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Introduction: We used an affective prime task composed of emotional (happy, angry, and
neutral) prime faces and target words with either positive or negative valence. By asking
subjects to attend to either the faces’ emotional expression or to the glasses’ shape, we
assessed whether angry facial expressions were processed when they were unattended
and task-irrelevant.

Methods: We conducted a distributed source analysis on the corresponding event-related
potentials focused on the early activity of face processing and attention networks’ related
areas. We also evaluated the magnitude of the affective priming effect.

Results: We observed a reduction of occipitotemporal areas’ (BA37) activation to unat-
tended compared to attended faces and a modulation of primary visual areas’ activity
lateralization. The latter was more right lateralized for attended than for unattended faces,
and emotional faces were more right lateralized than neutral ones only in the former
condition. Affective priming disappeared when emotional expressions of prime faces were
ignored. Moreover, an increased activation in the right temporo–parietal junction (TPJ), but
not in the intraparietal sulcus, was observed only for unattended angry facial expressions
at ∼170 ms after face presentation.

Conclusion: We suggest that attentional resources affect the early processing in visual and
occipito-temporal areas, irrespective of the faces’ threatening content. The disappearance
of the affective priming effect suggests that when subjects were asked to focus on glasses’
shape, attentional resources were not available to process the facial emotional expression,
even though emotion-relevant and emotion-irrelevant features of the face were presented
in the same position. On the other hand, unattended angry faces evoked a pre-attentive TPJ
activity, which most likely represents a bottom–up trigger that signals their high behavioral
relevance, although it is unrelated to task demands.

Keywords: ventral attentional network, temporo–parietal junction, EEG source analysis, threatening facial

expressions, attention modulation

INTRODUCTION
Emotional events play a crucial role in how humans interact with
one another and how they can adapt to changing environments. To
foster survival, it is essential that threatening stimuli that originate
from other people or from the environment may be processed
in a rapid and efficient manner. Many pieces of evidence show
that threatening information can be processed automatically and
independently of attention or attentional resources (Stenberg et al.,
1995; Vuilleumier et al., 2001; for reviews, see Compton, 2003;
Vuilleumier, 2005). Moreover, this information processing can
occur even without conscious perception (for a recent review, see
Tamietto and de Gelder, 2010).

One common stimulus used to demonstrate how threatening
information can be prioritized and processed efficiently is the

fearful facial expression. Several studies using different paradigms
have shown that even though the emotional content of the stimu-
lus is task-irrelevant, it captures attention and interferes with the
relevant task (Okon-Singer et al., 2007; Hart et al., 2010), delays
disengagement of attention (Georgiou et al., 2005), is detected
more easily than a neutral stimulus (Hansen and Hansen, 1988;
Anderson, 2005; Calvo et al., 2006) and is better detected as a
T2 in the attention blink paradigm compared with a neutral
T2 (Anderson, 2005). Further evidence for the automatic pro-
cessing of emotional expressions is derived from studies that
explicitly manipulated the focus of attention by asking subjects
to either attend to or ignore facial stimuli [e.g., Vuilleumier
et al., 2001; Anderson et al., 2003; Eimer et al., 2003; see Eimer
and Holmes, 2007, for a review of event-related potential (ERP)
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studies]. For instance, Vuilleumier et al. (2001) presented two
faces and two houses arranged parafoveally in the vertical or hor-
izontal axis. Subjects had to compare the faces (faces-attended,
houses-unattended) or to compare the houses (faces-unattended,
houses-attended). Fearful faces were compared with neutral faces.
The activation in the amygdala, the hallmark of emotional pro-
cessing, was higher with fearful than with neutral faces. Notably,
activation in the amygdala did not differ whether the participants
paid attention to the faces or to the houses.

Recent studies, however, have challenged the idea that the pro-
cessing of emotional information can occur without requiring
a sufficient amount of attentional resources (Pessoa et al., 2002,
2005; Holmes et al., 2003; Ochsner and Gross, 2005; Okon-Singer
et al., 2007; Silvert et al., 2007; Sassi et al., 2014). For instance,
Pessoa et al. (2002; see also Pessoa et al., 2005) found emotion-
related brain activity only when the subjects had to respond to
the gender of the faces (easy task), but not when they had to dis-
criminate the orientation of two peripheral bars (difficult task).
Holmes et al. (2003) compared ERPs between fearful and neutral
facial expressions when the subjects had to compare two faces
(face attended) versus two houses (face unattended), with both
faces and houses being simultaneously presented at different spa-
tial locations. Differences between the two emotional expressions
were observed only when faces were attended. In a recent behav-
ioral study, Sassi et al. (2014) used an affective priming task in
which a prime face showing either an emotional (positive or nega-
tive) or a neutral expression was followed by an emotionally laden
target word (positive or negative). In the critical trials the tar-
get word could be preceded by a face prime that belonged to the
same affective category of the target (congruent condition) or to
a different affective category (incongruent condition). Affective
priming was measured through congruency effects, that is, the
difference in performance between the congruent condition and
the incongruent condition. Sassi et al. (2014) observed affective
priming when the subjects’ attention was allocated to the emo-
tional information (emotion task), and also, albeit of a smaller
size, when the emotion expression was made task-irrelevant by
asking subjects to determine whether the face wore glasses (the
glasses task). However, when the subjects were asked to deter-
mine whether the glasses were rounded or squared (the shape
task), the affective priming effect vanished. This finding was prob-
ably a consequence of the fact that the shape task (difficult task)
required more attentional monitoring than the glasses task (easy
task), and therefore there were not sufficient attentional resources
as to process the emotional expression of the face prime (see
also Okon-Singer et al., 2007, for similar evidence using a cog-
nitive load paradigm). A common feature of the studies that
report attentional modulation of emotional processing is that
the non-emotional task usually involves a high attentional load;
therefore, sufficient attentional resources were not available to
process the emotional content of the stimuli (Lavie, 1995; Pessoa
et al., 2002, 2005; Okon-Singer et al., 2007; Palermo and Rhodes,
2007).

The present study is a follow-up of the Sassi et al.’s (2014) study,
although only two tasks were used: the emotional task, in which
subjects attended to the emotional expression of the face, and
the shape task, in which subjects attended to the shape of the

glasses so that the emotional facial expression was task-irrelevant.
In addition, whereas many studies have investigated the process-
ing of threatening stimuli using fearful faces, we were interested
in extending our affective priming studies to other negative emo-
tional expression. Thus, anger faces were selected for the present
study. Anger is frequently exhibited in daily life as much as other
negative expressions such as fear and sadness, but few studies have
used this emotional expression in paradigms that used attentional
manipulations.

On the basis of our previous results, we expected an affective
priming effect with the emotion task, but not with the shape task.
However, as Okon-Singer et al. (2007) pointed out, it is neces-
sary to dissociate attention-dependent processing from automatic
processing (at least the “weak” notion of automaticity, Tzelgov,
1997; Pessoa, 2005). Despite the lack of behavioral priming effects,
which might depend on the availability of attentional resources,
is still possible that processing of the negative facial expression
in the shape task occurs in a “strong” automatic way, indepen-
dently of both attentional resources and task relevance. Negative
facial emotional expressions may be related to threat and therefore
they may be behavioral relevant stimuli that require a fast auto-
matic reaction to foster survival. If that were the case, we would be
able to detect emotion-related brain activation even when subjects’
top–down attention is allocated to an emotion-irrelevant feature
of the face prime that requires fine-grained discrimination (the
shape task). The rational for that hypothesis is the existence of
a neural circuitry comprising both subcortical and cortical areas,
that is involved in the rapid and automatic detection of threaten-
ing salient stimuli, and that may play a crucial role for survival
(Vuilleumier, 2005).

In the study, we carried out distributed source analyses (Fuchs
et al., 1999) over the ERP generated by the face. Unlike dipole
analysis (Scherg and Von Cramon, 1985), which uses very few
sources and needs strong a priori hypotheses about their charac-
teristics, the source analysis technique represents the cortical brain
activity through the intensity of a large number of cortical gener-
ators, providing a more realistic simulation of brain functioning.
Among the several approaches available to solve the inverse prob-
lem of reconstructing the cortical sources that generated the
recorded scalp potentials, we opted for a well-established post-
processing method (Inuggi et al., 2010, 2011a,b; Gonzalez-Rosa
et al., 2013). It employs a sLORETA-weighted accurate minimum
norm method (SWARM) algorithm (Wagner et al., 2007), which
allows for the low reconstruction error of sLoreta (Pascual-Marqui,
2002) and also outputs a current density vector field that can later
be post-processed.

We focused then on the cortical areas that are involved in the
processing of the fine-grained facial features. Briefly, the process
of recognizing the static (identity, gender, familiarity) and the
dynamic (emotional expressions and gaze direction) characteris-
tics of the observed face are thought to rely mainly on a cortical
stream (Haxby et al., 2000; Palermo and Rhodes, 2007) embrac-
ing both the classical ventral stream (Ishai et al., 1999) and the
superior temporal sulcus (STS). The ventral stream originates in
the occipital areas and propagates through the occipital face area
(OFA) and the fusiform face area (FFA). The FFA is specialized
in decoding fine-grained static facial characteristics (Kanwisher
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et al., 1997; Halgren et al., 2000; Holmes et al., 2003; Bayle and
Taylor, 2010), while the STS, especially its posterior part (pSTS), is
involved in the processing of dynamic facial features, such as eye
gaze, and in decoding the emotional information from facial fea-
tures (Puce et al., 1998; Allison et al., 2000; Hoffman and Haxby,
2000; Said et al., 2010). Previous studies have observed that that
FFA activates more with facial than with non-facial objects (see
Haxby et al., 2000, for review), and therefore we expected reduced
activation of that area in the shape task (focused on a non-
face feature) compared to the emotion task (focused on a facial
feature).

To model the activation of these areas, we performed both
sources and sensors analysis in correspondence to the main ERP
components. Besides modeling the two mostly investigated early
components, the posterior P1 and the lateral occipito-temporal
N170, we also modeled the anterior N1 (Luo et al., 2010) and a later
positive component, peaking around 230–250 ms, whose name
and temporal location vary greatly across studies (e.g., VPP in Luo
et al., 2010; P270 in Liu et al., 2012). Both P1 and N1 components
have been associated with a first stage of automatic processing that
differentiates negative facial expressions from positive or neutral
facial expressions (Pourtois et al., 2004; Luo et al., 2010), which
reflects an early negativity bias (Smith et al., 2003). The N170
component has been involved in the distinction between faces and
non-faces stimuli (Bentin et al., 1996; Rossion et al., 2003; Itier
and Taylor, 2004; Luo et al., 2010). As the aforementioned compo-
nents have been shown to be affected by affective processing in an
early phase of perception and attention processing (Carretié et al.,
2004; Eimer and Holmes, 2007; Luo et al., 2010), they constitute
the main goal of our analysis of the first 300 ms postface prime
onset.

Source analyses were also employed to assess whether angry and
non-angry (happy and neutral) expressions were processed dif-
ferently when attention was directed to emotion-irrelevant facial
features. Specifically, because negative emotional expressions are
behavioral relevant stimuli, we expect activation in the ventral
attention network (VAN), which is supposed to detect behavioral
relevant but task-irrelevant stimuli and to exert a bottom–up mod-
ulation over the dorsal attention network (DAN; Corbetta and
Shulman, 2002; Corbetta et al., 2008). However, because emotion-
relevant and emotion-irrelevant features were foveally presented,
we did not expect any reorienting process by the DAN, which is
responsible for top–down control as it contains, specifically in the
Frontal Eye Field region, the proper circuitry to moves the eyes to
the selected target. Thus, we may be able to test the hypothesis that
the VAN might activate independently from the DAN by assess-
ing brain activity in both the temporo–parietal junction (TPJ;
VAN) and the intra-parietal sulcus (DAN). These networks are
considered supramodal (Macaluso et al., 2002; Green et al., 2011)
and not directly related to face processing. Because their involve-
ment in bottom–up and top–down control is derived mainly from
functional magnetic resonance imaging (fMRI) studies, whose
temporal resolution is not enough as to be coupled with elec-
troencephalography (EEG) activation findings, their activation
time course will be investigated here in the temporal proximity
of the classical ERP peaks, where the face feature decoding process
is expected to occur.

MATERIALS AND METHODS
SUBJECTS
Twenty-eight healthy, young (mean age 22.1 ± 2.3 years, range
19–30) subjects with no history of neurologic or neuropsychiatric
disorders were recruited to participate in this study. Fourteen sub-
jects (11 females and 3 males) participated in each task condition
(emotion and shape). All subjects were right-handed according
to their self-report and gave their written informed consent for
participation in the study.

TASK
Subjects were tested individually in a sound-attenuated room.
A computer program generated by E-Prime 2 (Schneider et al.,
2002) controlled the experiment. The stimuli were presented on a
17′′ TFT monitor (screen resolution: 1024 by 768 pixels; back-
ground color: silver – RGB: 200, 200, 200) and participants
responded via the keyboard. We used three grayscale pictures
(4.5 cm wide by 7.7 cm height) of human faces as prime stimuli,
one for each facial expression (happy, angry, and neutral). These
stimuli were taken from the NimStim Set of Facial Expressions
(Tottenham et al., 2009; the reference codes of the selected faces are
20_M_HA_O, 20_M_NE_C, and 20_M_AN_O). By using photo-
editing software, we created two versions of each picture, one
wearing rounded glasses, and the other wearing squared glasses.
As target stimuli, we used 36 Spanish words divided into two
sets, one comprising 18 positive words, the other containing 18
negative words. Mean valence ratings for the words of the two
sets ranged from 1.7 to 2.8 (M = 2.3) for positive words and
from –0.9 to –1.8 (M = –2.3) for negative words, according to
a preliminary study (N = 124; scale ranging from –3 to +3;
see Sassi et al., 2014). Positive and negative words were matched
for word frequency, familiarity, and word length using the LEX-
ESP database (Sebastián-Gallés et al., 2000). Each trial consisted
of the following sequence (the trial scheme is summarized in
Figure 1). First, a 1000-ms fixation point (a plus sign) appeared
in the center of the screen followed by one of the three prime
faces, which was presented for 200 ms. Then, after an interval
of 100 ms (stimulus onset asynchrony, SOA = 300 ms), a target
word was shown (in capital letters and black font) and subjects

FIGURE 1 | Sequence of events and time duration in the experiment.
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indicated whether the word was positive or negative by press-
ing the “n” or “m” key on the computer keyboard as quickly
and accurately as possible (this first response is referred to as
R1). Both prime faces and target words were presented cen-
tered. The specific response-key mapping was counterbalanced
across participants. Immediately following R1, a double-choice
question appeared on the screen, and subjects were prompted
to press, with no time limit, the key (“z” or “x”) that corre-
sponded to the correct answer (hereafter, R2). In the emotion
condition, subjects were asked whether the prime face was neutral
or emotional (the emotion task), whereas in the glasses’ shape con-
dition they were asked whether the face wore rounded or squared
glasses (the shape task). The whole experiment included 72 con-
gruent trials, 72 incongruent trials, and 144 neutral trials. In
congruent trials, the prime face and the target word belonged
to the same affective valence, either positive, as it happened in
happy-positive trials (N = 36) or negative, as it happened in
anger-negative trials (N = 36). In incongruent trials, a prime
face with different valence preceded the target word, as it hap-
pened in happy-negative trials (N = 36) and anger-positive trials
(N = 36). In neutral trials, a neutral prime face preceded the target
word, as it happened in neutral-positive (N = 72) and neutral-
negative (N = 72) trials. Target words were drawn from each set
at random, with the constraint that each word appeared in two
congruent trials, in two incongruent trials and in four neutral tri-
als. A short practice block of 18 trials preceded the experimental
trials.

EEG RECORDINGS AND PREPROCESSING
Electroencephalography was recorded using 59 scalp channels
mounted onto an elastic cap (ActiveCap, Brain Products GmbH),
according to the 10–20 international system, with the refer-
ence located close to the vertex. The EEG signal was amplified
(BrainAmp, Brain Products GmbH), digitized (1000 Hz sampling
frequency), and filtered (0.1 to 40 Hz). The electrode impedance
was kept below 5 K�. Four additional electrodes were placed
to monitor the left/right and horizontal/vertical ocular activity.
The eye movements’ artifacts were corrected with an independent
component analysis (ICA) Ocular Artifact Reduction algorithm
(Vision Analyzer, Brain Products GmbH). The ERPs were obtained
by averaging the EEG epochs from –250 to +300 ms with respect to
face onset, using the first 200 ms for baseline correction. Data were
finally re-referenced using a common average reference approach.

ERP COMPONENTS DEFINITION
According to previous studies, we focused on the P1 and N170
components and also on N1, which peaks in frontal regions at
∼100 ms. Additionally, our data revealed a late positive deflec-
tion, peaking at ∼240 ms, that was also investigated. Four pairs
of sensors clusters, whose amplitude was calculated as the mean
amplitude of their constituent sensors, were defined to model the
ERP components. In each subject and for each experimental con-
dition, the amplitudes of components’ peaks were calculated as the
maximum positive/negative deflections within the time windows
specified in Table 1. To better compare ERP results with source
analysis results, a further cluster, conventionally not investigated
in previous studies, was defined for the N170 period that covered

Table 1 | Event-related potential components investigated, electrodes

contained in the eight clusters used, and the window of interest used

to define the component’s peak.

Components Cluster name Electrodes in

cluster

Window of

interest

N1 L/R Frontal F3/4, FC3/FC4 80–130

P1 L/R Occipital PO7/8, PO3/4,

O1/2, Oz, POz

N170 L/R Occipito-temporal PO7/8, PO3/4,

P7/8

130–190

N170 L/R Temporo–parietal P5/6, CP5/6

P240 All the previously defined clusters 220–260

the temporo–parietal region. These eight cluster measures were
subjected to statistical analyses. In further analysis, the two occipi-
tal clusters were merged into a single cluster, and its activation was
expressed in terms of the lateralization of its medial–lateral center
of gravity, calculated with the following formula:

COGx = (a ∗ PO8 + b ∗ PO4 + c ∗ O2 − a ∗ PO7 − b ∗ PO3

− c ∗ O1)/2 ∗ (a + b + c)

where a,b,c represent the medial–lateral coordinates of those
electrodes in a 10–20 extended system.

SOURCE ANALYSIS
A preliminary ICA (Hyvarinen, 1999) was performed on ERP
data, which allowed for the decomposition of the signal to noise-
normalized independent components (ICs). Only those ICs that
showed an SNR below 1 across all intervals of interest (from –250
to 300 ms with respect to the facial onset) were removed from
the ERP data (Inuggi et al., 2011a,b). The source activity was
reconstructed using the cortical current density (CCD) model
with a conductor volume defined by a 3-compartment boundary
element method (BEM), with conductivity values of 0.33-0.0042-
0.33 S/m (Fuchs et al., 2002), derived from the FSL MNI template
(www.fmrib.ox.ac.uk/fsl), dimensions of 91×109×91 and a voxel
size of 2×2×2 mm. The sources number (6899) and positions
were obtained by sampling the cortex (5 mm wide), with their ori-
entations fixed perpendicular to the cortical patch they originated
from, and their intensities were calculated using the SWARM algo-
rithm (Wagner et al., 2007). The CCD was reconstructed with the
Curry V6 software (Neuroscan Inc., Herndon, VA, USA).

ROI definition
Cortical activity was calculated in seven pairs of right and left
regions of interest (ROI) involving lateral fusiform gyrus (BA37),
posterior superior temporal sulcus (pSTS), TPJ plus inferior pari-
etal lobule (TPJ+IPL), intraparietal sulcus (IPS), middle frontal
gyrus (MFC), inferior frontal gyrus (IFG), and primary visual area
(V1). In an additional analysis, the two V1 ROIs were merged into
a single ROI, and its activation was expressed in terms of later-
alization of its medial–lateral center of gravity, calculated as is
explained later on.
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Regions of interest were manually drawn on the MRI images
using the Curry software internal anatomical atlas and previous
research as references. TPJ+IPL ROI was created starting with
the strict TPJ definition of Mort et al. (2003) but also included
the inferior parietal lobe, like most studies that investigate the
VAN and that located their activations around these areas. Its
resulting center of gravity will clarify more specifically the anatom-
ical localization of this activation. To take into account possible
between-subjects electrodes’ slight montage misallocation, ROIs
were enlarged (5 mm wide) and then smoothed (2 mm wide).
ROIs are illustrated in Figure 2.

ROI activity
Three periods were investigated: L100, where N1 and P1 are active,
L170, which corresponds to the N170 peak, and L240, which cor-
responds to our late peak. Within these periods, the mean cortical
activation of each ROI was separately calculated using the follow-
ing procedure: (i) within each latency, the intensity of all of the
active sources contained in the ROI were summed; (ii) the latency
with the highest value was defined as the peak latency (PL); and (iii)
a 40 ms-length temporal window, centered on that peak, was used
to calculate the area total activity (TA) within each period of each
area, as was previously described (Inuggi et al., 2011a; Gonzalez-
Rosa et al., 2013). This procedure was performed separately for
each ROI, thus allowing us to take into account the onset differ-
ences of nearly simultaneous components (e.g., P1 and N1) and to
create periods of the same temporal length to ensure proper com-
parisons. The length of the time window was selected according
to a previous study (Gonzalez-Rosa et al., 2013).

The activations of center of gravity, decomposed in the medial–
lateral (CX), anterior-posterior (CY), and ventral-dorsal (CZ)
positions, were calculated using the following formula (e.g., CX):

CX = (�ijsij ∗ Xij)/�ijsij,

where sij is the intensity of the i-th source at timepoint j and Xij is
the medial–lateral position of the i-th source at timepoint j.

FIGURE 2 | Cortical areas investigated. IPS, intraparietal sulcus; pSTC,
posterior superior temporal sulcus; TPJ, temporo–parietal junction; BA37,
lateral temporo–occipital cortex; MFC, middle frontal cortex; IFG, inferior
frontal gyrus. Within dotted lines, is represented that part of TPJ which
overlaps with IPS and pSTS.

STATISTICAL ANALYSIS
The effects of the between-subjects factor task type (emotion
task, shape task) and the within-subjects factor face expression
(angry, happy, or neutral) and hemisphere (left and right) over
TA within each area and period were analyzed with a mixed
analysis of variance (ANOVA). The Kolmogorov–Smirnov test was
used to examine the normal distribution of the data, and, when
appropriate, the Greenhouse–Geisser correction was applied. The
significance level of the main effects (task type, emotional expres-
sion, and hemisphere) and their interactions were corrected for
multiple comparisons (14 ROI × 3 periods) using a false discovery
rate (FDR) approach, but using a more conservative version (Ben-
jamini and Yekutieli, 2001) compared to standard FDR. According
to its formula (α/�i=1..k(1/i), where i = 42 is the number of mul-
tiple comparisons and α = 0.05 is the predetermined p-value),
we report only the significant p-values below 0.0112. Because the
number of multiple comparisons was lower in the ERP analysis (8
cluster × 3 periods), the corrected threshold was 0.0132. The size
effects were reported through the η2

p value. Post hoc comparisons
of within-subjects (facial expression) and between-subjects (task
type) factors were performed with paired and unpaired t-tests. The
multiple pairwise comparisons of facial expressions were adjusted
with the Bonferroni correction.

To provide the ERP equivalent of our source analysis results,
a mixed ANOVA, analyzing the effects of task type and face
expression, was also performed over the ERP electrode clusters
that overlay the ROI of the sources significantly affected by our
experimental factors.

RESULTS
BEHAVIORAL DATA
Trials with incorrect responses to the target word (R1; 1.8 and 1.5%
for the emotion task and the shape task, respectively), and trials
with incorrect responses to the to-be-attended facial feature (R2;
3.1 and 5.0% for the emotion task and the shape task, respectively)
were excluded from analysis. In addition, we excluded trials with
RTs below 200 ms (anticipations) or more than three standard
deviation (omissions) from the subject’s mean for each condition
(1,90%). The mean RT for R1 in the emotion task was 790 ms
(SD = 144) for congruent trials (happy face/positive word and
angry face/negative word trials) and 825 ms (SD = 164) for incon-
gruent trials (angry face/positive word and happy face/negative
word trials). In the shape task, the mean RT was 767 ms (SD = 173)
for congruent trials and 768 ms (SD = 155) for incongruent
trials. These means were submitted to mixed ANOVA with con-
gruency (congruent, incongruent) and task type (emotion, shape)
as factors. There was a main effect of congruency, F(1,26) = 9.75;
MSE = 464; p = 0.004; η2

p = 0.27, revealing that responses were
faster for congruent than for incongruent trials (this difference
represents the affective priming effect, M = 18 ms). However,
this effect was qualified by a congruency by task type interaction,
F(1,26) = 9.10, MSE = 464, p = 0.006, η2

p= 0.26. Post hoc Fisher’s
least significant difference (LSD) tests (MSE = 25411, df = 26,479)
revealed significant congruency effect for the emotion task (prim-
ing effect = 35 ms, p < 0.001) but no effect at all for the shape
task (priming effect = 0.6 ms, p = 0.941). Results, thus, replicate
those obtained in our previous behavioral study (Sassi et al., 2014).
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To support the goodness of our protocol, we verified that neither
the main effects of word valence, F(1,26) = 1.56, p = 0.222, and
task type, F < 1, nor their interaction, F(1,26) = 1.30, p = 0.26,
were statistically significant with the neutral expression. Analysis
of error rate (CR1) revealed no statistically significant effects.

SOURCE ANALYSIS DATA
The group averages of the evoked potentials elicited by the two
tasks, which merged the three emotional faces, are displayed in
Figure 3. Table 2 summarizes the activation’s center of gravity
coordinates and PL values of the ROIs, where a significant effect
of either task type or face emotion could be observed.

Table 2 |Talairach coordinates of activations; center-of-gravity in right

IPL +TPJ ROI at L170.

Area Task Neutral Happy Angry

X Y Z X Y Z X Y Z

R TPJ170 Emotion 49 –51 24 48 –49 23 49 –49 22

Shape 49 –51 29 48 –53 28 49 –50 23

Effect of task type
During L170, an effect of task type was observed in lateral BA37
activity, [F(1,26) = 7.93; p = 0.011, η2

p = 0.26], which was less

intense (Figure 4) in the shape task (M = 2.28, SD = 0.6 μA/mm2)
than in the emotion task (M = 5.4, SD = 0.5 μA/mm2).

Interaction between task type and facial expressions
A significant type task x facial expression × hemisphere interaction
was observed in IPL+TPJ during L170, [F(1.518,39.45) = 6.41,
p = 0.010, η2

p = 0.23]. Post hoc analyses revealed that the type
task × facial expression was significant only for the right side,
[F(1.81,37.06) = 5.35, p = 0.010, η2

p = 0.218]. Additionally, while
facial expressions did not differ from each other in the emotion
task, an effect of facial expression was observed in the shape task
when facial expressions had to be ignored, [F(1.58,20.56) = 12.06,
p = 0.001, η2

p = 0.48], with higher activation to angry facial expres-

sions (M = 8.1, SD = 1.1 μA/mm2) compared to both happy
(M = 5.8, SD = 0.9 μA/mm2, p = 0.002) and neutral (M = 6.1,
SD = 0.8 μA/mm2, p = 0.002) ones (Figure 4, right; Figure 5).
The center of gravity position of cortical activation in IPL+TPJ
ROI, reported in Table 2, was located in close proximity to the
TPJ defined by Mort et al. (2003), as shown in Figure 5. We thus
will refer to it as TPJ activation. No modulation over the IPS,

FIGURE 3 | Group averages of ERP in emotion (solid line) and shape (dotted line) tasks in the first 300 ms after facial stimulus presentation. For all the
electrodes, the vertical scale boundary is set at +10 μV.
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FIGURE 4 | Effect of emotional expression and task type at L170. (Left) Task type effects on right lateral BA37. No significant differences were observed for
facial emotion. (Right) Right TPJ sensitivities to angry facial expression in shape task only. On the y-axis, the mean activity of each ROI in the L170 time
window is expressed in μA/mm2.

FIGURE 5 |The shape task: increased activation in response to the angry facial expression (right) compared to happy (center) and neutral (left)

expressions in theTPJ within the IPL+TPJ ROI (voxels enclosed within the yellow borders) at L170.

pSTS, or middle and inferior frontal areas were observed at any
latency.

Lateralization of visual area activity
During the P100 component, the medial–lateral center of gravity
(CX) of the visual areas was more lateralized to the right hemi-
sphere in the emotion (M = –5, SD = 0.9 mm) task compared to
the shape (M = 8.7, SD = 2.1 mm) task [F(1,26) = 8.21, p = 0.010,
η2

p = 0.281; Figure 6]. A significant task type × facial expression
interaction was observed in visual areas, [F(1.53,38.21) = 6.55,
p = 0.010, η2

p = 0.18]. The effect of facial emotion on the activa-
tion lateralization was observed only in the emotion task, with the
angry (M = 12, SD = 2.5 mm, p = 0.011) and happy (M = 10,
SD = 2.2 mm, p = 0.010) faces more lateralized to the right hemi-
sphere with respect to the neutral faces (M = 4.7, SD = 2 mm).
No significant differences emerged in the L240 interval.

ERP DATA
During the P100 component, the medial–lateral center of gravity
of the cluster obtained by merging the right and left occipital

clusters was modulated by task type [F(1,26) = 5.45, p = 0.011,
η2

p = 0.25], which was more right-lateralized in the emotion task
(M = 11.3, SD = 4.5 mm), than in the shape task (M = –0.9,
SD = 3.8 mm). At ∼170 ms, the occipito-temporal cluster that
overlays the lateral BA37 was not affected by the task type. In
the right occipito-temporal cluster, which should provide the ERP
equivalent of the right TPJ activation, a significant interaction was
found between task type and facial expression in the occipito-
temporal cluster [F(1.52,21.13) = 5.20, p = 0.012, η2

p = 0.24].
Nevertheless, we found a trend (p = 0.065) versus a more negative
peak to angry faces compared to neutral ones in the shape task
(Figure 7). No differences emerged within the parieto-temporal
cluster.

DISCUSSION
In this study, the effect of a fine-grained, emotion-irrelevant,
discriminatory task on the early emotional faces processing was
investigated by reconstructing the cortical generators of the scalp-
recorded potentials. Our main objective was to evaluate if angry
expressions were processed differently from non-angry (neutral
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FIGURE 6 | Visual area lateralization around L100. (Left) The effect of facial
expression and task type on the medial–lateral position of the activation’s
center-of-gravity (COG). The cortical current density (CCD) results of the

emotional facial expression (center) compared to the neutral facial expression
(right) in the emotion task. On the y-axis, the mean activity of the ROI in the
L100 time window is expressed in μA/mm 2.

FIGURE 7 | ERP results: (upper row) effect of task type over occipito-parietal cluster; (lower row) effect of facial expression over occipito-parietal

cluster in emotion (left) and shape (right) tasks.
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and positive) expressions when attention was diverted to another
task. We opted to engage subjects in a fine discrimination of the
shape of the glasses worn by the face stimuli, a task that was
supposed to deplete, according to our previous behavioral study,
the attentional resources (see Sassi et al., 2014). Several previous
studies assessed the interaction of attention and emotion when
emotion-relevant and emotion-irrelevant stimuli did not share
the same geometrical space (Vuilleumier et al., 2001; Holmes et al.,
2003). Because the redirection of the subject’s attention to another
position may represent a potential confounding issue, we opted to
place both the emotion-relevant and emotion-irrelevant features
in the same foveal position, removing any obstacles to the auto-
matic processing of emotional faces when asked to ignore them.
In addition to investigating the peculiar processing of ignored
angry faces, we were also interested in giving a neurophysiological
explanation for the loss of the affective priming effect observed
in our behavioral results (Sassi et al., 2014, current study) when
subjects were involved in an emotion-irrelevant task. We concen-
trated our analysis on the cortical areas involved in the processing
of the fine-grained facial features, which are supposed to be highly
modulated in a top–down manner by the observers’ attention,
making its processing not pre-attentive but strictly related to the
availability of attentional resources. Moreover, considering the
high priority of aversive facial expressions in capturing attentional
resources, we also focused on the parietal areas that belong to
both the ventral (TPJ) and the dorsal (IPS) attention networks
and the partially overlapped frontal areas of the two networks,
the inferior (IFG) and middle (MFG) frontal gyri (Fox et al.,
2006).

THE EFFECT OF ATTENTION ON THE VENTRAL STREAM
In the present study, we confirm that the ventral stream is highly
modulated by the observer’s attention. The activity of the occipital
areas at ∼100 ms was more right lateralized in the emotion task
than in the shape task and, more notably, when subjects attended
to the facial expression, activation produced by emotional face
expressions was more right lateralized than activation produced by
neutral faces. Such selectivity disappeared when subjects attended
to the glasses’ shape.

Considering that the assessment of FFA activity through scalp
recordings is widely questioned, as the area lies within the infe-
rior part of the temporal cortex, we created the lateral BA37
ROI because previous neuroimaging studies showed a correla-
tion between the N170 EEG component, calculated by electrodes
overlaying it and fMRI-derived FFA activity (Horovitz et al.,
2004; Sadeh et al., 2010), which suggests that surface electrodes
may capture at least part of FFA activity. Additionally, electro-
corticography studies have revealed that lateral BA37 is also
involved in face processing (Rossion et al., 2003; Tsuchiya et al.,
2008). At ∼170 ms, lateral BA37 activation was reduced in the
shape task compared with the emotional task, which suggests
that when subjects were asked to ignore the facial expression
and just concentrate on the glasses’ shape, the detailed face fea-
tures might not have been very distinctive. This result agrees
with previous findings that report larger activity in FFA for faces
compared to non-face objects (Haxby et al., 2000; Rossion et al.,
2003). Taken together, our behavioral and neurophysiological

results strongly suggest that our shape task succeeded in guid-
ing subjects’ attention away from any face feature, preventing
any conscious monitoring of the emotional content of the face.
In the long debate over the pre-attentive automaticity of emo-
tional processing, our results suggest that an appropriate level of
attention is needed to process emotional expressions. Although
presented in the same visual focus, the reduced BA37 activity and
the loss of emotional selectivity of primary visual areas in the
shape task suggest that subjects presumably focused their attention
just on the glasses’ shape and ignored the underlying emotional
expression.

The lateralization of the activations found in the present study
deserves further comments. The lateralization of emotional pro-
cessing is still an open issue because the two main theories,
supporting either the right-hemisphere hypothesis (RHH; Borod
et al., 1998; Bourne, 2010) or the valence-specific hypothesis (VSH;
Mandal et al., 1991; Adolphs et al., 2001), have been questioned by
more recent fMRI meta-analysis investigations (Fusar-Poli et al.,
2009; Sabatinelli et al., 2011). The bulk of evidence shows bilateral
activation for emotional face processing in most emotion-related
areas, although lateralization might be modulated by gender (see
for example Wager et al., 2003). In the present study most (22 out
of 28) of the subjects were women, and our data are consistent
with a previous EEG report specifically investigating the gender
effect over emotional face processing. Proverbio et al. (2006) in
fact found maximal P1 amplitude over the right occipital cortex
in both genders, consistently with our results showing that in the
emotion task occipital activity around 100 ms was right lateral-
ized. The lack of a right lateralization observed in our data during
the N170 may appear inconsistent with the widely accepted right
predominance of FFA in face processing (Kanwisher and Yovel,
2006). However, this again agrees with Proverbio et al.’s (2006)
findings of a right lateralization of N170 only in men. In contrast,
women exhibited a bilateral pattern. These results can help fos-
ter better understanding of the inconsistencies in the literature on
the right hemisphere advantage in the occipito-temporal cortices
when processing faces and confirm the relevance of incorporating
gender information.

ANGRY FACIAL EXPRESSION PROCESSING
Although both static and emotional features appeared under-
processed by canonical face processing cortical areas, unattended
angry expressions were able to activate the TPJ, a cortical expanse
implicated in a wide spectrum of high-order cognitive func-
tions ranging from social cognition (Saxe and Kanwisher, 2003)
to attention selection (Corbetta and Shulman, 2002). The latter
branch of investigation showed that the TPJ is part of the VAN, a
fronto-parietal network that, during focused activities, is formally
involved in re-orienting (shifting) attention to stimuli relevant to
the immediate goal. Nevertheless, because the attentional focus
covered a similar area in both tasks, no reorienting process was
expected, as our IPS activity also indicates. The latter is in fact part
of the DAN, which contains the proper circuitry to implement
the focus reorienting, and was not modulated by our experi-
mental conditions. The absence of any modulation over frontal
areas might be interpreted accordingly; the integration between
ventral and DANs, needed for attention re-orienting, occurs in
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such aforementioned frontal areas where the two networks highly
overlap (Fox et al., 2006).

Thus, the present findings support the proposal that VAN
activation, at least in its parietal areas, might not exclusively be
involved in attentional reorienting. It is consistent with more
recent reports that suggest that TPJ activity might be triggered by
both external sensory stimuli and internal memory-based infor-
mation, thus providing bottom–up signals to other systems about
relevant stimuli for further inspection (Cabeza et al., 2012). In
agreement with the present results, VAN activity has also been
observed when behaviorally relevant, rather than salient, stim-
uli are presented while the individual is engaged in another task
(Corbetta et al., 2008). Accordingly, the activation of TPJ just
when the unattended face was shown with an angry expression
suggests that negative emotions can pre-attentively evoke bottom–
up cortical signals, according to their behavioral relevance, even
when attention is focused on emotion-irrelevant features in a
task that we assumed exhausted the attentional resources to pro-
cess the emotional content of faces. Because the ventral stream
and STS were not modulated by the degree of unattended emo-
tional content and the VAN is considered a supramodal network
(Macaluso et al., 2002; Green et al., 2011) not able to decode the
threatening pattern from facial expression, we suggest that TPJ
activation might be triggered from other brain regions. Several
neuroimaging studies suggested that, in parallel with the corti-
cal stream (Palermo and Rhodes, 2007), a subcortical pathway,
that reaches the amygdala through fast and coarse subcortical
inputs that originate in the superior colliculus and finally project
onto fronto-parietal areas, is thought to implement a brain cir-
cuitry specialized in emotional attention (Vuilleumier, 2005). This
circuitry, likely partly modulated by the attentional focus (Pour-
tois et al., 2013) is involved in the rapid and automatic detection
of negative facial expressions (for review; see Vuilleumier and
Pourtois, 2007), and it seems to play a crucial role in direct-
ing attention and information processing to threatening stimuli
(Ohman and Mineka, 2001). Because reconstructing amygdala
activity with EEG presents several accuracy limitations, as it will be
discussed later, further studies that integrate EEG with neuroimag-
ing techniques are surely needed, but our data are consistent with
such a model. A previous MEG study showed in fact that the
amygdala activates as early as 100 ms after stimulus presentation
(Streit et al., 2003), a latency early enough to trigger TPJ activa-
tion at ∼150–170 ms. The present TPJ activation of ∼170 ms is
consistent with a recent ERP study that investigates the threat
detection advantage (Feldmann-Wüstefeld et al., 2011), which
revealed that angry and happy expression processing started to
differ at ∼160 ms. This suggests that angry faces may trigger a
fear module that enables their rapid processing and recruit addi-
tional attentional resources, possibly by means of TPJ, as is here
hypothesized.

In conclusion, within the VAN, TPJ activation at this early
latency primarily signals the behavioral relevance of a task-
irrelevant aversive stimulus, irrespective of whether that stimulus
requires a physical shift of attention (involving the dorsal net-
work). The fact that such a trigger was not followed by an
actual over-processing of face features is likely due to the task
demands that, immediately after face offset (∼200 ms), required

that subjects focus on word onset and the corresponding response
related to its emotional valence.

DIFFERENCES BETWEEN SOURCES AND SENSORS ANALYSIS
In the present paper, we aimed to provide an ERP-equivalent of
the activations produced by source analysis. We thus focused this
analysis only on the time windows and clusters that surround the
cortical areas affected by our experimental conditions. ERP analy-
sis found that attended emotions, compared to ignored emotions,
have their occipital P1 peak more right lateralized but was unable
to assess the selectivity toward attended emotional faces, which dis-
appeared in the shape task. In a similar manner, ERP analysis could
detect the interaction between task and emotions at ∼170 ms in
the right occipito-temporal cluster, but it did not find a significant
difference between angry and non-angry ignored faces. Of course,
the current ERP approach is only one of many possible approaches.
We are not concluding that another ERP analysis would have been
unable to locate the same effects found with source analysis. How-
ever, even if such an effect had been encountered in a cluster or
in a channel (e.g., CP4 or CP6), it would have been impossible
to clearly attribute it to one of the areas beneath and close to the
sensors cluster. Ideally, both pSTS and BA37 would have been
valid candidates, and we could have argued that because they are
part of the cortical stream supposedly deputed to extract face fea-
tures, they would have presumably shown such functioning also in
the attended condition, but that doubt would have persisted, and
the involvement of TPJ could have been just one of the possible
hypotheses. Instead, source analysis, when calculating the center
of gravity of the large ROI covering the temporal and parietal lobe,
indicated the TPJ involvement.

METHODOLOGICAL CONSIDERATIONS AND LIMITS OF THE PRESENT
INVESTIGATION
The main limits of EEG source analysis are its high sensitivity
to artifacts, the low signal-to-noise ratio and the limited spatial
resolution. To properly address these limits, we employed a con-
solidated methodological approach (Inuggi et al., 2010, 2011a,b;
Gonzalez-Rosa et al., 2013), which has consistently proved to
obtain results in line with the neuroimaging literature. We used
a seed-based analysis instead of a voxel-wise one because this
approach is often used in both EEG and neuroimaging analyses,
when strong hypothesis of the involved brain areas is possible. In
fact, although the experimental task, seen as a whole, is brand
new, the areas involved in the investigated interval have been
accurately described in the past as producing a consistent pic-
ture that guided and supported our ROI selection. We adopted a
conservative approach, selecting ROIs in areas on the outer sur-
face of the brain where the spatial resolution of the EEG source
analysis is maximal and avoiding the investigation of deep brain
areas such as the proper FFA, orbitofrontal, para-hippocampal
cortices and amygdala. These areas were reported in several neu-
roimaging studies but their reconstruction through EEG presents
several methodological issues. EEG source analysis accuracy is in
fact highly corrupted by the huge anisotropy and inhomogeneity
of the brain that blur the emerging signal when it is not mod-
eled by a proper volume conductor model. Deep sources are of
course more buried within the brain as the ideal lines separating
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the sources from the scalp electrodes cross much more tissues of
different conductivities than superficial sources, making the blur-
ring much higher. Concerning the temporal selection, we opted
to analyze up to ∼300 ms because we were interested in assessing
the automatic processing of face stimuli, aware of the fact that the
later components would have been altered by subjects’ intentions
or strategies to concentrate on target stimulus (the word) decod-
ing. We decided to investigate the task effect as a between-subject
factor as we were interested in maximizing the “unattendeness” of
face emotional expressions in the glasses shape task as much as pos-
sible. We feared that if half of subjects, due to the counterbalance
of the task order, performed the emotional task first and then the
glasses task, facial emotion might have acquired some relevance
even when the glasses task asked subjects to attend and respond
to only the glasses’ shape. In addition, we would have obtained an
incredibly long task, with unpredictable consequences over sub-
jects’ attention and performance level, with the risk of introducing
undesired biases into our results. The failure to locate the areas
that actually discriminate and extract the emotional features of
the faces surely represents a limit of the present exploration. A
trend versus a higher activation of pSTS in emotional compared
to neutral expressions was found only in the emotion task. How-
ever, it was not significant even before applying the Benjamin and
Yekuteli correction. This might be due to the spatio-temporal res-
olution of the method here implemented or, more presumably,
because emotional processing also involves deep brain areas, such
as FFA s, orbitofrontal cortices and subcortical regions.

CONCLUSION
In the present study, we employed a novel approach to explore
the role of attention in emotional face processing by setting up
an ecological environment that involved faces wearing glasses.
Moreover, by overlapping in space both the to-be-attended and
the to-be-unattended facial features, we avoided any potential
confounding produced by attention shifts, so that any emerging
differences could be attributed more confidently to the availability
of the attentional resources required to deal with facial emo-
tional expressions. In studies that report emotional processing
that was not affected by attentional manipulations, the emotion-
unattended condition did not usually require investing a great
amount of attentional resources; thus, it was difficult to claim
that the emotional processing of faces could take place without
attention. Here, consistent with our previous behavioral study
(Sassi et al., 2014), in which emotion-irrelevant task demands
were progressively increased, we observed that when subjects were
involved in an emotion-irrelevant discrimination task that might
have depleted attentional resources, behavioral results did not
show any evidence of affective priming. These results corroborate
the studies that support that emotional processing requires some
attentional resources (Pessoa et al., 2002, 2005; Eimer et al., 2003;
Holmes et al., 2003; Okon-Singer et al., 2007; Silvert et al., 2007).
Importantly, although the attentional resources were allocated to
detect the characteristics of the glasses, the angry facial expression
activated the temporo–parietal area of the VAN. This automatic
activation presumably represents a pre-attentive bottom–up trig-
ger, possibly evoked by a subcortical pathway centered on the
amygdala, which, independently from the ventral stream areas,

signals the presence of unattended and task-irrelevant but poten-
tially threatening stimuli (Ohman and Mineka, 2001). These
results are in line with more recent reports (Cabeza et al., 2012)
that disentangle TPJ activation from a re-orienting process that
involves the DAN and can, for example, explain why search per-
formance of angry faces is more efficient when they are displayed
among several distractors (the anger superiority effect, Hansen
and Hansen, 1988).

From an evolutionary point of view, the presence of such an
early pre-attentive response, which also appears when subjects
are comfortably seated in a safe environment, may increase the
potential for a faster and more accurate identification of aversive
emotional expressions (in the absence of proper inhibitory top–
down signals aimed to ignore them, as in the present study). This
mechanism would represent a successful adaptive process because
a fast and correct prediction of aversive intentions may help the
observers to better adapt their behavior and thus provide a crucial
survival advantage (Frank and Sabatinelli, 2012).
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