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Prediction plays a key role in control of attention but it is not clear which aspects
of prediction are most prominent in conscious experience. An evolving view on the
brain is that it can be seen as a prediction machine that optimizes its ability to predict
states of the world and the self through the top-down propagation of predictions and
the bottom-up presentation of prediction errors. There are competing views though on
whether prediction or prediction errors dominate the formation of conscious experience.
Yet, the dynamic effects of prediction on perception, decision making and consciousness
have been difficult to assess and to model. We propose a novel mathematical framework
and a psychophysical paradigm that allows us to assess both the hierarchical structuring
of perceptual consciousness, its content and the impact of predictions and/or errors on
conscious experience, attention and decision-making. Using a displacement detection
task combined with reverse correlation, we reveal signatures of the usage of prediction
at three different levels of perceptual processing: bottom-up fast saccades, top-down
driven slow saccades and consciousnes decisions. Our results suggest that the brain
employs multiple parallel mechanism at different levels of perceptual processing in order to
shape effective sensory consciousness within a predicted perceptual scene. We further
observe that bottom-up sensory and top-down predictive processes can be dissociated
through cognitive load. We propose a probabilistic data association model from dynamical
systems theory to model the predictive multi-scale bias in perceptual processing that we
observe and its role in the formation of conscious experience. We propose that these
results support the hypothesis that consciousness provides a time-delayed description of
a task that is used to prospectively optimize real time control structures, rather than being
engaged in the real-time control of behavior itself.

Keywords: decision making, displacement (psychology), saccades, dynamical systems, information processing,

visual perception, predictive modeling

1. INTRODUCTION
Theories of consciousness can be grouped with respect to their
stance on embodiment, sensori-motor interaction, prediction
and information integration (Verschure, 2013). In this context,
especially the notion of prediction seems to play a key role in link-
ing the conscious experience of an intentional agent to its physical
environment and embodiment (Hesslow, 2002; Merker, 2005;
Revonsuo, 2006; Barsalou, 2008). Examination of the relation
between top-down predictive and bottom-up perceptual pro-
cesses can produce new insights into the functional significance
of conscious experience (Hohwy, 2012). In our case we address
this question from the perspective of the Distributed Adaptive
Control theory of mind and brain which proposes that conscious
experience provides a serialized task description that is used to
optimize parallel control loops that drive real-time performance
(Verschure, 2013). We have investigated how bottom up and
top down streams of information processing dynamically couple
and or uncouple (i.e., dissociate) depending on the demand for
cognitive resources dedicated to the consciously pursued task.

We hypothesize that under increasing cognitive load there will
be an increasing dissociation between perceptual processes and
conscious experience. We assess whether the functional signifi-
cance of this dissociation can be interpreted within the predic-
tive brain framework, which suggests that conscious experience
represents the top-down predictions of sensory states rather
than reflecting the actual bottom-up states of sensory systems
(Hohwy, 2012; Verschure, 2012). In this view it is through sim-
ulation that an internal world, or self-generated virtual reality
(Revonsuo, 1995), can appear in consciousness, freeing the organ-
ism from its immediate physical environment and its specific
contingencies (Edelman, 2001; Verschure, 2012). However, the
functional significance of conscious experience cannot be under-
stood without investigating the origins of the representations that
eventually populate this internal world. Within the predictive
brain framework two alternative hypotheses can be considered,
either the content of conscious experience represents “generative
models” (i.e., top-down predictions) or the internal world is pop-
ulated by prediction errors (i.e., information not included in the
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generative models but rather expressed in their discrepancy with
sensory states derived from the world). To discriminate between
the two hypotheses, we designed a psychophysical task based on
prior theoretical work (Mathews et al., 2011), where subjects were
asked to detect stimulus displacements of otherwise predictably
behaving visual stimuli. Subjects’ responses were measured on
three levels of information processing: conscious displacement
detections and fast and slow saccadic detections. By increasing
the cognitive load, without affecting the difficulty of the displace-
ment detection task, we were able to assess whether the three types
of responses were equally affected when processing events which
violated subjects’ predictions. This allowed us to examine how the
prediction error, i.e., conflict between sensory information and
top down prediction, differentially affected these different levels
of information processing. By analyzing the predictive properties
of non-detected (i.e., dissociated) events we were able to quan-
tify the extent to which conscious experience depends on sensory
information or on a predictive model.

1.1. PREDICTIVE BRAIN FRAMEWORK
The idea that the information processing of the brain is orga-
nized around prediction has reached prominence in the so-called
Bayesian Brain and predictive coding frameworks (Verschure,
2003; Friston, 2005; Barsalou, 2008; Clark, 2013). In this view,
core structures of the brain including the thalamo-cortical and
the cortico-basal ganglia system and the cerebellum are engaged
in forms of hierarchical Bayesian inference, extracting generative
models of both sensory inputs and the consequences of action,
across multiple time scales and modalities (Hesslow, 2002; Cisek
and Kalaska, 2010; Lau and Rosenthal, 2011). In neurophysio-
logical terms, top-down connections are suggested to convey the
content of these generative (predictive) models, while bottom-
up signals convey prediction errors between actual and predicted
sensory states (Rao and Ballard, 1999; Bar, 2007; Friston, 2010;
Mathews et al., 2011). How inference is exactly affecting per-
ception, cognition and consciousness is currently being debated.
For instance, the exact relation between predictive processing and
consciousness remains poorly understood although some corre-
lations between the two have been reported in coma patients
where an impairment of top-down functional connectivity was
observed (Boly et al., 2011). Moreover, there is no consensus on
which sorts of predictive models give rise to conscious contents,
and which do not. For instance, the cerebellum which comprises
about 70% of the neurons of the central nervous system, gen-
erates adaptive predictions of discrete events (Kawato, 1999),
while it is commonly assumed that this structure operates out-
side of the window of conscious experience (but see Laurens et al.,
2013 for an interesting exception). Furthermore, it is unclear
what the exact relations are between probabilistic representa-
tions as postulated by the Bayesian brain and the unitary and
singular nature of experience (Merker, 2005). In addition, the
impact of predictions on the conscious states of a system con-
ceived as a hierarchical Bayesian inference machine is debated.
On one hand one could argue that subjective states should be
dominated by the content of top-down predictions (Hohwy et al.,
2008; Clark, 2013) while others have argued that it is exactly
the bottom-up prediction errors that should define the conscious
scene facilitating error correction (Blakemore et al., 1999; Pally,

2005; Mudrik et al., 2011). Moreover, the Bayesian brain perspec-
tive does not have a clear funtional role for conscious experience.
Hence, it is of some relevance to experimentally assess whether
these two perspectives on the role of inference in the structur-
ing of both unconscious processing and conscious experience are
contradictory or complementary (Nir and Tononi, 2010). Several
experimental paradigms (see Bar, 2009 for a review) and a few
mathematical frameworks (Grossberg, 2009) have been proposed
to measure and model the top-down effects of prediction at
different levels of visual processing. Nevertheless, an experimen-
tal paradigm and theoretical framework to directly identify the
dynamic influence of prediction at different levels of visual per-
ception has yet to be proposed. Moreover, beyond some accounts
of anticipatory modulation of physiological responses in frontal
brain areas (Summerfield et al., 2006), it still remains unclear
how prediction/anticipation directly affects perception at a neu-
rophysiological level. Here we present a combined theoretical and
experimental approach that allows achieving this objective in the
context of a perceptual task.

The idea that perception is defined through predictive models
of environmental causes of sensory input enjoys a rich pedigree
(Tolman, 1932; Craik, 1943; Helmholtz, 1860; Gregory, 1961;
Barlow, 1972). Experimental signatures of explicit or implicit
anticipation of stimuli are manifested in diverse perceptual tasks,
including the reduced response delays observed in visual process-
ing due to subliminal priming (Kiesel et al., 2007) and changes
in reaction time and precision of the smooth pursuit of objects
and motion (Barnes et al., 2000; Winges and Soechting, 2011). At
the level of the neuronal substrate, this notion has found support
in physiological accounts of the influence of long-range cortical
projections in modulating the activity of primary sensory areas
(Cox et al., 2004; Ekstrom et al., 2008), the anticipatory modu-
lation of bottom-up visual responses (Summerfield et al., 2006)
and in the integration of bottom-up processes including at the
single neuron level (Fries et al., 2001; Ekstrom et al., 2008). Also
models of perception widely use the principle of the minimiza-
tion of the reconstruction error between sensory input and its
prediction (Grossberg, 1980; Verschure et al., 1992; Montague
et al., 1995; Dean and Porrill, 2008; Duff and Verschure, 2010).
Given this experimental and theoretical support, the question is
whether this inference system that mediates between sensation
and conscious experience follows a monolithic hierarchical struc-
ture or rather dynamically configures itself dependent on task
constraints.

1.2. ANTICIPATORY FIELDS FOR DATA ASSOCIATION
At an abstract level the notion of hierarchical inference seems
to capture the functional aspects of mind, brain and behavior.
However, when translating it to the level of physical implementa-
tion and real-time, real-world interaction a number of important
questions emerge. For instance, in considering the role of pre-
diction in perception it is usually seen as a monolithic process
involving a single prediction and error generation mechanism
(Spratling, 2010). However, computational work has shown that
physiologically realistic hierarchical models of visual systems can
be generated by systems that optimize specific objectives defined
through a top-down error signal (Wyss et al., 2006). In addition,
the computational principles of systems underlying perceptual
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learning might differ from those driving behavioral learning
(Verschure, 2012). Where the former can be seen to follow the
statistics of inputs, the latter has to process the significance of
transient and intermittent reinforcement signals in the face of
varying goals and environmental conditions (Verschure et al.,
2014). This illustrates that it cannot be excluded that predictions
and their underlying representations are generated differently and
independently at various levels of perceptual an cognitive pro-
cessing, from the mechanisms driving rapid saccades to processes
underlying conscious decisions. For instance, subjects consciously
performing a cognitive task, displayed a perceptual learning
dependent bias in the processing of subliminally presented visual
stimuli that was associated with enhanced responses in numerous
neuronal structures including the hippocampus and the neocor-
tex (Turk-Browne et al., 2010). Building on prior theoretical work
(Mathews et al., 2011), we first ask whether signatures of predic-
tions of sensory events, measured as “anticipatory fields,” can be
observed in visual decision making tasks and investigate if such
biases affect bottom-up and top-down perceptual processes. To
this end, we designed a psychophysical experimental paradigm to
investigate the hierarchical organization of the processes underly-
ing a basic perception action loop. Using a psychophysical method
called “reverse correlation” (Ahumada, 1996), we define spatial
locations around stimulus movement trajectories were stimu-
lus displacements are not detected by the subjects. These spatial
locations are referred to as “anticipatory fields” and are calcu-
lated independently for three levels of information processing:
conscious detections of displacements and fast and slow sacadic
detections. Our model proposes that observations that fall out-
side of these regions (“anticipatory fields”) are exceptions and call
for the allocation of resources, i.e., attention or action, in order
to correct for prediction errors (See Materials and Methods).
Effectively, this means that the concepts that structure perception

are defined in a feed-forward fashion through the association
of individual observations, i.e., data association. In turn these
concepts regulate data acquisition in a top-down fashion by spec-
ifying regions in data space where future relevant events are
expected. In order to assess this process structure and the relation-
ship between the different stages of processing, we manipulated
the cognitive load of the subjects using an additional cogni-
tive task. Following the Distributed Adaptive Control theory of
mind and brain (Verschure et al., 1992) we distinguish three dis-
tinct levels of processing that are increasingly more dependent
on memory and information integration: fast and slow saccades
and conscious decisions. Our results show that cognitive load
has direct, quantifiable and dynamic influences on the parallel
visual anticipations generated by the subjects as measured in their
fast and slow saccades and conscious decisions. We subsequently
model the observed phenomena using Bayesian dynamical sys-
tems theory to capture both the parallel and the top-down bias of
anticipation in human visual perception. Our results provide con-
crete evidence for influences of prediction in perception at higher
levels of information processing and for dynamic uncoupling of
unconscious and conscious processes depending on task demands
and behavioral goals.

2. MATERIALS AND METHODS
2.1. EXPERIMENTAL PROCEDURE
13 subjects observed a fixed number of identical non-filled white
circles (n = 10, referred to as items) on a gray background
(Figure 1A). Each item followed a linear path at a constant speed
and bounced against the display boundaries. The movement
speed of each circular item was 14◦C/s and held constant. Once
every T seconds, one of the moving items was displaced (i.e.,
jumped) from its linear trajectory and then continued its linear
motion at the same speed and direction prior to displacement

FIGURE 1 | Experimental setup and experimental protocol. (A) Subjects
face a screen with the head stabilized on a chin rest. The display shows
linearly moving circular items that deflect off the sides of the display.
Subjects report detected displacements with a button press. (B) Illustration
of a displacement event. Left: the constellation of the moving circles before
the displacement. Right: constellation after displacement. Movement

direction is indicated by arrows. The displaced item is shown in blue before
the displacement and in red after the displacement. The colors, arrows and
lines are only for illustration purposes, and not used in the experiment. (C)

Schematic of the time windows used to define fast saccades, slow saccades
and conscious decisions after displacement. The inter-displacement times are
randomized between 3000 and 8000 ms.
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(Figure 1). Inter-displacement time T was randomized between
3000 and 8000 ms to avoid automated rhythmic responses. The
displacement was randomized in two ways: first, the item to be
displaced was randomly chosen from all items excluding those
closer than 3◦ to a boundary. Second, the displacement angle was
drawn from a uniform distribution from 0 to 360◦ and the dis-
placement distance was randomly chosen between 2.5 and 7.5◦.
After the displacement the item continued movement on the same
linear path. The primary task of the subjects was to press a but-
ton whenever they perceived a displacement of an item (Figure 1).
Linear movements of items were used in order to control the
movement predictions generated by the subjects (Lisberger et al.,
1987). By using several simultaneously moving circular items, we
avoided visual habituation during smooth-pursuit of a single lin-
ear movement (Eggert et al., 2009). Subjects were not instructed
to fixate or to saccade, but were merely instructed to look freely
anywhere on the screen. The task was to press the button if a dis-
placement was seen. The subjects were not instructed to respond
quickly and no feedback on performance was given. The sub-
jects were 13 university students (5 female) 27 ± 5.11 SD age.
All had normal or corrected-to-normal vision. Subjects provided
written consent before the experiments. A session consisted of 9
trials, 3 min each (3 trials for each of 3 cognitive load conditions
defined below). The experimental design allowed to modulate the
cognitive load without affecting the perceptual load (Camos and
Barrouillet, 2004). In the low cognitive load condition the subject
solely performed the above displacement detection task (referred
to hereafter as the low load task). For the medium cognitive
load condition the subjects were instructed to continuously recite
aloud the alphabet in their mother tongue while performing the
above psychophysics task (the medium load task). For the high
cognitive load condition the subjects were instructed to continu-
ously recite aloud the alphabet in their mother tongue in reverse
order skipping every other letter (high load task). Recalling less
automatized chains (alphabets in reverse order and skipping every
other letter) is known to induce higher cognitive loads than more
automatized chains (like the alphabet in forward order) (Camos
and Barrouillet, 2004). The order of low, medium and high cog-
nitive load tasks were randomized for each subject. After each
trial subjects could rest for 1 min and take their head off the chin
rest.

2.2. EXPERIMENTAL SETUP
We used the Tobii X120 eye tracker (Tobii Technology, 2014)
that tracks gaze position at 120 Hz. The visual stimulus presen-
tation environment was developed using the Unity 3D engine
and ran at 250 Hz, with a 60 Hz refresh rate of the screen.
The button press and the circular item movements were logged
and time synchronized with the eye tracking data. The LCD
screen measured 115∗65 cms with 1920 × 1080 pixels resolu-
tion. The subject sat head stabilized at 110 cm from the screen
midpoint, giving a 2.4◦ radius of the circular items used as
visual stimuli. The contrast ratio between the white moving
item and the gray background was 2.27 in RGB scale. The
screen was covering 63.07◦ horizontally and 32.92◦ vertically of
the subject field of view. The movement speed of the circu-
lar items was 14◦. Eye tracker calibration was performed once

for each subject before the experiments. Calibration error was
below 2◦. Subjects were alone in the controlled experimen-
tal space and were instructed to recite aloud the alphabets so
that it was audible to the experimenter in the nearby separated
space.

2.3. DATA ANALYSIS
The gaze data collected from the eyetracker was classified into
two distinct types of events: fixations and saccades. These events
were distinguished based on point-to-point velocities of gaze:
low velocity points were marked as a fixation while high veloc-
ity ones were marked as a saccade. In order to reduce noise
in the velocities and thus make the classification method more
accurate we applied a clustering algorithm over the raw gaze
data based on Tobii studio solution (Tobii Technology, 2014).
The algorithm moved each point to a centroid calculated from
a mean position of points found within a 96 ms time window
and below a fixed distance threshold. This procedure created
well defined, spatially and temporally, clusters of fixations sepa-
rated by saccade gaze points. We studied two kinds of saccades
and computed the anticipatory fields for each of them sepa-
rately. First we looked at the fast saccades that occur below
250 ms after displacement of a stimulus. Second, we looked at
the slow saccades that occur between 250 and 800 ms after dis-
placement. We defined a displacement as detected by an fast/slow
saccade, if the saccade toward the displacement location occurred
in the above defined time windows. To distinguish between sac-
cades toward the displacement and random locations we used
a cosine measure describing the angle between a vector from
gaze position to displacement position and a vector of a real sac-
cade. All data analysis was performed using Python toolboxes
(sciPy, numPy).

2.4. PSYCHOPHYSICAL REVERSE CORRELATION
Reverse correlation has been used in psychophysical studies to
characterize observer strategies in visual tasks (Ahumada, 1996)
and in physiological studies to characterize neural responses to
visual stimuli (Victor, 2005). Reverse correlation has proven to be
a powerful technique for seeking relationships between a high-
dimensional variable (e.g., an image) and a categorical variable
(two-choice decision or neural response) (Victor, 2005). Here we
tailored psychophysical reverse correlation to analyze the con-
scious decisions, and fast and slow saccades of our subjects. Each
event is a displacement that is plotted as a point on a direction-
corrected coordinate system (Figure 2, left), where the positive
x axis is the linear movement direction of the circular item.
We then sort the stimuli according to the detected and non-
detected displacements (using either button presses, fast or slow
saccades as the detection criterion). We subsequently compute
the average detection and non-detection densities and use data
interpolation to yield a two-dimensional probability distribution
for detection and non-detection densities separately. The dif-
ference between the two probability distributions (non-detected
versus detected) is computed and fitted with a 2D Gaussian dis-
tribution. The covariance ellipse of the Gaussian distribution
is referred to as the psychophysical kernel or the anticipatory
field.
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FIGURE 2 | Psychophysical reverse correlation. Each displacement trial
(left) is corrected for movement direction defining the x−axis (red arrow). X
and Y axis indicate horizontal and vertical angular displacements respectively
after correction for direction of stimulus movement. Each trial is sorted in
terms of the three detection levels (conscious decision, fast saccade and
slow saccade) and the density kernels of detected and non-detected trials are

computed separately. Further, the detected trial’s kernel is subtracted from
the non-detected kernel and the error ellipse is computed for this difference
of kernels. This error ellipse is the psychophysical kernel or anticipatory field
for that specific response class. We analyze four properties of the anticipatory
fields: area, shift, eccentricity and orientation. Inset shows the anticipatory
field for a single subject for the fast saccades in the low cognitive load task.

3. MODEL
We consider the Joint probabilistic data association (JPDA) algo-
rithm as the model underlying human visual data association
in dynamic predictable scenarios (Bar-Shalom and Fortmann,
1988). JPDA is a single-scan approximation to the optimal
Bayesian filter, which associates latest observations to known
targets sequentially. JPDA enumerates all possible associations
between observations and targets at each time step and computes
the association probabilities βjk, which is the probability that
the j-th observation originated from the k-th target. Given such
association probabilities, the target state is estimated by Kalman
filtering (Kalman, 1960) and this conditional expectation of the
state is weighted by the association probability. Let xk

t indicate the
state of target k at time step t, ωjk the association event where
the observation j is associated to target k and Y1:t stays for all
the observations from time step 1 to time step t. Using apriori
knowledge about the world (e.g., state transition matrix(A), pro-
cess noise (Q), measurement matrix (H), control-input model
(B) and the control input-vector (û) of the Kalman filter) and the

current state of the target, a prediction is made for each target. At
timestep t, for each target k, we compute the state prediction, its
covariance and the measurement prediction as follows

x̃k
k = Ax̂k

t − 1 + Bûk
t − 1 (1)

P̃k
t = AP̂k

t − 1AT + Qk
t − 1 (2)

ỹk
t = Hx̃k

t (3)

Then the state of the target can be estimated as:

E(xk
t |Y1:t) =

∑
ω

E
(

xk
t |ω, Y1:t

)
P(ω|Y1:t) (4)

=
∑

j

E
(

xk
t |ωjk, Y1:t

)
P(ωjk|Y1:t) (5)

where ωjk denotes the association event where observation j is
associated to target k and ω0k denotes the event that no obser-
vation is associated to target k. Therefore, the event association
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probability is βjk = (ωjk|Y1:t). JPDA computes a anticipatory gate
for each target using the Kalman innovation of new observations.
It only considers observations inside the anticipatory gate for each
target. The ellipsoidal anticipatory gate using the Kalman filter is
discussed in section “Psychophysical reverse correlation.”

We consider the linear state evolution model for state dynam-
ics of target x at time k:

xk = Axk − 1 + Buk − 1 + ρp (6)

where ρp is the process noise with time-invariant covariance
matrix Q, B is the control-input model and uk the control vector.
The well-known linear Kalman filter prediction and estimation
steps is used to update the state. The ellipsoidal anticipatory gate
is optimal for the above linear observation model1 with additive
noise:

z = Hx + ϕ (7)

where ϕ is the zero Gaussian measurement error with p(ϕ) =
N (ϕ; 0, R) and is independent of the state x. H is the observa-
tion model which maps the true state space into the observed
space. The state probability density function is Gaussian p(x) =
N (x; x̂, P). The validity of measurement yi is determined from
its innovation with the predicted observation:

ν = yi − Hx̂ (8)

with the covariance S = R + HPHT . The anticipatory gate is
computed by gating the Mahanalobis distance (the normalized
innovation squared (NIS)):

νTS−1ν < Md (9)

Md is the threshold for an innovation dimension d and can be
computed efficiently since the NIS follows a chi-square probabil-
ity density function. e.g., to compute the probability that j% of
true associations are accepted, Md is obtained from

j

100
= P(

d

2
,

Md

2
) (10)

where

P(a, b) = 1

�(a)

∫ b

0
e−t ta − 1 dt (11)

is the incomplete gamma function (Press et al., 1992). The antici-
patory field (commonly known as validation gate) defines a region
of acceptance such that (100 − j)% of true measurements are
rejected given that the measurements yi are distributed accord-
ing to

p(y) = N (y; Hx̂, S) (12)

1further we omit the time-subscripts of state space variables for the sake of
clarity

This formulation avoids the necessity to model clutter, which is
usually very hard to model, and also unlikely associations are
eliminated. For non-linear anticipatory gates for non-Gaussian
models see Bailey et al. (2006).

4. RESULTS
4.1. BEHAVIORAL RESULTS
We used a repeated measures MANOVA and a post hoc test with
Bonferroni correction to identify the within subject differences
in the accuracy and latency of conscious detections (Figure 3).
MANOVA with a Greenhouse-Geisser correction determined that
mean reaction times differed significantly between conditions
[F(1.455, 17.458) = 20.849, p = 0.009]. An increase of cognitive
load increased the response times, by 111 ms ± 25 SE (p = 0.002)
from low to high load and by 110 ms ± 15 SE (p < 0.001) from
medium to high load. We observed a significant decrease of the
conscious detection rate [F(1.149, 12.641) = 8.918, p = 0.009]. The
post hoc test revealed that an increase of cognitive load decreased
the response accuracy, by 6.1% ± 1.7 SE (p = 0.013) from low to
medium cognitive load and by 19.0% ± 5.5 SE (p = 0.016) from
low to high cognitive load. The accuracy decreased from medium
to high cognitive load by 13.0% ± 5.5 SE however this difference
was not statistically significant (p = 0.116). This observation
provides a first indicator of a dissociation between bottom-up
saccades and conscious decision processes.

4.2. GAZE RESULTS
To analyze the effect of the displacement event on the gaze behav-
ior, focused on the gaze shifts in the time window following an
event. We identified the first fixation cluster that ended after the
event. These fixation clusters represent the last locations where
subjects was looking before the event occurred. The first fixation

FIGURE 3 | Left: Reaction times for consciously detected displacements.
Reaction times were measured from the onset of the stimulus displacement
untill the subject’s response with a key press. “Cl” stands for “cognitive load.”
The asterisk mark conditions where differences were statistically significant
(p < 0.05). For the low cognitive load condition mean reaction time was 653 ±
127 ms, for medium 654 ± 122 ms for high 764 ± 134 ms. Right: Proportion of
consciously detected displacements. The proportion represents the amount
of consciously detected displacements out of all displacement events. The
average proportion of detected displacements (i.e., accuracy) was 0.86 ±
0.11 for low, 0.80 ± 0.10 for medium and 0.67 ± 0.22 for high cognitive load.
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cluster that started after the displacement represented the shift
of attention temporally related to the displacement. To measure
the extent to which the events attracted attention we measured
parameters of gaze shift (i.e., saccades) between the last fixation
before and first fixation after the displacement. The difference
between the fixation position before and after the displacement
event, represents a vector of a saccade in the temporal window
of interest (Figure 4). We translate the origin all of these vectors
to the center of a two dimensional coordinate system and rotate
them around the angle between the x-axis and the displacement
location (Figure 4A). Thus, the positive direction along the x-
axis represents the gaze shifts toward the displacement location.
The magnitude of each vector represents the absolute size of the
gaze shift. We observe that the distribution of the x-components
of gaze shift vectors is positively skewed towards the positive tail
of the distribution. Using a K-squared test we determined that
the distribution is significantly different from normal (skewness
= 0.38, p < 0.01). The angle between the represented vector and
the x-axis represents the accuracy of the gaze shift relative to the
position of the displacement. By measuring the cosine between
the real gaze shift vector and the optimal trajectory towards the
displacement (i.e., positive x-axis) we obtain a measure which
shows the effect of displacement events on gaze shifts. The cosine
value of 1 represents a saccade exactly towards the event location,

while –1 represents and anti-saccade. In Figure 4B we show the
distribution of the cosine where the majority of the data points
occur around the value of 1. Using the Kolmogorov-Smirnov test
we compare this distribution to a hypothetical random uniform
distribution based on values between −1 and 1 which would
occur if there was no effect of displacement on the gaze shift.
The test confirms that the displacements significantly affected the
directions of saccades (D = 0.21, p < 0.001). We observe that
the reaction time of saccades, i.e., the latency of the gaze shift
following the displacement event showed a bi-modal distribu-
tion. We divided the saccadic responses based on their latency
into fast saccades occurring below 250 ms and slow saccades
occurring between 250 and 800 ms (Figure 5). We hypothesized
that under increasing cognitive load, there will be a dissoci-
ation between bottom-up perceptual and top-down conscious
processes. To elucidate this dissociation, we analyzed the rela-
tion between fast and slow saccades and conscious decisions
after displacements. We observe that although the number of fast
[χ2

(2) = 3.500, p = 0.174] and slow [F(1.81, 21.789) = 0.319, p =
0.709] saccadically detected displacements does not change with
cognitive load, there is a significant decrease in the proportion
of slow saccades that are followed by conscious decisions [χ2

(2) =
10.844, p = 0.004] (Figure 6). A Wilcoxon signed-rank test using
Bonferroni correction showed that there is a significant decrease

FIGURE 4 | (A) Distribution of saccade vectors in the time window following
a displacement event. The positive x-axis represents direction toward the
displacement position. The magnitude of saccade vector represents the
absolute size of gaze shift. Vertical blue line represents the mean of the

distribution, red line marks the 0 value. (B) The cosine of the angle between
the x-axis and the saccade vector represents the effect of the displacement
on the gaze shifts. The cosines of value 1 represent saccades directed at the
displacement location.
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FIGURE 5 | Distribution of saccadic response times, measured from

the onset of stimulus displacement untill the beggining of the first

fixation following the displacement event. Top: latencies of saccades

toward a displacement event. Black line marks the division between fast
and slow saccades. Bottom: latencies of saccades toward
non-displacement locations.

FIGURE 6 | Proportion of displacements wich were followed by a saccade

towards the displacement location. “Cl” stands for “cognitive load”
condition. The asterisks mark conditions where differences were statistically
significant (p < 0.05). Top: Proportion of displacements detected by fast and
slow saccades. The proportion of displacements detected by fast and slow
saccades did not change across conditions [χ2

(2) = 3.500, p = 0.174 for fast

saccades and F(1.81, 21.789) = 0.319, p = 0.709 for slow saccades]. Bottom:

Proportion of saccadically detected events also followed by conscious
detection. This proportion was significantly different between the conditions
[χ2

(2) = 10.844, p = 0.004]. The median amount of late saccadic detections
followed by conscious detections was 1.0 in low condition, 0.76 for the
medium and 0.63 for the high condition.
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in the median of saccades followed by conscious detection from
the low (M = 1.0) to the medium (M = 0.76, p = 0.016) and from
the low to the high (M = 0.63, p = 0.016) cognitive load condi-
tion. i.e., with increasing cognitive load, an increasing number of
slow saccades are not followed by conscious detections. This again
suggests a dissociation of bottom-up saccadic and top-down con-
scious decision making processes. To further understand this
phenomenon we investigated the specific features of the detected
and non-detected displacements in the three cognitive load
conditions.

4.3. PSYCHOPHYSICAL REVERSE CORRELATION
We designed a psychophysical reverse correlation analysis
(Ahumada, 1996) to investigate the nature of the detected and the
non-detected displacements. This technique provides a unique
tool to uncover properties of internal representations and predic-
tions (fast and slow saccades) and conscious decision strategies of
individual participants in the perceptual task. The psychophysical
kernel or anticipatory field (see Materials and Methods) repre-
sents the area (centered at the location of the item if there were no
displacement) in which displacements of the item do not trigger
responses, i.e., fast/slow saccades or button presses. Alternatively
the anticipatory field could be thought of as the perceptive area
where future data derived from the item are anticipated thus
leading to no overt response to displacements. The intra-subject

changes in the anticipatory fields shows a marked modulation
by both the response system and the cognitive load condition
considered (Figure 7).

To shed light onto the nature of the anticipations at work at
different levels of perception, cognition and action, we investi-
gated four different properties of the anticipatory fields computed
separately for conscious detection, fast saccades and slow sac-
cades: their area, eccentricity, shift and orientation. The area
of the anticipatory field ellipse corresponds to the location
of the non-detected displacements relative to the item’s ini-
tial position. The orientation of the anticipatory field allows
the definition of potential anticipatory biases in directions rel-
ative to the item’s movement. If there were no bias in antic-
ipations of future stimuli, the anticipatory fields should be
circular (eccentricity 0) and centered at origin (shift 0), as a
circular anticipatory field would signify a uniform distribu-
tion of the chances to detect displacements in all directions.
The shift and eccentricity would similarly indicate a bias in
the detection probability distribution. We normalized all dis-
placements with respect to the item’s movement direction,
i.e., the positive x-axis (see Materials and Methods Figure 2).
After the computation of the anticipatory fields for each sub-
ject and for each cognitive load, we analyzed intra-subject
changes in the above properties of the anticipatory fields
(Figure 7).

FIGURE 7 | The intra-subject psychophysical kernels as a function of response system and cognitive load. We measured 4 properties of the ellipses
fitted over the detection probability distributions (i.e., anticipatory fields): shift, eccentricity, orientation and area.
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We observe a high variance in the inter-subject means for the
above four parameters for all cognitive load conditions, suggest-
ing distinct displacement detection baselines for each subject and
making an intra-subject analysis more informative. For this, we
computed the difference of the above four parameters for each
subject between medium and low (m-l), high and medium (h-m)
and high and low (h-l) cognitive loads. The anticipatory ker-
nels were tested using a repeated measures MANOVA, as each
subject completed three experimental conditions and we were
testing multiple (four) parameters of the anticipatory kernel. A
repeated measures MANOVA with a Greenhouse-Geisser cor-
rection determined that mean area of the anticipatory kernel
representing conscious detections differed significantly between
conditions [F(1.460, 17.522) = 5.536, p = 0.02]. Post hoc tests
using the Bonferroni correction revealed that an increase of cog-
nitive load increased the kernel area, but only for the low to
medium cognitive load condition (p = 0.028). For the medium
to high condition the kernel area again started decreasing, how-
ever the trend was not significant (p = 0.273). These results seem
to show a ceiling effect of the cognitive load on the kernel area
increase. Medium cognitive load already caused maximum effects
on anticipatory processes. Increasing the difficulty of the cogni-
tive load task did not produce additional effects on anticipatory
visual processes but only on the controlled voluntary processes
(i.e., conscious detections). Therefore, we can observe no signif-
icant differences in kernel parameters between m-h conditions
while still seeing a significant increase in reaction times for m-
h [F(1.455, 17.458) = 20.849, p = 0.009] and response accuracies
[F(1.455, 17.458) = 20.849, p = 0.009). We observed that there
were no significant intra-subject changes in eccentricity, shift and
orientation (Figure 8) in the conscious detections anticipatory

kernel. These results were found only for conscious detections
kernels, i.e., for the higher level processes, suggesting a top-down
influence on movement anticipation. The fast and slow sac-
cade kernels did not differ between conditions confirming their
bottom-up nature (Fischer et al., 2007; Table 1).

Table 1 | Summary of behavioral results.

Low Medium High

cognitive load cognitive load cognitive load

Response accuracy
(Mean)

0.86 ± 0.11 0.80 ± 0.10 0.67 ± 0.22

Reaction time
(Mean)

653 ms ± 127 654 ms ± 122 764 ms ± 134

Fast saccadic
response (Median)

6.35 7.69 9.37

Slow saccadic
response (Median)

17.19 13.3 15.0

Fast saccades
followed (Median)

0.71 0.72 0.60

Slow saccades
followed (Median)

1.0 0.76 0.63

Response accuracy and reaction times represent the conscious detection results

(subject key-press) for the displacements. Fast and slow saccadic responses rep-

resent the percentage of displacements which were detected by the saccade.

Saccadic detection is recorded if the gaze shifted towards the displacement loca-

tion (shift vector cosine > 0.95). “Fast and slow saccades followed” represent

the proportion (1.0 is a maximum) of the saccadic detections that were also

followed by conscious detection (key-press).

FIGURE 8 | Cognitive load dependent differences in intra-subject

psychophysical kernels (i.e., anticipatory fields). Anticipatory field
differences for the psychophysical kernels of fast saccades, slow saccades
and conscious decision between the three cognitive load cases. “hl”

indicates high load minus low load, “hm” indicates high load minus medium
load, and “ml” indicates medium load minus low load. Star indicates
significance of sign-test (p < 0.05). Differences in eccentricity, orientation
and shift were not significant.
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5. MODELING
Our model investigates whether the observed changes in the
anticipatory field are due to the cognitive load induced noise
(see Materials and Methods section). Based on our earlier work
on a self-contained model of bottom-up and top-down attention
(Mathews et al., 2008, 2011), we use a probabilistic data associa-
tion model from dynamic systems theory which uses a Kalman
filter for the state update of individual items. A displacement
that is not detected is modeled here as the association of sensory
data to a known memory item. Analogously, a detected displace-
ment is modeled as a sensory input not being associated to any
items in memory. We model the cognitive load as process noise
of the dynamic system which corresponds to the noise involved in
the state updates of memory items (Bar-Shalom and Fortmann,
1988). Thereby we conjecture that an increase in cognitive load
strains higher-level processes and this therefore induces higher
noise in the state update of memory items. Indeed it has been
shown that uncertainty in decision making correlates with an
increase in the variability of firing in the prefrontal cortex (Marcos
et al., 2013). We increased the process noise and observe the
change in the anticipatory field properties (Figure 9). Following
the empirical results, we observe an increase in the area (i.e., more
missed displacements), and more significantly, an increase in the
eccentricities when we compare the low load and high load condi-
tions. Nevertheless, the change in process noise induces no change
in shift and orientation as observed in our empirical data.

6. DISCUSSION
We have investigated the question of how prediction affects dif-
ferent levels of perception and cognition from rapid saccades to
conscious decisions. We have used manipulations of cognitive
load to influence the coupling between these levels of process-
ing. We observe that each level of processing we distinguished
operates in specific constrained regions of sensory space defined
as anticipatory fields confirming our theoretical prediction. Our
results also suggest that cognitive load dynamically biases visual
anticipation at the level of conscious decision making both in
terms of the anticipatory field and the coupling with preced-
ing more rapid attentional processing. We found a significant
effect of cognitive load on the coupling between top-down and
bottom-up processes, represented in the proportion of late sac-
cadic detections followed by conscious detections (Figure 6). This
proportion represents the amount of displacement events which
were detected by a saccade divided by the amount of events which
were detected by both the saccade and conscious response. The
system controlling gaze behavior was responding to stimulus dis-
placement with the same accuracy across conditions (no statisti-
cally significant differences in saccadic detection rates – Figure 6)
while the amount of saccadic detections, which were also fol-
lowed by conscious detections significantly decreased between
conditions. This means that under low cognitive load condi-
tion the two systems were tightly coupled (median of saccadic
detections followed by conscious detections = 1.0) while with
increasing cognitive load the two systems became increasingly
more uncoupled (median proportion in medium condition =
0.76 and in high condition = 0.63). Our finding that the violation
of predictable stimulus movement (i.e., displacement) affected

conscious and saccadic detections differently across conditions,
suggests that predictions and their violations are not affecting all
levels of processing equally, but rather influence the levels most
relevant given the task demands. These results confirm that per-
ceptual predictive hierarchies of the brain are not monolithic but
rather potentially autonomous and encapsulated, being dynami-
cally coupled or uncoupled dependent on task requirements. Our
results suggest that this dynamic coupling serves the maintenance
of a coherent conscious scene, in our case the cognitive load task.
With respect to the question whether the conscious scene is dom-
inated by predictions or prediction errors, our results suggest that
conceptualized in terms of the anticipatory field the conscious
scene not only is defined by predictions but also maintains their
underlying representations at the expense of sensory data and its
associated errors, i.e., with increasing cognitive load the region of
input perceptual space covered by the anticipatory field increases
leading to a greater tolerance for exceptions in the expected input.
Hence, this suggests that the conscious scene aims at maintaining
its world model and its derived predictions with respect to a
specifically selected part of the input space that is, in the exper-
iment reported here, in the center of gaze and closely matched
to the specific properties of the sensory stimulus. In parallel,
rapid subconscious processes assess alternative interpretations,
i.e., displacements that are not processed at the level of conscious
decisions can still be detected by the early visual system as mea-
sured using saccadic responses, and potentially gain access to con-
sciousness when discrepancies are large enough. These subcon-
scious processes are able to satisfy the task requirements as they
were defined here, i.e., detect displacements. Conversely, errors,
such as observations that fall outside of the anticipatory field,
rather than impact the content of the conscious scene, trigger an
allocation of attentional resources and in this way a reconstitu-
tion of the content of perceptual processing and the conscious
scene.

6.1. EMPIRICAL RESULTS
In our analysis we combined a displacement detection task
together with the detection of fast and slow saccades and
psychophysical reverse correlation. Fast and slow saccades were
first observed in monkeys using gap and overlap tasks, where a
bimodal distribution of saccadic latencies to single targets was
reported (Fischer and Rampsberger, 1984). Top-down influences
on slow saccades have been reported previously, while this effect
for fast saccades remains unclear. Our experimental paradigm
deviates significantly from Multiple Object Tracking (MOT),
where visually identical items move on non-linear Brownian
motion tracks and the task is to keep track of a specific item
(Pylyshyn and Storm, 1988). Our stimulus was designed to inves-
tigate if linear motion cues are used for anticipation of move-
ments. Our results, i.e., the decrease of slow saccades followed
by conscious detections, suggest that fast attentional processing
can perform this task independent of top-down conscious rep-
resentational systems. However, it is possible that details of the
task have reduced this effect. Saccadic responses were in theory
not necessary for detection of the displacement, which was still
detectable while subject was maintaining a fixation at the cen-
ter of the screen. From this position it was possible to cover
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FIGURE 9 | Simulation results. Eccentricity, orientation, and area of
the anticipatory field are computed for varying process noise levels
(q). The resultant shift was zero for all three cases. Process noise

(q) is lowest on the leftmost plot and the highest on the rightmost
one. X and Y axis are horizontal and vertical angular displacements
(radians) respectively.

the whole screen within the parafoveal field of view, where sen-
sitivity for motion cues is maintained (McKee and Nakayama,
1984). Thus, the optimal strategy could have been to detect
displacements peripherally, rendering frequent saccades unnec-
essary for successful completion of the task. By maintaining the
perceptual task load over trials, and independently varying the
cognitive load using the extra verbal task, we were able to inves-
tigate the role of cognitive load in biasing visual anticipations.
The existence and the influence of higher level processes on visual
anticipation have been shown previously via top-down contextual
influences on property attributions to objects (Tremoulet, 2006),
top-down attentional influences on object location perception
(Tse et al., 2011), attentional facilitation of motion perception
based on past object movements (Watanabe, 1998) and implicit
perceptual anticipation triggered by statistical learning (Turk-
Browne et al., 2010). Our concept of anticipatory fields, charac-
terizes and quantifies this influence of higher-level processes on
anticipation at different levels of perception. Our approach mea-
sures conscious and unconscious decision making and provides a
method to quantitatively assess the effects of prediction on per-
ception at different levels of processing, posing an alternative to
other psychophysical approaches like metacontrast masking (Lau
and Passingham, 2006). The recurring topic of anticipation in
conscious perception has found strong evidence in experimen-
tal comparisons showing the overlap between the default state
network and the associative predictions network (Bar, 2009).

6.2. MODEL RESULTS
We proposed data association as the underlying mechanism to
explain our finding and used the JPDA algorithm to model the
variation in the anticipatory field properties with changing cog-
nitive load. The process noise of the Kalman process used for state
prediction and estimation of the moving items captures the influ-
ence of cognitive load on the anticipatory fields (Figure 9). Our
model can be extended to non-linear movements (Bailey et al.,
2006) and also to non-spatial domains (Gärdenfors, 2000). Our
probabilistic model of perception is supported by earlier seminal
research suggesting that what we see is a statistical consequence of
past experience rather than a representation of the retinal stim-
ulus itself (Purves et al., 2001; Verschure, 2003). An interesting
parallel to our findings is the effect created by magicians, where

most tricks rely on the fact that the human mind is vulnerable to
deceptions as it works with anticipations about the world (Kuhn
et al., 2008). The anticipatory field proposal could explain the
psychological phenomenon of inattentional blindness (Simons
and Chabris, 1999), as the former defines the perceptual area
inside which changes in the sensory input mostly go unnoticed.
To fully understand the process of anticipation and its influences
on consciousness, perception and action our probabilistic model
needs to be complemented with more detailed neural models and
physiology (Lamme et al., 2000) or brain imaging (Turk-Browne
et al., 2010) to investigate potential neural correlates of anticipa-
tory fields. We predict that the dynamic dissociation we observe
between the processes of conscious decisions and fast saccades
due to cognitive load will be mirrored in the dynamic cou-
pling and uncoupling of frontal and parietal regions of the visual
cortex.
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