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INTRODUCTION
Rigorous data analysis is a cornerstone
of empirical scientific research. In recent
years, much attention in the field of cog-
nitive neuroscience has been paid to the
issue of correct statistical procedures (e.g.,
Kriegeskorte et al., 2009; Nieuwenhuis
et al., 2011; Kilner, 2013). However, an
additional essential aspect of data anal-
ysis, which has attracted relatively little
attention, is the errors (bugs) in custom
data analysis programming code. Whereas,
in its broad definition a bug can be any
type of an error, here I refer to it as a
problem in the code that does not lead
to a failure (error or crash) during exe-
cution; that is, code that contains a bug
completes its execution properly, but the
output result is incorrect. Notably, if an
erroneous output result consists of reason-
able values, then the programmer might
have no indication that something went
wrong. It is impossible to estimate how
many published studies contain results
with bugs; however, given the ubiquity of
bugs in non-scientific (industrial) soft-
ware (Zhivich and Cunningham, 2009),
it is plausible that academic code is no
exception. Furthermore, the quality of
custom code in cognitive neuroscience
field in particular, is probably even worse
than in the industry because (a) code in
the field of cognitive neuroscience is usu-
ally written by people with only basic
programming training—after all, they
are brain researchers and not software
engineers; (b) the code most often is pro-
grammed by a single researcher, without
any code peer-review procedure (Wiegers,
2002); and (c) the custom code is usu-
ally used by a single or few lab members

only. This last point is critical, because
when the code is used by many, as is the
case with large open-source projects like
SPM (http://www.fil.ion.ucl.ac.uk/spm/),
FieldTrip (http://fieldtrip.fcdonders.nl/),
EEGLab (http://sccn.ucsd.edu/eeglab/)
or PyMVPA (http://www.pymvpa.org/),
the likelihood is low that a serious bug
would remain unnoticed for a long time.
The goal of this paper is to give practi-
cal advice to cognitive neuroscientists on
how to minimize bugs in their custom
data analysis code. The advice is illustrated
using MATLAB schematic samples; exe-
cutable code examples can be found in the
Supplementary Materials.

ADVICE 1: THE DANGERS OF
IRRELEVANT DATA
Consider a case of an fMRI data analysis,
where a researcher needs to calculate an
average level of activation (e.g., z-score)
for the predefined regions of interest
(ROIs). The code logic goes as follows: (1)
iterate over ROI files, and get the coor-
dinates for each ROI; (2) for each voxel
in the ROI, retrieve its z-score value; and
(3) average values across ROIs’ voxels, and
store all the results in a table. Please see the
code sample 1 in Box 1.

The problem with this code is that the
roi_zscore_vector variable is not cleaned up
between ROI loop cycles. So, if, for exam-
ple, ROI No. 3 consists of 127 voxels and
ROI No. 4 consists of only 7, then the mean
result for ROI No. 4 will be based on 7
correct z-score values and 120 incorrect z-
score values from the previous loop cycle.
The easy way to fix the bug is to clean
up the roi_zscore_vector variable between
loop cycles (e.g., roi_zscore_vector=[];). It

worth noting that a more secure and effi-
cient way to write the code would be to
retrieve all ROI’s z-score values at once,
instead of iterating over the single vox-
els (“vectorized” approach). Please see the
code sample 2 in Box 1.

Bugs caused by irrelevant data might
be as simple as the use of an incorrect
index in the loop, misuse of the variable
or the use of incorrect configuration file.
These bugs usually occur as a result of
an inaccuracy or momentary attentional
lapse. There is no complete remedy for
this problem, but adopting good coding
practices (see Advice 4: Bugs and Code
Quality) decreases the likelihood of such
errors.

ADVICE 2: TEST YOUR CODE!
A fact not immediately appreciated by
inexperienced programmers is that regard-
less of how hard one tries, it is difficult not
to make errors during programming. The
important thing is to catch these errors
in time, so they do not remain unnoticed
(i.e., become bugs). To this extent, test pro-
cedures substantially improve code quality.
Below are several recommendations:

USE A DEBUGGER TO VALIDATE WHETHER
YOUR CODE WORKS AS EXPECTED
Once the code is written, debug it first
before fully executing it from beginning to
end. That is, set a breakpoint(s) within the
critical parts of the code; then, by using
debugger step functionality, validate line
by line that the flow of the program is
as expected and the intermediate calcu-
lations are correct. In general, no quality
code can be produced without using a
debugger.
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Box 1 | Code Sample 1:

for roi_id=1: num_ROIs
roi_coord_matrix_XYZ = GetROICoordinates(ROIs_file_names{roi_id});
for voxel_id=1:size(roi_coord_matrix_XYZ,1)

roi_zscore_vector(voxel_id) = GetVoxelZscore(roi_coord_matrix_XYZ(voxel_id,:));
end

Activation_summary{roi_id,1} = ROIs_file_names{roi_id};
Activation_summary{roi_id,2} = mean(roi_zscore_vector);

end

Code Sample 2:

for roi_id=1: num_ROIs
roi_coord_matrix_XYZ = GetROICoordinates(ROIs_file_names{roi_id});
Activation_summary{roi_id,1} = ROIs_file_names{roi_id};
Activation_summary{roi_id,2} = mean(GetROIZscores(roi_coord_matrix_XYZ));

end

Code Sample 3:

function generated_rois = CreateRightHemisphereROIs(ROIs_names_vec)

for roi_id=1:length(ROIs_names_vec)
generated_rois{roi_id} = CreateROI(ROIs_names_vec{roi_id})

if (generated_rois{roi_id}.X_coord_center < 0)
error(’Oops...Negative ROI X center coordinate. We Stop.’);

end
end

KEEP TRACK AND VALIDATE INTERMEDIATE
RESULTS
Keep track of intermediate calculation
results by outputting them to command
window, and preferably, also by saving
them in a log file(s) or as graphical figures.
This approach allows you: (a) to establish
whether something went wrong during
execution, and (b) to compare intermedi-
ate results between code executions.

COMPARE AUTOMATIC RESULTS WITH
THOSE CREATED MANUALLY
A useful way to validate whether the results
of custom code are correct is to compare
them with the results generated manually.
For example, if your code automatically
converts z-score fMRI t-contrast images to
binary masks, it is worth comparing the
automatically generated masks with the
masks created manually (e.g., using SPM’s
imcalc).

USE SIMULATED (SURROGATE) DATA TO TEST
THE CODE
The use of a simulated dataset as opposed
to real data is the only unbiased way to

ensure that the code works as expected
and does not contain bugs. The simulated
dataset can help to ensure that the code
finds the effect of interest when the data
indeed contains it, and also that no effect
is found when the data is a random noise.
PyMVPA provides an excellent example of
surrogate data use.

ADVICE 3: PROTECTIVE (PREVENTIVE)
PROGRAMMING
The essence of the protective program-
ming approach is that the program vali-
dates its intermediate results as it runs, and
alerts the programmer in real time in the
event of a problem. Consider, for example,
the code that creates a collection of ROI
masks for the right hemisphere accord-
ing to the Montreal Neurological Institute
(MNI) coordinate system. Accordingly, the
X coordinate of all ROIs should be posi-
tive. Please see the code sample 3 in Box 1.

If for some reason the center coordinate
of the created ROI was negative, then the
code would just stop. Critically, this defen-
sive check prevents further propagation
of the error (see also assert function).

In general, it is recommended that the
mission-critical parts of the code, and
possibly also input and output function
parameters be validated. Remember, get-
ting a fatal error during code execution
is preferable to searching for elusive bugs
in code that completes execution without
errors.

ADVICE 4: BUGS AND CODE QUALITY
Novice programmers tend to pay little
attention to how they organize the code.
This is a bad practice, because when the
code is messy and illegible, programmers
have a higher propensity to make errors
and confusion.

USE MEANINGFUL FUNCTION AND VARIABLE
NAMES
Good name convention helps make sense
of the logic of the code, and also serves the
role of documentation. For example, when
functions are named CreateBinaryMask or
FindPeakActivationWithinROI, it is imme-
diately clear what they are doing. The
variables should also be given meaningful
names like voxelID and subjectID, instead
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of i or j. The use of proper name con-
vention for variables also decreases the
chances of irrelevant data use (see Advice
1: The Dangers of Irrelevant Data). That
is, the use of meaningful names makes
it more difficult to get confused between
variables because (a) they are less similar
visually (visual saliency), and (b) they refer
to specific concepts (e.g., voxels, subjects).

DO NOT DUPLICATE (“COPY-PASTE”) YOUR
CODE
The main problem with this practice is that
the code becomes unmanageable. That is,
if the logic that was duplicated ever needs
to be changed, locating and changing all
of the duplicated instances is a process
highly prone to error. The solution is to
extract the code that needs duplication to
a separate function (see next item).

USE A MODULAR APPROACH
The best way to maintain and reuse the
code is to adopt a modular approach.
According to this method, separate busi-
ness logic should be implemented in sep-
arate functions (e.g., see code samples in
Box 1). The modular code is more read-
able because top-level flow is not cluttered
by the implementation. Critically, the non-
modular code contains many variables in
its scope, most of which are, at any given
stage of execution, completely irrelevant.
This, in turn, increases the likelihood of
misuse of these variables (see Advice 1: The
Dangers of Irrelevant Data).

AVOID HARD-CODED VALUES
The business logic code should not con-
tain hard-coded values unless those values
are likely to never change (e.g., 60 s in
minute). Initial parameters that might be
changed should be either passed as param-
eters to the function or defined at the
top of the code in a transparent way. A
good practice is also to save the initial
parameters for each execution, so that it
would be possible to reproduce the results.

DO NOT LEAVE UNSUPPORTED INITIAL
PARAMETERS (OR ANY DEFINITIONS) IN THE
CODE
During code development, some initial
parameters might become obsolete. For
example, at the beginning, the data analy-
sis was conducted for a single ROI that was
defined as:

INITIAL_PARAMS.ROI = ’V1.nii’;

Then, the support for multiple ROIs was
added.

INITIAL_PARAMS.ROIs_arr =...
{’V1.nii’, ’V2.nii’, ’V3.nii’};

If INITIAL_PARAMS.ROI is no longer
supported, I strongly recommend delet-
ing or at least commenting on its def-
inition. The main reason is that, if, by
mistake, there is still a code that uses
INITIAL_PARAMS.ROI (see Advice 1: The
Dangers of Irrelevant Data), then the
results of code execution would likely be
wrong. By removing the obsolete defini-
tion, we ensure that no occasional use is
made; if it is, then the code will throw an
error (see Advice 3: Protective (preventive)
Programming).

MAKE YOUR CODE AS UNDERSTANDABLE AS
POSSIBLE
Logic of some code might be so com-
plicated that not only others, but even
the programmer himself after some time,
might struggle to understand it. Following
the steps suggested above will make the
code more readable and understandable.
In addition, adding comments, especially
to the most critical or non-trivial parts of
the code, might prevent future frustration.

ADOPT PEER-REVIEW PROCEDURE
Peer-review is the procedure by which you
show and explain the code you wrote to
your colleague(s). This is an extremely
helpful procedure, not only because your
colleagues might give you valuable advice,
but also because explaining the code to
someone else makes you look at your code
more critically.

ADVICE 5: CONSULT LANGUAGE
DOCUMENTATION WHEN NEEDED
Programming modern language, such as
MATLAB or Python, is easy and intu-
itive. However, there are some cases when
intuition is not sufficient. Consider a
case when MATLAB is used in fMRI
Multivariate Pattern Analysis (MVPA). A
widely used preprocessing practice is to
standardize a time course for each voxel
(e.g., Misaki et al., 2010). To achieve
this, the zscore function is called with a
2-D matrix of “voxels × data-volumes”

parameter (e.g., Reddy et al., 2010; Lee
et al., 2011; Axelrod et al., 2014). Critically,
without consulting the documentation,
one cannot be sure along which dimen-
sion (voxels or data-volumes) the zscore
function makes the standardization. As
a result, one can end up with an abso-
lutely wrong output result that might look
absolutely correct (i.e., correct dimen-
sions). The solution in such cases is not
to trust your intuition but to consult the
documentation.

ADVICE 6: TAKE RESPONSIBILITY FOR
THE CODE YOU USE
It is common for researchers or students
to use code written by someone else in
their own or another lab. There are two
potential caveats here. First, the person
who “inherited” the code might not fully
understand how the code should be used.
Second, the original code may have been
written for another purpose and therefore
might not work correctly in the new
situation. All this might lead to dangerous
bugs. The only solution is to fully under-
stand the code you are using, regardless of
whether you wrote it or not.

ADVICE 7: MAKE YOUR CODE PUBLIC,
IF POSSIBLE
If you are brave enough, you might want to
publish the custom code you used for your
publication (e.g., Hermes et al., 2014).
This permits other researchers not only
to validate your code, but also to repli-
cate your analyses (Brunet et al., 2014).
Admittedly, publishing code is of limited
use when the data it uses are not published,
which is the case with most neuroimaging
studies to date.

ADVICE 8: USE SOURCE
MANAGEMENT SYSTEMS
The use of source management systems
(e.g., https://github.com/) makes the
management of code versions easy. Version
control systems permit researchers to
document their changes and compare
between versions; critically, they permits
a researcher to establish exactly when a
certain change (or bug) was introduced in
the code.

CONCLUDING REMARKS
This paper provided practical advice on
minimizing bugs in cognitive neuroscience
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Table 1 | Summary of actions that can be taken to improve the code.

Type of advice Actions to take

Test your code Use debugger to test your code
Keep track and validate intermediate results (e.g., save log file, image figures)
Validate the output of custom code using the manually created results
Check your code with simulated (surrogate) data

Protective (preventive) programming Make your code to check the intermediate output results as it runs

Irrelevant data and code quality Make sure the variables do not contain data from previous operations (e.g., loop cycle)
Extract specialized business logic to separate functions (modular approach)
Do not duplicate code
Use meaningful names for functions and variables
Avoid hard-coded values within the code
Do not leave unsupported variables (e.g., initial parameters) in the code
Add comments to the most critical and non-trivial parts of the code
Adopt peer-review procedure

Consult documentation Do not trust your intuition. Make sure that the functions are called according to documentation

Take responsibility for the code you use Do not use the code without understanding it

Publish your code, if possible Make your code available to other researchers

Use source management systems Source systems permit to manage and document your code easily

data analysis programming (see, summary
in Table 1). Probably the most important
take-home message is not to assume that
the code you write is bug-free; that is, even
a small piece of relatively simple code may
contain a bug that could lead to incorrect
results. Therefore, it is important not to
be complacent and to take steps that can
prevent such failures.
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