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INTRODUCTION

NEURAL PROCESSING AND MISMATCH NEGATIVITY
Electrophysiological methods like the electroencephalogram
(EEG) and the magnetoencephalogram (MEG) provide the pos-
sibility to obtain online insight into the perceptual process. This
includes the pre-conscious and pre-attentive or automatic stages
of processing. There is a sequence of positive—negative—positive
deflections in the event-related potential (ERP), of which the first
negative deflection (N100) typically peaks around 100 ms after the
occurrence of a transient sound like an isolated vowel. The N100
has been found for speech sounds and for non-speech sounds. For
speech sounds, the processing in this early stage shows, for one
thing, characteristics of acoustic processing that are independent
of phonological categories (e.g., Sharma and Dorman, 2000). At
the same time, a number of studies have demonstrated the effect of
phonological categories in this early stage: acoustically equidistant
stimuli cluster along phonological categories. This can be observed
in the exact timing of the effect ([a] at 95 ms, [u] at 120 ms; see
Roberts et al., 2004), and in the location of the activity in the brain
(Obleser etal., 2004).

The mismatch negativity (MMN) component of the ERP allows
for some indirect insights into this early phase of processing. MMN
is typically obtained in a classic passive oddball paradigm. In this
experimental protocol, a sequence of identical sounds, the stan-
dards, (for example [a]), is interrupted occasionally by another
sound, the deviant, (for example [u]), asin [aaau..]. A stan-
dard experimental design, called reversed oddball design, will test
[aaau..] with standard [a] and deviant [u] aswellas [uuua
...] with standard [u] and deviant [a], both with a considerable

Results of a mismatch negativity experiment are reported in which the pre-attentive
relevance of the German phonological alternation of final devoicing (FD) is shown in two
ways. The experiment employs pseudowords. (1) A deviant [vus] paired with standard /vuza/
did not show a mismatch effect for the voicing change in /z/ versus [s] because the two
can be related by FD. When standard and deviant were reversed, the two could not be
related by FD and a mismatch effect for the voicing difference occurred. (2) An ill-formed
deviant that violates FD, *[vuz], triggered mismatch effects that were plausibly attributed to
its ill-formedness. The results show that a syllable-related process like FD is already taken
into account by the processing system in early pre-attentive processing.
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number of repetitions. The activities of standard [u], deviant
[u], standard [a], and deviant [a] are then each averaged sep-
arately, and the difference waves are calculated from the ERPs
either by subtracting the ERP of the original standard from the
deviant ERP or by subtracting the ERPs elicited by the same
stimulus when presented as standard and as deviant from the
reversed oddball condition. A significant negative-going deflec-
tion in the difference wave calculated from the deviant and the
standard ERP may be evidence for the MMN ERP component
(Néaitidnen, 1992,2001). This often occurs in the time range of 100—
250 ms after the beginning of the deviating sound (e.g., Schroger,
2005).

Mismatch negativity studies also show the early effect of
phonological categories (see for example Dehaene-Lambertz et al.,
20005 Phillips et al., 2000); the evidence for this comes in part from
comparisons between speakers of different languages (Néitinen
etal., 1997; Winkler etal., 1999; Peltola etal., 2003). The speakers
may react differently to a given sound contrast depending on the
sound inventory of their native language.

PREVIOUS MMN-STUDIES ON PHONOTACTIC RESTRICTIONS

Some other studies have investigated the effects of phonological
rules or phonotactic constraints in MMN protocols. Dehaene-
Lambertz etal. (2000) investigated the Japanese restriction that
the syllable coda allows only place-assimilated nasals (and the first
part of a geminate; cf. [td, 1986). When Japanese listeners hear a
sequence like [igmo] they perceive the presence of an additional
vowel as in [igumo]. The additional vowel makes the sequence
well-formed in Japanese. French speakers do not hear such an
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additional vowel. In an MMN experiment, pairs like [igmo] and
[igumo] were investigated for effects of the vowel epenthesis. In
Japanese speakers, there was no MMN effect, while in French
speakers there was. As the authors note, these results “suggest that
the impact of phonotactics takes place early in speech process-
ing and support models of speech perception, which postulate
that the input signal is directly parsed into the native language
phonological format” (p. 635). Since we were interested, in our
own studies, in effects of processing that take place outside of the
focus of attention, we mention that the participants of the study
of Dehaene-Lambertz etal. (2000) were instructed to pay atten-
tion to the stimuli and to answer for each five-stimulus sequence
whether the fifth (the deviant) was different from the preceding
four.

Mitterer and Blomert (2003) investigated optional nasal place
assimilation in Dutch compounds (in terms of lexical phonologi-
cal theory: postlexical assimilation). They paired the unassimilated
[tuinbank] with the assimilated [tuimbank] (both “garden bank”),
both of which are possible forms of this word in Dutch, while
participants were watching a silent movie. This contrast was com-
pared with the pairing of [tuinstoel] and [tuimstoel]. While the
difference between [tuin] and [tuim] was identical in the two
stimulus pairs, the change was not motivated by assimilation in
[tuimstoel]. A significant difference between standard and deviant
was found in the latter pair, but not in the former pair where
the assimilation process relates the two forms. Therefore, the
regressive assimilation process is relevant to early pre-attentive
processing.

Flagg etal. (2006) investigated an assimilatory nasalization
process in English with an MEG study. In /ama/ the first
vowel optionally gets nasalized by the following nasal as in
[ama]. Flagg etal. (2006) classified this alternation as phono-
logical assimilation, though we point out that the process more
likely is to be seen as coarticulatory, i.e., phonetic in nature.
Such a nasalized vowel was spliced before a non-nasal con-
sonant as in [aba]. The participants of the experiment were
watching silent movies during passive stimulation. A latency
delay was found for the M50 response elicited by the incon-
gruent plosive in [aba] compared to [aba]. This indicated that
the nasalization process was relevant to very early pre-attentive
processing.

Steinberg etal. (2010a,b, 2011) investigated a German allo-
phonic alternation related to two dorsal fricative allophones both
represented orthographically as “ch.” The palatal allophone of this
fricative occurs after front vowels ([dict] dicht ‘dense’) and the velar
allophone after back vowels ([doxt] Docht ‘wick’). This alternation
is also known as dorsal fricative assimilation (DFA). From a range
of different experiments that all provide evidence for the effect of
DFA in pre-attentive processing, we here choose one for presen-
tation: the ill-formed non-word *[ex] combines a velar fricative
with a front vowel. Contrasted with the well-formed pseudoword
[ox] as standard, there was a mismatch effect attributable to the
different vowels. The fricatives are segmentally identical, so that
the deviant [0x] did not show an MMN due to the fricative in
the comparison condition. However, the ill-formed deviant *[ex]
elicited an additional MMN response attributable to the fricative.
This response was temporally separated from the vowel-related

MMN and attributed to the abstract phonotactic ill-formedness
of the deviant.

In the present study on final devoicing (FD) in German, we
continue our investigation of bona fide productive lexical phono-
logical rules in German, i.e., of alternations that apply obligatorily,
without idiosyncratic exceptions and within the domain of words
or pseudowords, but not across words or pseudowords.

FINAL DEVOICING

Final devoicing operates on what has classically been analyzed
as a voicing contrast (see e.g., Rubach, 1990; Hall, 1992). Jessen
and Ringen (2002) have argued that the contrast instead involves
the feature [spread glottis] for the plosives, and Beckman etal.
(2009), building on this, have argued that the German frica-
tives are specified for both [spread glottis] and [voiced] (see also
Vaux, 1998 for arguments that voiceless fricatives are specified
[+spread glottis] across languages). In the present experiment,
we employed a voicing distinction in fricatives. Assuming such a
dual specification, we expect no effects of lexical underspecifica-
tion, which have been argued to affect MMN by Eulitz and Lahiri
(2004), Cornell etal. (2011, 2013), and Scharinger etal. (2012).
Instead, voiced fricatives would be specified [+voiced] and voice-
less ones would be specified [+spread glottis] in the mental lexical
entries.

The German plosives and fricatives that allow such a laryngeal
contrast, here transcribed in terms of voicing, are [p/b, t/d, k/g,
f/v, s/z]. Both members of each pair can occur in the onset of a
syllable before a vowel. In the classical analysis, the voiced values
become voiceless in a syllable coda (Rubach, 1990; Hall, 1992).
Thus, the two genitive forms [ra.d-os] (Rades ‘wheel-GEN’) and
[ra.t-os] (Rates ‘advice-GEN’) distinguish [d] and [t] in the syllable
onset before a vowel. However, in the nominative form, without
the genitive suffix [-os], the forms are identically pronounced [ra:t]
(‘wheel’/‘advice’). Here, /d/ and /t/ are in the syllable coda and
only the voiceless pronunciation [t] occurs. The change from /d/
in the mental lexical entry /rad/ to [t] in the pronunciation in
coda position is called final devoicing (FD). There are different
suggestions about the best way of describing and capturing the
correct environment (see e.g., Lombardi, 1991, 1999; Steriade,
1997; Beckman etal., 2009). There is also a debate about whether
the voicing neutralization is phonetically complete (see e.g., Port
and O’Dell, 1985; Beckman etal., 2009). However, it is clear that
the change takes place obligatorily in a set of core environments
that include the word-final position, that there are no lexically
marked exceptions, and that the change is bounded by the word.

Hwang etal. (2010) showed that English voicing agreement in
consonant clusters as in their pseudoword stimuli [sts] and [vdz]
lead to processing difficulties in non-agreeing clusters like *[wds],
which were not found in non-agreeing clusters like *[vtz]. Poep-
pel and Monahan (2011, p. 947f.) refer to results of a related MEG
experiment in which a distinction between [vts] and *[vds] was
found around 150 ms after the onset of the fricative. Hwang etal.
(2010) interpret their results in terms of the underspecification
for voicing of voiceless plosives in English postulated by Lombardi
(1991, 1999): speakers predict a following voiced sound after [d]
in *[uds] but do not predict a following voiceless sound after [t]
in *[vtz] because [t] is underspecified for voicing. We think that
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this explanation may apply to a phonological surface structure in
which the position preceding the fricative is conceivably one of
laryngeal neutralization (see Steriade, 1997). It is conceivable that
the voicelessness of [t] preceding a fricative may be accounted for
by laryngeal neutralization by the processing system, while the
voicing of [d], if followed by a fricative, can only be licensed by
agreement with the fricative. Our assumptions about the underly-
ing featural specifications in German are thus not in conflict with
these interesting results.

The voicing distinction between obstruents in German is pho-
netically implemented in several ways depending both on the
manner of articulation and on the relative position of the sound.
As we will focus on fricatives in intervocalic and final position in
our study (see Experimental design), we will limit the following
overview over phonetic voicing cues to these instances. Because
in German, the phonetic implementations of the voicing contrast
are — at least partly — neutralized in final positions, we also attend
to voicing parameters obtained in languages like English in which
FD is not operative. As shown by various phonetic studies (for an
overview of the literature on the voicing distinction in German
fricatives, see Jessen, 1998, pp. 65-66, 96; phonetic evidence on
English fricatives is reviewed for instance by Stevens etal., 1992,
and Maniwa and Jongman, 2009) the voicing distinction between
fricatives is mainly coded by three kinds of parameters: first, the
duration of the fricative (as reflected by the duration of friction
noise in the acoustic signal) is shorter in voiced compared to
voiceless fricatives. Preceding full vowels show — to some degree —
the reversed durational pattern. Second, there are several spec-
tral indicators for fricative voicing, most importantly the presence
of periodic low-frequency energy during the fricative (reflecting
vocal fold vibrations). Additionally, voiced fricatives are charac-
terized by a lower Center of Gravity (COG) and higher variance
compared to voiceless fricatives (cf. Maniwa and Jongman, 2009).
Third, fricative voicing is indicated by a greater extent of the FI
transitions of preceding or following adjacent vowels (e.g., Stevens
etal., 1992). Furthermore, vowels following a voiced fricative have
been shown to begin with lower Fy than vowels after voiceless ones
(Jessen, 1998).

AN ASYMMETRY BETWEEN STANDARDS AND DEVIANTS

There is an interesting asymmetry in the roles played by standard
and deviant in processing the oddball stimulation. Since the stan-
dard is repeated a number of times, and the pauses between the
repetitions give sufficient time for it to be recognized as a partic-
ular phonological sound or sound sequence, it seems, put simply,
that the expectation for another standard is phonologically repre-
sented, or represented in more abstract terms (Nditinen, 2001).
The deviant, on the other hand, is just coming into the system and
its initial processing is ongoing at the time when the mismatch
against the standard arises.

Eulitz and Lahiri (2004), Cornell etal. (2011, 2013), and
Scharinger etal. (2012) have argued that the standard can in cer-
tain ways be seen as similar to a mental lexical entry, likewise
abstractly represented, and that the deviant can be seen as simi-
lar to the incoming acoustic information that the system seeks to
match to an abstract lexical entry. They have argued that lexical
underspecification of features matters for MMN in a way that can

be understood in these terms. A crucial aspect of the asymmetry
for our experiment is that it provides a direction of application of
FD: if it applies in an oddball protocol in early pre-attentive pro-
cessing, it should apply in pairs in which the standard corresponds
to a possible mental lexical entry to which FD could apply, and
in which the deviant can be seen as similar to a spoken word to
which FD has applied. For ease of exposition we therefore adopt
some notation of Cornell etal. (2013). The standards are provided
with slashes /./ and the deviants with squared brackets [.]. This is
parallel to the phonological notation where /./ is used for mental
lexical entries and [.] for what is heard.

EXPERIMENTAL DESIGN

The experiment reported here addressed German FD in pre-
attentive phonological processing. The stimuli employed were
[vus], *[vuz], [vuso], and [vuza] as depicted in Figure 1. We con-
centrated on four pair-wise contrasts each of which was employed
twice with reversed roles of standard and deviant in the stim-
ulations, resulting in a total of eight experimental conditions.
As explained above, we marked the standard stimuli of the
experimental conditions with /./ and the deviants with [.]. Our
expectations were based on the similarities of standard stimuli
to abstract phonological lexical representations on the one hand,
and deviants to phonetic surface representations that are close to

CONTRASTS

VvV u S @°

170 ms

vV u S5
CONDITIONS
Standard  Deviant 2nd Fricative (Deviant)  2nd Vowel (Deviant)

la /vus/ [vusa] voiceless « present = «
. € o e £
1b  /vusa/  [vus] voiceless o missing o
3 3
2a /vus/ [vuza] voiced S present S
2b  /vuza/  [vus] voiceless S missing b
-3 I
3a  vuz/ [vusa] voiceless g present “‘E’
3b  /vuse/  *vuz] voiced @ missing 7}
QO QO
4a  ¥/vuz/ [vuza] voiced % present %
4b  /vuza/ *[vuz] voiced = missing — =

FIGURE 1 | Stimuli and design. Representative waveforms depict the
segmental and temporal structure of each of the four pseudowords. Arrays
indicate the employed pairwise oddball contrasts. The experimental
conditions are listed below stating the segmental deviation criteria
between the respective standard and deviant along with the time-ranges in
which Mismatch Negativity (MMN) responses were expected in the
difference waves. The asterisk * indicates ill-formedness.
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the acoustic input on the other hand (Néitinen, 2001; Eulitz and
Lahiri, 2004).

Contrast 1 is what would be an alternation in German for an
underlying voiceless /s/. There is no change in voicing of the frica-
tive. Hence, we expected MMN elicitation both for the additional
vowel in 1a and for the missing vowel in 1b.

In contrast 2, stimuli differ with respect to the voicing of the
second fricative. In condition 2a, this change is phonologically
unmotivated. Furthermore, the deviant differs due to its additional
vowel. Here, we expected an MMN to be elicited by each of these
changes. Run the other way around, as in condition 2b, the whole
contrast between standard and deviant could be interpreted as an
alternation in German for an underlying voiced /z/ in /vuza/, with
FD in [vus]. While the phonetic differences were the same in 2a
and 2b, we expected the respective MMN patterns to reflect that
standard and deviant were phonologically related due to FD in 2b
but not in 2a.

Contrasts 3 and 4 employ the ill-formed stimulus *[vuz]. It is
ill-formed because FD would obligatorily turn it into [vus] in Ger-
man. In contrast 3, the deviant enters into an unmotivated voicing
alternation of the second fricative in both conditions. In addi-
tion, the stimuli differed with respect to the presence or absence
of the final vowel. Consequently, we expected to find MMN for
each of these segmental differences in both conditions. Further-
more, we were interested in whether we would find an additional
effect attributable to the ill-formedness of *[vuz] when being pre-
sented as deviant. As the phonological violation *[vuz] coincided
with the absence of the second vowel, we expected these mismatch
responses to overlay, as reflected by a larger MMN amplitude in
condition 3b compared to 1b.

In contrast 4, there is no change in voicing with respect to
the second fricative, so no effects were expected in any corre-
sponding time window. With respect to the difference in the final
vowel, we were interested in whether condition 4a would show
reduced MMN compared to the remaining a-conditions; this may
be expected as it would reflect a remedy of the violation of FD in
the standard *[vuz]. In condition 4b, we again expect superim-
posed mismatch effects due to the ill-formedness of the deviant
*[vuz] and due to the missing second vowel as in condition 3b.

MATERIALS AND METHODS

PARTICIPANTS

Sixteen volunteers participated in the study (four male; median
age was 26 years, range from 22 to 33), all of them right-handed
and monolingual native speakers of German. Handedness was
assessed using an inventory adopted from Oldfield (1971). All
participants reported normal auditory and normal or corrected-
to-normal visual acuity and no neurological, psychiatric, or other
medical problems. They gave informed written consent. The study
conformed to The Code of Ethics of the World Medical Association
(2013, Declaration of Helsinki).

MATERIALS

As described, four pseudowords were used as stimuli: [vus], [vusa],
*[vuz], and [vuza]. The stimuli are phonotactically well-formed
in German, except for the non-word *[vuz], which fails to have
undergone FD. The stimuli [vus], [vusa], *[vuz], and [vuzo] were

articulated numerous times by a professional male speaker with
a fundamental frequency (Fy) of about 100 Hz, and digitally
recorded with a 48 kHz sampling rate and a 16 bit resolution using
a RME Fireface 800 recording device (Audio AG, Haimhausen,
Germany) and a Neumann U87 Microphone (Georg Neumann
GmbH, Berlin, Germany).

Stimulus preparation for ERP-experiments on speech process-
ing is always a compromise. The point is to control for lower-level
acoustic stimulus characteristics in order to avoid confounds with
higher-level linguistic factors while on the same time keeping the
stimuli as natural as possible and avoiding artifacts caused by
manipulation. To assure some acoustic variability of the stimulus
material, we selected 5 different utterances of each pseudoword
resulting in a set of 20 pseudoword stimuli in total (see Eulitz and
Lahiri, 2004; Jacobsen et al., 2004; Steinberg et al., 2012). However,
the conflicting methodological requirements mentioned above
concern our study in a special way. The phonological issue under
investigation (i.e., the voicing distinction between [s] and [z]) is
also coded by the inherent durational differences both between the
voided and voiceless fricatives and between the preceding vowels.
Other sufficient voicing cues for fricative perception are the pres-
ence or absence of low frequency energy during the fricative in
the acoustic signal and distinct F1 transitions on vowel-fricative
and fricative-vowel boundaries. These cues are also highly reli-
able at least in intervocalic and final fricative position (as in our
stimuli).

Based on these considerations we decided to normalize the seg-
mental durations of the stimuli across contrasts and to base the
voicing distinction only on spectral phonetic parameters. Dura-
tional normalization was performed using the time-domain pitch
synchronous overlap add (TD-PSOLA) algorithm provided by
Praat software (Boersma and Weenink, 2010). Segmental dura-
tions were equated by setting the initial fricative to 100 ms (mean
original durations of [v] in ms: [vus] 129, [vusa] 119, [vuz] 102,
[vuza] 109), the full vowel to 200 ms (mean original durations of
[u] in ms: [vus] 200, [vusa] 188, [vuz] 285, [vuza] 203), the second
fricative to 150 ms (mean original durations of [s] in ms: [vus]
329, [vuso] 177; of [z] in ms: [vuz] 259, [vuzo] 119) and the final
vowel to 170 ms (mean original durations of schwa in ms: [vuso]
189, [vuzo] 167). Afterward, intensities were normalized using the
root mean square (RMS) of the whole sound file.

Theoretically, the duration normalization bore two risks: first,
originally voiced fricatives might be perceived as voiceless after
the relative lengthening of the fricative and the shortening the
preceding vowel. Second, the contrary effect might have occurred
to the originally voiceless fricatives. However, our ERP data clearly
indicate that a distinction in the fricative has been detected in both
directions in contrasts 2 and 3 [see Analysis of the voicing change
in the fricatives (contrasts 2 and 3)]. Nevertheless, we performed
acoustic analyses after the manipulation procedures to ensure that
sufficient phonetic information was left in the stimulus material
coding the voicing distinction between the fricatives [v] and [s]
and to test potential interactions with the syllabic position of the
fricative. We tested both offset F1 transitions of the first vowel, and
the first two spectral moments of the fricative.

Formant measures were taken from each single stimulus file as
mean values within 20 ms analysis windows by using the linear
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prediction-based burg method (as implemented in Praat) with a
pre-emphasis frequency of 50 Hz. F1 measures were taken from
the mid part (190-210 ms) and from the final part of the vowel
(280-300 ms) by automatically determining maximally two for-
mants below 2000 Hz. Fl-transitions were analyzed by means
of a univariate mixed design analysis of variance (ANOVA) with
the within-items factor TRANSITION (mid vowel/vowel offset)
and the between-items factors FRICATIVE (voiceless/voiced) and
SYLLABLE (mono-/bisyllabic). We found a main effect of the fac-
tor TRANSITION (Fy,16 = 6.2; p = 0.024; nf) = 0.279) and a
significant interaction TRANSITION*FRICATIVE (Fy,16 = 5.9;
p = 0.027; nf, = 0.269). As expected from the literature, the
first vowel formant showed a significantly falling pattern when
preceding the voiced fricative (F1 mid vowel: 357 Hz/F1 vowel
offset: 316 Hz; main effect TRANSITION in a broken down two-
way ANOVA with TRANSITION and SYLLABLE: F; 3 = 13.8;
p = 0.006; 12 = 0.633) while the FI transition remained
steady-state when being followed by the voiceless fricative (F1
mid vowel: 356 Hz/F1 vowel offset: 355 Hz; no significant
effects). Note that there was no significant effect by the factor
SYLLABLE.

To analyze the spectral qualities of the fricatives, FFT power
spectra were calculated using a 50 ms Hann window that was
centered over the mid part of the fricative (350—400 ms). From
these spectra, COG and standard deviation (SD) were obtained.
The spectral measures of the fricatives were analyzed by means
of a multivariate ANOVA (MANOVA) with the between-items
factors FRICATIVE and SYLLABLE as described before. A sig-
nificant main effect of FRICATIVE indicates spectral differences
between [s] and [z] (Pillai’s trace = 0.532; F, 15 = 8.5; p = 0.003;
né = 0.532). The factor SYLLABLE did not show any significant
effects. The univariate analyses revealed that voiceless fricatives
were characterized by significantly higher COG frequencies ([s]
7712 Hz/[z] 5908 Hz: Fyj6 = 10.9; p = 0.004 n2 = 0.406),
and lower SD ([s] 2094Hz/[z] 2730 Hz: F; ;6 = 14.0; p = 0.002;
nf) = 0.466) compared to the voiced fricatives. Based on this we
assumed that the voicing distinction in the stimulus material was
sufficiently coded phonetically even though durational voicing
cues had been neutralized by manipulation.

EXPERIMENTAL DESIGN AND PROCEDURE

As described above, four different experimental contrasts were
employed: [vus] vs. [vusa] (contrast 1), [vus] vs. [vuza] (contrast
2), *[vuz] vs. [vuse] (contrast 3) and *[vuz] vs. [vuzo] (con-
trast 4). Each pair-wise contrast was presented twice in oddball
sequences, both using one pseudoword as standard (85% of the
trials = 1360 items) and the other as deviant and the other way
around (reversed oddball-design), resulting in eight experimen-
tal conditions. Oddball sequences of 1600 trials in total were
presented per condition, using all tokens of each pseudoword
equally. Standard and deviant stimuli were delivered in pseudo-
randomized order forcing at least two standards to be presented
between successive deviants. Oddball conditions were then divided
into two technical blocks each, resulting in a total of 16 stimula-
tion blocks per participant. Sessions were split into two parts,
so the second half of each condition was presented on a second
day. Stimulus sequences were presented with a stimulus onset

asynchrony randomly varying from 550 to 900 ms in units of
10 ms. The order of the experimental blocks was counterbalanced
between participants. Participants were seated comfortably in a
sound-attenuated and electrically shielded experimental chamber,
and they were instructed to ignore the auditory stimulation while
watching a self-selected silent subtitled movie. Stimuli were pre-
sented binaurally at 53 dB SPL through headphones (Sennheiser
HD 25-1 II; Sennheiser electronic GmbH & Co. KG, Wedemark,
Germany). Loudness was measured by means of an artificial
head (artificial head HMS II1.2; HEAD acoustics GmbH, Her-
zogenrath, Germany). All participants reported that they were
able to ignore the auditory stimulation. Informal questioning
of the participants revealed that they had perceived all stimu-
lus types as speech sounds. A whole experimental session lasted
approximately 180 min (plus additional time for electrode appli-
cation and removal) including ten short breaks of about 2 min
each.

ELECTROPHYSIOLOGICAL RECORDINGS

The EEG (Ag/AgCl electrodes, Falk Minow Services, V-Amp
EEG amplifier; Brain Products GmbH, Gilching, Germany) was
recorded continuously from 26 standard scalp locations accord-
ing to the extended 10-20 system (American Encephalographic
Society, 1994; FP1, FP2, F7, F3, FZ, F4, F8, FC5, FC1, FCZ, FC2,
FCe, C3, CZ, C4, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, Ol,
02) and from the left and right mastoids. The reference electrode
was placed on the tip of the nose, and an additional electrode
placed at AFZ was used as ground during recording. Electroocular
activity was recorded with two bipolar electrode pairs, the verti-
cal electrooculogram (EOG) was obtained from the right eye by
one supraorbital and one infraorbital electrode and the horizon-
tal EOG from electrodes placed lateral to the outer canthi of both
eyes. Impedances were kept below 10 k2. On-line band-pass filter-
ing of the EEG and EOG signals was carried out using a 0.011 Hz
high-pass and a 100 Hz low-pass filter. The signal was digitized
with a 16 bit resolution at a sampling rate of 500 Hz.

DATA ANALYSIS

Off-line signal processing was carried out using EEP 3.0 (ANT
Neuro, Enschede, Netherlands). EEG-data were band-pass filtered
with a finite impulse response filter: 4001 points, critical frequen-
cies of 0.5 Hz (high-pass) and 15 Hz (low-pass; cf. Schroger, 2005).
EEG epochs with a total length of 1050 ms, time-locked to the
onset of the stimuli and including a 100 ms pre-stimulus baseline,
were extracted and averaged separately for each stimulus prob-
ability (standard, deviant), for each pseudoword, and for each
participant.

The ERP responses to the first five stimuli per block as well as
to each standard stimulus immediately following a deviant were
not included in the analysis. Epochs showing an amplitude change
exceeding 100 WV at any of the recording channels were rejected.
In the present study, an average of 15.1% (SD 6.2%) of the trials
per participant was rejected prior to ERP computation. Grand-
averages were subsequently computed from the individual-subject
averages.

To quantify the full MMN amplitude, the scalp ERPs were re-
referenced to the averaged signal recorded from the electrodes
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positioned over the left and right mastoids. This computation
results in an integrated measure of the total neural activity
underlying the auditory MMN (e.g., Schroger, 2005).

Deviant-minus-standard difference waveforms were calculated
for each pseudoword per oddball condition by subtracting the
ERPs elicited by the standard point by point from the ERPs elicited
by the original deviant obtained from the same oddball condition,
i.e., the MMN elicited by [vuso] in condition la was quantified as
difference between the deviant ERP from [vuso] and the standard
ERP from [vus]. We opted for original contrasts from the same
block in order to prevent superimposing effects from the block
context to affect our comparisons.

Deviance-related effects (as the MMN) were quantified by mea-
suring the ERP amplitudes as mean voltages in a fixed analysis
window of 40 ms (for the width of the analysis window, cf. Luck,
2005, pp. 234). These windows were adjusted a posteriori on the
basis of the grand-averaged deviance-minus-standard difference
waves (cf. Picton etal., 2000). We adjusted separate windows for
each condition and for each deviation by identifying the peak
latencies of any distinguishable negative-going deflection (aver-
aged across F3, Fz, F4, C3, Cz, and C4 electrode positions) within
a priori determined time ranges. First, any effect due to the voicing
alternation in the second fricative was expected to occur between
400 and 500 ms post stimulus onset (note that this latency equals
100 to 200 ms after the onset of the differing fricatives). This
voicing alternation only occurs in contrasts 2 and 3. Second,
deviations due to the presence or absence of the second vowel
were expected to affect processing within the time range of 550—
650 ms post stimulus onset (i.e., 100-200 ms after the offset of the
fricative/onset of the final vowel). In singular cases, additional
earlier or later time windows were analyzed in an exploratory
approach.

Statistical analyses were performed with SPSS (IBM SPSS Statis-
tics 21). As the MMN is known to be maximal over frontal scalp
areas (cf. Kujala etal., 2007), we decided to base our analyses only
on the F-line positions by collapsing the ERPs obtained at F3, Fz,
and F4 into one single measure. Separately for each analysis win-
dow, an overall univariate repeated-measures analysis of variance,
henceforth ANOVA, was run including the within-subjects fac-
tors STIMULUS PROBABILITY (standard/deviant), CONTRAST
(depends on the window), and VOWEL (additional vowel in the
deviant is present/missing). Afterward, analyses were broken down
if appropriate. Finally, comparisons between conditions relating to
the hypotheses were performed using repeated-measures ANOVAs
with the factors introduced above. Only significant main effects
of the factor STIMULUS PROBABILITY and interactions with
this factor were reported. The level of type 1 error was set to
p < 0.05 and, in case of multiple post hoc comparisons, Bonferroni
correction was applied. If the sphericity assumption was violated
(indicated by the Mauchly test), the original degrees of freedom
were provided along with the Greenhouse-Geisser-epsilon. Finally,
partial eta-squared (nf,) effect sizes were given for all significant
effects.

RESULTS
The ERP results for all conditions are depicted in Figure 2.
Also, this figure shows the respective analysis windows for each

effect. The outcomes of the statistical analyses based on these
windows are presented below separately for each analysis win-
dow. In Figure 3, topographical maps of the analyzed MMN
effects are provided separately for each condition and time
window.

ANALYSIS OF THE VOICING CHANGE IN THE FRICATIVES (CONTRASTS 2
AND 3)

For the MMN responses to the fricatives (FRIC in Figure 2) the
overall ANOVA with the factors STIMULUS PROBABILTIY (stan-
dard/deviant), VOWEL (additional/missing), and CONTRAST
(2/3) revealed a significant main effect of the factor STIMULUS
PROBABILITY (Fy 15 = 17.9; p = 0.001; 03 = 0.544), indicating
the presence of an MMN across all conditions, and a significant
interaction STIMULUS PROBABILITY*VOWEL*CONTRAST
(F1,15 = 5.9; p = 0.028; nf) = 0.284), indicating different
amplitudes of the MMN responses across conditions. Broken-
down analyses were calculated separately for each contrast:
in contrast 2, the main effect for STIMULUS PROBABIL-
ITY (Fi,i5 = 9.1; p = 0.00% ny = 0.387), and also the
interaction STIMULUS PROBABILITY*VOWEL (Fy,;5 = 5.9
p = 0.028; nf, = 0.282) were significant, the latter indicating a
stronger MMN response in condition 2a compared to condition
2b. In contrast 3, only a significant main effect for STIM-
ULUS PROBABILITY was obtained (F1;5 = 9.3; p = 0.008;
nf) =0.384).

ANALYSIS OF THE EFFECT DUE TO THE CHANGE IN THE FINAL VOWEL
(ALL CONTRASTS)

For the MMN responses to the additional or missing vowel
(VOW in Figure 2) the overall ANOVA with the factors
STIMULUS PROBABILITY (standard/deviant), VOWEL (addi-
tional/missing), and CONTRAST (1/2/3/4) revealed a signifi-
cant main effect for STIMULUS PROBABILITY (F;,5 = 25.0;
p < 0.001; nf, = 0.625), as well as significant interac-
tions STIMULUS PROBABILITY*CONTRAST (F345 = 4.0
p = 0026 & = 0725 12 = 0209) and STIMULUS
PROBABILITY*CONTRAST*VOWEL (F345 = 3.1; p = 0.039;
e = 0.928; T]}Z, = 0.172). Next, analyses were broken down by
the factor VOWEL. Comparing the MMN amplitudes for the
a-conditions, only a significant main effect for STIMULUS PROB-
ABILTY (Fy,15 = 9.3; p = 0.008; n}% = 0.382) was found, but no
interaction with this factor. For the b-conditions, the main effect
STIMULUS PROBABILITY (Fj,;5 = 21.1; p < 0.001; nf’ =0.585)
and the interaction STIMULUS PROBABILITY*CONTRAST
(F345 = 6.2; p = 0.002; ¢ = 0.880; nf, = 0.292) were signifi-
cant. This interaction indicates differences in MMN amplitudes
due to the missing final vowel across the contrasts. We a priori
were only interested in potential differences between condi-
tions 1b and 3b, both sharing the same legal standard /vuso/.
A broken-down ANOVA with STIMULUS PROBABILITY and
CONTRAST (1/3) revealed a significant main effect for STIM-
ULUS PROBABILITY (Fj,15 = 35.4; p < 0.001; nf) = 0.703),
and a significant interaction between both factors (Fy15 = 5.1;
p=0.039; nf, = 0.252), indicating stronger MMN amplitudes for
3b compared to 1b.
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Contrast 1 a) - b) [VUS]

568+20 ms

deviant [vusa] standard /vusa/
standard /vus/ ——— difference deviant [vus] ~ ——— difference
Contrast 2 a) Z8| svus/ b) [VUS] \

690£20 ms
588+20 ms 540+20 ms
484+20 ms 468+20 ms
deviant [vuza] standard /vuza/
standard /vus/ ——— difference deviant [vus] ~ ——— difference
Contrast 3 a) */vuz/ b) * [VUZ]
& v &\OAO\\A
Fz P Fz
ALNG=
o TR A 3
ms ] \ 694£20 ms
610£20 ms : 550+20 ms
444420 ms 472420 ms
368+20 ms
deviant [vusa] standard /vusa/
standard */vuz/ difference deviant *[vuz] ——— difference

Contrast 4

594+20 ms 556+20 ms
deviant [vuza] standard /vuza/
standard * /vuz/ difference deviant *[vuz] ——— difference
FIGURE 2 | Grand-averaged and re-referenced event-related condition. The gray bars indicate the time windows of statistical
potentials (ERPs) elicited by the stimuli of Contrasts 1-4 depicted analyses. FRIC indicates that the marked time range is attributed to
separately for conditions a (left) and b (right) at FZ electrode the voicing change in the second fricative, VOW indicates that the
site. The color of the ERPs codes the stimulus that elicited that marked time range is attributed to the final vowel. The asterisk *

ERP The black line represents the difference wave calculated for each indicates ill-formedness.
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Condition 1a /vus/

2 Y +2  VOW 604+20 ms

Condition 2a [VUZS] /vus/

FRIC 48420 ms VOW 588+20 ms

Condition 3a */vuz/

FRIC 444220 ms VOW 610+20 ms

Condition 4a [VUZG] */vuz/

2 pv +2 VOW 594220 ms

FIGURE 3 | Topographical maps of the analyzed deviance-minus-
standard differences obtained from grand-averaged re-referenced
data within the time windows stated below each map. Depicted
are contrasts 1-4 separately for conditions a (left) and b (right). FRIC

Condition 1b [vu s]

VOW 568+20 ms

Condition 2b [VUS] /vuza/

FRIC 468+20 ms VOW 540+20 ms

Condition3b  *[vuz]

FRIC 472+20 ms VOW 550+20 ms

Condition 4b * [VU Z] /vuza/

VOW 556+20 ms

indicates that the marked time range is attributed to the voicing
change in the second fricative, VOW indicates that the marked time
range is attributed to the final vowel. The asterisk * indicates
il-formedness.

EXPLORATIVE ANALYSES OF EARLIER AND LATER EFFECTS
(CONTRASTS 2 AND 3)

In conditions 2b and 3b, unexpected deviance-related effects were
found in a time range later than 650 ms post stimulus onset.
These effects were analyzed as described above: a significant main

effect of STIMULUS PROBABILTIY (Fj;5 = 19.5; p = 0.001;
nf) =0.565) was found but no interactions with this factor. Because
of its latency, it seems possible to us that this effect reflects mor-
phological processing (see Royle etal., 2010). This is conceivable
if the additional vowel is processed as a morphological suffix.
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Furthermore, a strong deviance-related effect was observed in
condition 3b that appeared in an unexpected early time range
before 400 ms, i.e., before the onset of the deviating frica-
tive. Because of its latency, this effect seemed to be temporally
related to the later part of the first vowel [u]. This effect was
compared with a corresponding time window in condition 1b
(360 + 20 ms) that shared the legal standard stimulus /vusa/. A
significant main effect STIMULUS PROBABILITY (F,15 = 39.1;
p<0.001; nf) =0.722) was found as well as a significant interaction
STIMULUS PROBABILITY*CONTRAST (F},15 = 9.0; p = 0.009;
n% =0.374), indicating a stronger deviance-related response in 3b
compared to 1b.

DISCUSSION

REMARKS ON CONTRAST 1

Our statistical assessment employed condition 1b as a compari-
son condition for condition 3b (see Evidence for the relevance of
final devoicing in condition 3). However, contrast 1 (pairing the
legal stimuli [vuso] and [vus] with no voicing change) is here also
briefly considered on its own. Visual inspection of the difference
waves for contrast 1 in Figure 2 shows distinct MMN responses
that are attributable to the presence vs. absence of the final vowel,
but no further effects, in particular no effects between 450 and
550 ms where differences attributable to the fricative would occur.
This provides some assurance that effects attributed to fricatives
in other conditions were not general consequences of our stim-
ulus contrasts in which stimuli with and without a final vowel
are compared. There is, for example, a distinction in syllabifica-
tion. The a-conditions are syllabified like 1a: [vu.se] while the
b-conditions are single syllables like 1b: [vus]. This distinction
could in principle have phonetic correlates in regard to the extent
of coarticulation of the [s/z] with the preceding vowel. Recall that
the phonetic analysis of the stimuli did not detect any such dif-
ferences. Condition 1 suggests that such differences, if they exist
after all, also did not lead to observable effects in the difference
wave.

EVIDENCE FOR THE RELEVANCE OF FINAL DEVOICING IN CONTRAST 2
The following sketch shows condition 2b next to condition 2a. We
included a dot to mark the syllable boundary in [vu.zs].

Standard Deviant Comment
2a: /vus/ [vu.za] significantly stronger effect for
voicing change than in 2b
2b: [vu.zo/ [vus] related by final devoicing

There is a significant difference between conditions 2a and 2b
in the processing correlates of the voicing change in the fricative.
The MMN effect due to the voicing mismatch in condition 2a was
absent in condition 2b, where the voicing change was motivated
by ED. This significant difference between conditions 2a and 2b is
here interpreted as evidence for the relevance of FD in pre-attentive
processing.

REMARKS ABOUT REACTIONS TO THE FINAL VOWEL IN CONDITION 2b
We turn to some remarks about the MMN response due to the
additional/missing vowel in conditions 2a and 2b. The plots in

Figure 2 suggest that the response attributable to the missing final
vowel in the deviant of condition 2b was also reduced. We here
want to comment this impression for the benefit of possible future
experiments that might investigate such an effect more specifically.
The observation suggests that the expectation of any upcoming
auditory event, which is violated in the deviant and shown by the
MMN, is not limited to the expectation of just another standard
stimulus. It seems, instead, that this expectation can be modulated
by what is found earlier in the deviant. The system seems to have
related /vuzo/ and [vus] by FD. If the system possesses knowledge
of the environment of FD, it will then expect the absence of a vowel
following [vus], since FD would not have applied in the presence
of a following vowel. (Similar expectations could also be modu-
lated by phonetic factors that might allow the anticipation of the
absence of a final vowel. However, the reduced MMN response
to the missing final vowel seems to be specific to condition 2b,
where FD has applied.) It is also possible, then, that the standard
/vuz+o/ and the deviant [vus] were processed as morphologi-
cally related by the omission of an inflectional element [0] in the
deviant, with phonological adjustment due to FD. It seems con-
ceivable that this was related to the late deviance-related effect that
was observed about 250 ms after the missing vowel had become
detectable.

We note that we have argued (Jacobsen etal., 2013) against the
assumption of successive MMN responses in case of mismatching
monosyllabic vowel-consonant sequences, where both the vowel
and the consonant differed. However, the case at hand is differ-
ent in an important aspect: the second deviation in the present
contrast pairs, namely the missing or additional final vowel in con-
trasts 2 and 3, did not just involve a distinct sound, but established
a distinction in syllable structure between standard and deviant.
By this, the present stimulus contrasts were clearly different not
just at the segmental but also at suprasegmental representation
levels.

EVIDENCE FOR THE RELEVANCE OF FINAL DEVOICING IN CONDITION 3
It was seen in the presentation of the results that condition 3b and
condition 1b both have MMN responses attributable to the missing
vowel, and that both effects furthermore differ significantly in
strength. This is illustrated in the following sketch.

Standard  Deviant =~ Comment
1b:  /vusa/ [vus] significant effect for missing final
vowel
3b: /vuso/ *[vuz] significantly stronger effect for

missing final vowel

It was suggested that this is evidence for a superposed effect of
the ill-formedness of the deviant *[vuz] in condition 3b, which
becomes manifest in the signal simultaneously with the absence of
the final vowel. This distinction provides further evidence for the
relevance of FD in pre-attentive processing.

REMARKS ON REACTIONS TO THE FIRST VOWEL IN CONDITION 3

The comparison between conditions 1b and 3b is repeated in the
following, this time highlighting a significant distinction that was
found post hoc: condition 3b showed an effect at the time at which
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the second part of the vowel [u] is expected to be processed. The
distinction to 1b was seen to be significant.

Standard  Deviant Comment

1b:  /vusa/ no processing effect attributable to

(u]

significant effect attributable to [u]

[vus]

3b:  /vuso/ *[vuz]

This effect in 3b may be related to the anticipation of [z] dur-
ing the vowel [u] due to coarticulatory cues. It is furthermore
possible that phonetic factors allowed an early prediction of the
syllable structure. The system might have noticed in *[vuz] dur-
ing the vowel that there would be an upcoming voiced fricative
within the same syllable, in violation of FD. If so, the early strong
MMN effect before 400 ms in condition 3b might already be
a first electrophysiological response to the ill-formedness of the
deviant.

SUMMARY

In summary, we have found two pieces of evidence for the role
of FD in pre-attentive processing. While condition 2a, [vuza] jvus/»
showed mismatch effects due to the voicing change in the fricative,
these are significantly reduced (and in fact absent) in condition
2b, [vus] jyuz,,> in which the two forms can be related by FD. In
condition 3b, *[vuz] ys/> an overlaid effect of the violation of FD
in the deviant *[vuz] was found.

An interesting aspect of our findings is that they provide evi-
dence that syllable-related lexical phenomena such as FD are
already taken into account by the processing system in an early
pre-attentive stage. This point is new insofar the only previous
study we are aware of that showed the processing relevance of a
syllable-related process is Dehaene-Lambertz etal. (2000), which
did not employ a pre-attentive protocol.
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