend to be slightly over-estimated in the
frequency model, and there is also upward bias in the sums model
estimates when a predictor contributes to the frequency model.
Table 2 shows the Type I error-rates from the log-normal and
gamma distribution simulations. There is a clear but mild Type
I error-rate inflation in all three models (magnitude, frequency,
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and sums) that tends to decrease with larger samples. This infla-
tion is slightly greater for the sums models when the magnitudes
are gamma-distributed, regardless of whether the model itself
assumes a log-normal or gamma distribution.

Our investigations into power begin with the cases where there
is only an effect on magnitudes vs. cases where there is only an
effect on frequencies. Tables 3, 4 display the results of simula-
tions for both kinds of cases, for the log-normal model only (the
gamma model produced very similar results). The power to detect
the relevant effect is located to the left of the resultant power
for the sums model. For example, in both tables, as expected,
it is evident that the sums model has greater power to detect
negative than equivalent positive effects. This is due to the pos-
itive skew in the magnitude and frequency distributions and their
lower-bounded supports, whereby a shift downwards changes a
greater proportion of the distribution than an equivalent shift
upward. This difference in power is most pronounced for small
to moderate samples and effects.

Inspection of both tables reveals that the power of the sums
model is considerably less than the power of the magnitude
model but nearly identical to power of the frequency model. The
explanation for this inheres in the observation that in a two-
level data structure, the variation in the sums is at the same top
level as the variation in frequencies, whereas the variation in the
magnitudes is at the bottom level. Thus, the variance of the sums

will correspond more closely to the variance of the frequencies.
However, this does not mean that the power of the sums model is
not influenced by the power of the magnitude model.

Results thus far suggest that frequency effects exert greater
influence on the sums model than equivalently large magnitude
effects. This suggestion is borne out by simulations in which
equal-sized but opposite-signed frequency and magnitude effects
occur simultaneously. Simulations under this condition revealed
a somewhat counter-intuitive finding here is that if the frequency
and magnitude effects have opposite signs but equal sizes then
the net outcome for the sums model is a negative effect. Table 5
shows that power is greater when the negative effect is produced
by the frequencies than when it is produced by the magnitudes.
The overall net negative effect finding is due to the greater power
to detect negative effects as determined by the asymmetric fre-
quency and magnitude distributions, so that the sums models
tend to yield negative effects no matter whether magnitude effects
or frequency effects are taking the negative role. The results in
Table 5 are for the log-normal model, but the gamma model again
produced very similar results.

In the eye-tracking example we found that a non-significant
frequency effect and non-significant magnitude effect could com-
bine to yield a significant effect on sums. This finding suggests

Table 4 | Power for frequency effects only.

Table 2 | Type | error rates. N Freq. =02 Sum Freq.=05 Sum Freq.=0.8 Sum
N Log-normal model Gamma model 25 0.0957 0.0900 0.3682 0.3189 0.6779 0.6017
50 0.1484 0.1292 0.6174 0.5568 0.9321 0.8958
Magnitude Frequency Sums Magnitude Frequency Sums 100 0.2644 0.2362 0.9027 0.8602 0.9988 0.9963
LOG-NORMAL DISTRIBUTION 200 0.4880 0.4311 0.9964 0.9906 1.0000 1.0000
25 0.0570 0.0572  0.0565 0.0549 0.0565 00570 N Freq.=-0.2 Sum Freq.=—-05 Sum Freq.=—0.8 Sum
50 0.0512 0.0531 0.0529 0.0537 0.0532  0.0524
100 0.0513 0.0513  0.0531  0.0544 0.0518  0.0523 25 0.1131 0.1098 05240 04765 09195  0.8758
200  0.0529 0.0514  0.0500  0.0517 0.0508 0.0497 50 0.1882  0.1703  0.7908  0.7429 ~ 0.9949  0.9890
GAMMA DISTRIBUTION 100 0.3220 0.2851 0.9719 0.9523 1.0000 1.0000
25 0.0567 0.0572 0.0647 0.0553 0.0580 0.0652 200 0.5688 0.5135 0.9998 0.9992 1.0000 1.0000
50 0.0520 0.0521 0.0612 0.0538 0.0528  0.0606
100 0.0502 0.0531 0.0618 0.0511 0.0520  0.06M
200 0.0515 00514 00609 0.0488 00528 00593 Table 5 | Power for frequency and magnitude effects in opposite
directions.
Table 3 | Power for magnitude effects only. Mag. = 0.2 Mag. = 0.5 Mag. = 0.8
N Freq. = —0.2 Freq. = -0.5 Freq. = -0.8
N Mag.=0.2 Sum Mag.=05 Sum Mag.=0.8 Sum
25 0.0391 0.0924 0.2343
25 0.4734 0.0880 0.9921 0.2800 1.0000 0.56530 50 0.0408 0.1223 0.3793
50 0.7461 0.1278 1.0000 0.4933 1.0000 0.8550 100 0.0420 0.1833 0.6197
100 0.9653 0.2266 1.0000 0.7918 1.0000 0.9863 200 0.0524 0.3087 0.8832
200 0.9997 0.3800 1.0000 0.9745 1.0000 1.0000
Mag. =-0.2 Mag. =-05 Mag. =-0.8
N Mag.=-0.2 Sum Mag.=-05 Sum Mag.=-0.8 Sum N Freq. = 0.2 Freq. = 0.5 Freq. =0.8
25 0.5608 0.0920 0.9997 0.4183 1.0000 0.8730 25 0.0243 0.0425 0.1177
50 0.8369 0.1512 1.0000 0.7052 1.0000 0.9914 50 0.0232 0.0501 0.2154
100 0.9863 0.2579 1.0000 0.9366 1.0000 1.0000 100 0.0238 0.0719 0.3855
200 1.0000 0.4384 1.0000 0.9987 1.0000 1.0000 200 0.0256 0.1035 0.7050
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that there are conditions under which the power to detect an effect
may be greater in the sums model than in its “constituent” fre-
quency and magnitude models. To investigate this possibility, we
conducted simulations with sample sizes of 25 and 50 in each
condition for a two-condition design, with same-signed combi-
nations of effect-sizes of +0.2 and 4-0.5 standard deviation units.
Table 6 displays the results. In each subtable, the only cell in which
the power for the sums model exceeds the power of both the fre-
quency and magnitude models is where the frequency effect size
is 20.5 and the magnitude effect size is +0.2. We conclude that
power in the sums model can be greater than power to detect
magnitude effects and frequency effects, when magnitude and fre-
quency effects are in the same direction and when the frequency
effect is larger than the magnitude effect.

4. EXTENSIONS

We now investigate two extensions to the randomly stopped sums
model. The first of these is going beyond a two-level model to
incorporate three or more levels. Although this could be achieved
with the simulation approach, the hierarchical Bayesian method
is simpler and more principled, so that is the approach elaborated
in the following subsection. The second extension is the incor-
poration of observation-level predictors into the sums model.
Examples of applications for this extension include consumer rat-
ings of their desire for a product at the time they purchase it, or
a decision maker’s rating of the difficulty of each sub-task leading
to their decision.

Table 6 | Power for frequency and magnitude effects in the same

direction.

N =25 Magn. Effect

Freq. effect 0.2 0.5 Freq. power
0.2 0.2334 0.5180 0.101
0.5 0.5252 0.8191 0.3623
Magn. power 0.4983 0.9948

Freq. effect -0.2 -05 Freq. power
-0.2 0.2653 0.6801 0.1204
-0.5 0.6791 0.9347 0.5095
Magn. power 0.5653 0.9996

N =50 Magn. Effect

Freq. effect 0.2 0.5 Freq. power
0.2 0.3834 0.8125 0.1455
0.5 0.8369 0.9848 0.6233
Magn. power 0.7949 1.0000

Freq. effect -0.2 -0.5 Freq. power
-0.2 0.4859 0.9283 0.1909
-0.5 0.9338 1.0000 0.7923
Magn. power 0.8514 1.0000

4.1. MULTI-LEVEL MODELS VIA A BAYESIAN APPROACH

As a demonstration of the generalizability and flexibility of the
hierarchical Bayesian approach to modeling randomly stopped
sums, we present our reanalysis of data from another study by
Tang (2013). In an online experiment, 134 participants were asked
to choose which of two decks of reward or loss cards gave them
greater rewards or lesser penalties. They were allowed to sample
a randomly chosen card from each of the decks as many times
as they wished before coming to a decision. As in the preceding
decision task example, the dependent variables in this study were
the number of times the participant inspected either deck, the
amount of time spent on each inspection, and the total amount
of time taken to reach a decision. Each participant completed
four rounds (i.e., four decision tasks of this kind). The rounds
were distinguished by whether the decks’ means differed or the
variances differed, and whether the cards gave rewards or penal-
ties. These two factors were counterbalanced for each participant.
The relevant hypotheses were that participants would take longer
and/or require more inspections to decide when the decks penal-
ized, and likewise when the decks’ variances differed but the
means were identical.

Participants were randomly assigned to one of three experi-
mental conditions: A “control” condition where they were given
a distractor task at the outset (rearranging jumbled sentences), a
“strategic prime” condition in which they were advised before-
hand to carefully consider how best to get the most rewards
from the decks, and a “self-reflective” condition in which they
were advised beforehand to focus on their thinking, feelings,
and decision making processes. The hypothesis here was that the
strategic prime and the self-reflective conditions would induce
longer inspection times and/or a greater number of inspec-
tions.

Finally, two covariates were measured as potential influences
on decisiveness. One covariate measures the extent to which a per-
son prefers to avoid decisions and the other measures the degree
to which a person finds decision making aversive. The motiva-
tion for including these covariates stems from the notion that
indecisiveness can arise either because a person avoids or delays
decision making, or because they become ensnared in obsessing
over details in the decision making process. The relevant hypothe-
ses were that avoidance would not predict time taken or number
of inspections required to make a decision, whereas aversion
would predict these.

Because the experimental design includes a random number of
inspections for each participant within each of four rounds, the
data structure for inspection times has three levels: Inspections,
rounds, and participants. Likewise, the number of inspections has
two levels: Rounds and participants.

The three-level hierarchical model is a straightforward gen-
eralization of the two-level model described in the section on
Bayesian methods. The frequencies have two levels, so the Poisson
distribution parameter is modeled by a gamma distribution
whose parameters accommodate this, i.e., Ajx ~ Gamma(q, rj).
The g parameter, as before, is given an uninformative gamma
prior. The rjx = q/exp(nj). The nj, are modeled by

njk = o + andyj + ondayj + axyj + aaxyj + asfi + asty, (11)
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where k indexes the four rounds, dy; and dy; are binary indicator
variables for the strategic and self-relfective conditions, x1; is the
aversion score, xy; is the avoidance score, f; is a binary indicator
for the gain frame, and #; is a binary indicator for the type where
the decks’ means differ. As before, the «,, coefficients are given
uninformative Gaussian priors.

For the LN model, the magnitudes Z;; are modeled as log-
normal variates with means ujx in the log-scale and variance o’

The pjx ~ N(vj, 05), with the vy modeled by

Uik = Bok + Bidyj + Badaj + B3xij + Baxaj + Bsfi + Betr. (12)

Note that here we have separate intercepts, Boi, for the four
rounds. Likewise, the B, coefficients are given uninformative
Gaussian priors. Finally, the sums are modeled as log-normal
variates having means pgjk in the log-scale and variance o2, with

Usjk = wok + w1d1j + @adyj + w3y

+w4x2j + wsfy + wstk. (13)
For the GG model, the magnitudes are modeled as
gamma(qy,, pjx) Vvariates, with pjx = qm/exp(ujr), mjx defined
as above. The sums, then, are modeled as gamma(Ajxqm, pjx)
variates.

The resultant models converge well in all parameters and
require a 5,000 iteration burn-in to do so. The LN model is out-
performed by the GG model, on grounds of both better DIC
values and stronger correlations between predicted and observed
data. The GG model reproduces the duration means, frequencies,
and sums very well, with multiple R? values of 0.9997, 0.9999,
and 0.9999, respectively. We therefore discuss only the GG model
estimates here.

Table 7 presents the model coefficients for the frequency and
magnitude models, and Table 8 displays the coefficients for the
sums model. In Table 7 we can see that the only clear effect on
frequencies is from the types variable (g = —0.093, so that the
different-means comparison takes less time than the different-
variances comparison).

There are three effects on the durations (in this example,
magnitudes are durations). As expected, participants in the strate-
gic and self-reflective conditions take longer on average for an
inspection than participants in the control condition. Likewise,
participants with higher avoidance scores take longer for an aver-
age inspection. However, aversion scores do not appear to yield
an effect, nor does frame or type.

In Table 8 it is clear that all three of the effects on dura-
tion have translated into effects for the sums of the durations,
despite the absence of corresponding effects on frequencies. Thus,
participants in the strategic and self-reflective conditions and
participants with higher avoidance scores take longer for over-
all than their opposite numbers. However, the effect of type on
frequencies has not yielded an effect on duration sums.

Turning now to model diagnostics, the residuals plots in
Figure 2 reveal a moderate skew in the sums residuals and a
few outliers in both the magnitudes (means) and sums residuals.
However, given the large number of observations in the dataset
(the average number of items inspected in each round was 28.5,
and so 134 participants with 4 rounds result in 15,276 observa-
tions), these outliers have no discernible impact on the model
coefficients or standard errors.

4.2. OBSERVATION-LEVEL PREDICTORS

We now propose an extension of the sums model to incorporate
observation-level predictors of the magnitudes Z;;. Equation (3)
for the magnitude model is modified to do this as follows:

8 (Zi) = wj+ i + u, (14)
Table 7 | Three-level GG model frequency and magnitude coefficients.
where
95% credible interval T = Zapjwpijs (15)
Param. Estim. SE Lower Upper p
ujj ~ N (0,0,), and random coefficients 8y; = 1 + €p; with
@0 1:245 0.021 1.203 1.287 €pj ~ N (0, 05), and the w are the predictors.
o —0.030 0.028 —0.083 0.024
an 0.003 0.026 —0.050 0.053
o3 —0.010 0.011 —0.032 0.011  Table 8| Three-level GG model sums coefficients.
ag -0.017 0.01 —0.039 0.005 95% credible interval
as —0.005 0.01 —0.026 0.015
ag —0.093 0.022 —-0.137 —0.049 Param. Estim. SE Lower Upper
Bo1 6.098 0.055 5.991 6.206  wo 7.343 0.059 7.229 7.458
Bo2 5.988 0.054 5.882 6.095  w 7.233 0.059 7.119 7.346
Bos 5.934 0.055 5.825 6.040  wo3 7.179 0.059 7.062 7.294
Boa 5.898 0.053 5.793 6.002  woq 7.143 0.057 7.029 7.254
B 0.152 0.052 0.051 0.262 0.122 0.058 0.009 0.238
B2 0.121 0.049 0.025 0.218  wy 0.124 0.055 0.014 0.232
B3 0.016 0.021 —0.025 0.057 w3 0.006 0.024 —0.041 0.052
Ba 0.131 0.021 0.089 0172 wq 0.13 0.024 0.067 0.160
Bs 0.006 0.020 —0.033 0.046 w5 0.001 0.023 —0.044 0.047
Bs 0.013 0.040 —0.066 0.090 wg —0.080 0.046 —0.170 0.010

www.frontiersin.org

November 2014 | Volume 5 | Article 1279 | 9


http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive

Smithson and Shou

Randomly stopped sums

o
o -
Q - .
o
o -
S | ©
3
o S
> O - s, ©
o o M
= c
[} o
3 N >
o =4
0 o [CR e
I Q9 ¥
S 4
3 - &
o - ‘rlr-ﬂ_Ln__ o -

Frequency
150 200
1 ]

100
I

50

o o ]

T T T
-0.10 0.00 0.10

magnitudes residuals

-0.5

FIGURE 2 | Residuals for three-level GG model.
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This model component may be included in the sums model by
observing that its cumulative effect for the jth subject is just the
sum of the 7;; over i, which entails extending Equation (6) in the
following way:

5. CONCLUSION

Modeling randomly stopped sums with a life distribution with
a log link function enables modelers to explore how the effects
from experimental variables or covariates on frequency and mag-
nitudes combine into effects on the sums. The Bayesian approach
enriches the capacity of the sums models by integrating the fre-
quency, magnitude, and sums models into a single hierarchical
model, and enlarging the range of model diagnostic and evalu-
ative tools. These two innovations overcome in good part what
could be regarded by researchers in psychology as problematic
limitations in the standard financial statistical versions of these
models. The model developed in this paper is fairly general, as it
can incorporate various discrete distributions for the frequencies
and continuous distribution for magnitudes, so long as a log link
function is used for each of them. It is also noteworthy that both
the frequency and magnitude models can incorporate autocorre-
lation terms, the A; model can incorporate over-dispersion, the
j can incorporate random slopes, and the g; variance can have
its own submodel to deal with heteroscedasticity.

The simulation studies summarized in this paper indicate that
the Type I error rates may be slightly liberal for small samples
and effect sizes, but this should not be problematic for most
practical purposes. The simulations confirmed the intuitions that
the power of the sums model is more directly influenced by
the power of the frequency model than the power of the mag-
nitude model, and it is easier to resolve negative effects than
positive effects of the same size. Nevertheless, perhaps the key
finding regarding power is that, for two-level data structures,

(16)

the sums model’s power can exceed that of the frequency and
magnitude models when they share effects in the same direc-
tion and the frequency model effect is greater than the magnitude
model effect. This finding also underscores the utility of mod-
eling the sums in addition to modeling the frequencies and
magnitudes.

This type of model should find wide application in several
areas in psychology, notably those in which a psychological pro-
cess is thought to be serially summed from observable component
process outputs, when the output of the component processes is
a non-negative random variable and the number of such com-
ponents also is a random variable. We have given examples from
perception and decision making. Models for randomly stopped
sums will be most useful when the sums are operationalizations
of psychologically meaningful constructs that are considered dis-
tinct from the magnitudes and frequencies. The eye-tracker stud-
ies are an example, because the total amount of visual attention
given to an advertisement or part of a webpage is the chief inter-
est there, instead of the number of fixations or average fixation
duration. Another example is cumulative hours of deliberative
practice as a proxy indicator of expertise. Neither the average
duration of practice sessions nor practice session frequency mea-
sures accumulated expertise, whereas the sum of the durations
does so. Other topics that come readily to mind include purchas-
ing behavior, food or drug consumption, cumulative exposure to
risks, cumulative stress, and generally cumulative expenditure of
time on any episodic activity (e.g., dwell time on webpages in a
web-browsing session).
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