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Recent simulation studies have pointed to the higher power of the test for the mediated
effect vs. the test for the total effect, even in the presence of a direct effect. This has
motivated applied researchers to investigate mediation in settings where there is no
evidence of a total effect. In this paper we provide analytical insight into the circumstances
under which higher power of the test for the mediated effect vs. the test for the total effect
can be expected in the absence of a direct effect. We argue that the acclaimed power
gain is somewhat deceptive and comes with a big price. On the basis of the results, we
recommend that when the primary interest lies in mediation only, a significant test for
the total effect should not be used as a prerequisite for the test for the indirect effect.
However, because the test for the indirect effect is vulnerable to bias when common
causes of mediator and outcome are not measured or not accounted for, it should be
evaluated in a sensitivity analysis.
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INTRODUCTION
The Baron and Kenny (1986) description of how mediation can
be statistically assessed has led to a massive number of applied
publications in the psychological literature over the last 25 years.
The left panel of Figure 1 shows the basic components of the
classical mediation analysis. Let variable X represent the indepen-
dent variable, a presumed cause of the dependent measure Y. The
top left panel of the Figure 1 then represents the total effect of
X → Y. The bottom panel represents the mediation model that
we will consider throughout this paper. MacKinnon (2008, pp.
38–40) distinguishes two critical parts in this mediation model:
the first part is referred to as “action theory,” which describes how
the independent variable or intervention X changes the mediating
variable M (the effect captured by the parameter a); and the sec-
ond part as “conceptual theory,” which specifies how the mediator
affects the dependent variable (the effect captured by the param-
eter b). Mediation analysis ultimately consists of a simultaneous
test of action and conceptual theory. Mediation is thus quantified
by the effect of X on Y through M, which is called the indirect
effect, while the effect of X on Y that is not mediated by M is
referred to as the direct effect.

Assuming linear relationships and continuous variables M and
Y, the direct and indirect effects are typically parameterized using
the following set of linear regression models:

Y = i1 + cX + ε1 (1)

M = i2 + aX + ε2 (2)

Y = i3 + c′X + bM + ε3 (3)

with i1, i2,and i3 intercepts and ε1, ε2, and ε3 independent
mean zero residuals. The parameters a, b, c, and c’ are estimated

using simple linear regression or structural equation modeling
(MacKinnon, 2008); they will be denoted â, b̂, ĉ, and ĉ’, respec-
tively. Under the presumed causal relationships in the left panel
of Figure 1 and assuming the models (1), (2), and (3) hold, the
estimated parameters ĉ and ĉ’ quantify the total and direct effect,
while the indirect effect is quantified as â̂b. In the above linear set-
ting, the total effect is equal to the sum of the direct and indirect
effect, i.e., ĉ = ĉ’+ â̂b.

In this paper we will focus on mediation analyses in experi-
ments that randomize the independent variable X. The total effect
of X on Y can then be identified without untestable assumptions
on the absence of unmeasured common causes (Holland, 1986,
1988). Even so, the estimation of direct and indirect effects may be
biased in such randomized experiments. This may happen when a
variable other than the independent variable affects both M and Y
and is not controlled for (e.g., because it is unmeasured). This was
already made clear in a much less cited predecessor of the Baron
and Kenny paper (Judd and Kenny, 1981), repeatedly empha-
sized over the last decade in methodological papers on mediation
analysis (Bullock et al., 2010), and is also the aim of compre-
hensive structural equation modeling (MacKinnon and Pirlott,
2014). In spite of that, very few applications control for variables
that may affect both M and Y, nor do they discuss how plausi-
ble it is to assume the absence of such variables, an assumption
often referred to as no unmeasured confounding of the M-Y rela-
tionship. This is daunting: even when in reality there is no effect of
M on Y at all, and thus no indirect effect, an analysis that ignores
common causes of M and Y may reveal a spurious effect of the
mediator on the outcome. One therefore cannot determine based
on the observed data whether the indirect effect is (partially)
explained by unobserved common causes (Fiedler et al., 2011).
One can pro-actively think about potential common causes of
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FIGURE 1 | Left panel: Simple mediation model in which X is the

independent variable, M is the mediator and Y is the outcome

variable. Right panel: Unmeasured confounding U of the

mediator-outcome relationship.

mediator and outcome at the design stage, measure those vari-
ables and account for them in the analysis; but in practice, it is
likely impossible to measure them all.

The greater robustness of tests for the total effect than tests
for the mediated effect to the presence of common causes has
led researchers to demand, as in the traditional Baron and Kenny
approach (MacKinnon, 2008), a significant total effect [i.e., c in
model (1) being significantly different from zero] as a prerequisite
(“step 1”) for conducting a mediation analysis. For instance, one
of the earliest critics on this prerequisite mentions “The review-
ers of this article had mixed opinions about whether any form
of step 1 should be retained. Two believed it should be dropped
completely. Another argued for retaining the step because it pro-
vides protection against alternative causal models, whereby the
associations of (X and M and of) M and Y are spurious” (Shrout
and Bolger, 2002). Since then, many scholars have given fur-
ther pros and cons on the necessity of step 1, but this has not
prompted a more unified view and, instead has caused a lot of
confusion in the applied mediation literature. Over the last couple
of years, however, a clear trend has emerged (Hayes, 2009; Zhao
et al., 2010; Rucker et al., 2011; Kenny and Judd, 2014; O’Rourke
and MacKinnon, 2014) in favor of dropping the requirement of
a significant total effect to assess mediation. This change was
largely triggered by simulation studies by Rucker et al. (2011)
and more recently by Kenny and Judd (2014) and O’Rourke and
MacKinnon (2014), which demonstrated that significant indi-
rect effects can often be detected, even when the total effect is
not statistically significant. Researchers who wished to publish
their mediation analyses in the absence of a total effect picked
up those arguments rapidly (often neglecting the potential threats
that were mentioned by those authors), while reviewers and edi-
tors may have become more than ever hesitant about the scientific
trustworthiness of such analyses (Osborne, 2010; Smith, 2012).

With this paper, we wish to temper some of the enthusiasm
around the acclaimed power gain. First, we note that empirical
studies have so far focused on the power to detect an indirect
effect in the absence of a significant total effect (Rucker et al.,
2011; Kenny and Judd, 2014). We assess the type I error of
such strategies that test the indirect effect conditional on a non-
significant total effect and find it to be inflated. This points toward
an increased risk of false positive mediated effects and partially

explains the power gain observed by Rucker et al. (2011) and
Kenny and Judd (2014). It moreover has immediate implications
for applied researchers who adopt the strategy to first test for
a total effect, but—if absent—to continue to look for indirect
effects, hereby neglecting the potential impact on the risk of false
positive findings.

In view of the previous concern, we develop insight into the
relative power of the test for the indirect effect vs. the test for the
total effect, in the absence of a direct effect, by means of large sam-
ple approximations and Monte Carlo experiments. We moreover
note that this power gain comes at a cost. First, the estimation of
the indirect effect requires stronger modeling assumptions than
the estimation of total effects (for e.g., Equation 2 and 3 vs.
Equation 1 alone). Misspecification of these assumptions may
invalidate the test for indirect effect, and rescind a potential power
gain. Second, the test for indirect effect, unlike the test for total
effect, requires assumptions about the absence of unmeasured
common causes of mediator and outcome. We therefore recom-
mend sensitivity analyses that assess the robustness of mediated
effects against violations of the no unmeasured M-Y confound-
ing assumption. Such confounding may diminish the power of
the test for the indirect effect. We explore how strong the viola-
tion of this assumption must be, in order for the power to detect
the total effect to equal the power to detect the indirect effect. If
small violations (which are not unlikely to occur in most studies)
quickly lead to such equality in power, then the theoretical power
gain of the indirect effect vs. the total effect is of limited practi-
cal use. We show that the circumstances under which the power
of the test for the mediated effect vs. the power of the test for the
total effect is largest, are relatively vulnerable to violations of the
no unmeasured M-Y confounding assumption. We end with a
discussion of the implications of our findings and some practical
guidelines.

THE RELATIVE POWER OF THE TEST FOR THE INDIRECT
EFFECT vs. THE TEST FOR THE TOTAL EFFECT
Using simulations, Rucker et al. (2011) explored the probability
of observing significant effects when the total effect is not signifi-
cant in a variety of conditions common in psychological research.
More precisely, assuming the causal model presented in the left
panel of Figure 1, they set the population values of a and b to 0.4
in all conditions; and varied the population values of c (0.2, 0.3,
and 0.4) and the sample size n (25, 50, 100, 200). The variables
X, M, and Y were all normally distributed with variance equal
to 1. That is, rather than setting the error variances of M and
Y equal to one in Equation (2) and (3), those were set equal to
1 – a2 and 1 – c’2 – b2 – 2abc’, respectively. These authors thus
use standardized regression coefficients as effect size measures
of individuals paths in the mediated effect (MacKinnon, 2008,
pp. 80–81). For each combination of conditions, 5000 samples
were generated. The authors concluded that “detecting indirect
effects in the absence of a total effect can be quite frequent—
nearly half of the time—in sample sizes typical of psychological
research.” Similarly, Kenny and Judd (2014) presented tables with
sample sizes required to achieve 80% power for the test of the null
hypothesis that c and ab each equal zero when the direct effect is
zero, and found that, in the presence of such complete mediation,
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“one might not uncover a statistically significant total effect but
might still have sufficient power to detect a significant indirect
effect.” In this section, we first argue that the above statements
are somewhat deceptive because tests for mediated effects that
are being conducted conditional on a non-significant total effect
have inflated type I errors. Next, we provide analytical evidence
for those simulation findings by deriving large sample approxi-
mations for the relative power of the test for the indirect effect
vs. the test for the total effect, in the absence of a direct effect.
As those approximations both rely on the normality of the prod-
uct of coefficients estimator of the indirect effect, which is known
not to hold in small samples (Kisbu-Sakarya et al., 2014), simula-
tion studies are performed. Inference for the indirect effect herein
will not rely on asymptotic normality but on the bootstrap. Those
simulations confirm the approximate analytical results for the cir-
cumstances under which higher power of the test for the mediated
effect vs. the test for the total effect may indeed be expected.

While Rucker et al. (2011) explored the power to detect an
indirect effect when no significant total effect is found, they did
not investigate the Type I error of such strategy; that is, the prob-
ability to find a significant indirect effect in the absence of a
significant total effect when there is no indirect effect. To this
end, we simulate data under the assumption of a total effect equal
to 0.2 or 0.3 but no indirect effect (because of the absence of
an effect of X on M, or the absence of an effect of M on Y, or
both) for varying sample sizes size N (25, 50, 100, 200). The
variables X, M, and Y are all normally distributed with vari-
ance equal to 1, such that similar to Rucker et al. (2011), all
population coefficients can be considered as standardized effects.
For each combination of conditions, 5000 samples are gener-
ated. The total effect is estimated from Equation (1), while the

indirect effect is estimated by the product of coefficients a and
b from Equations (2) and (3). Significance of the indirect effect
is based on its 95% bias-corrected bootstrap confidence (Hayes
and Scharkow, 2013) or percentile-based bootstrap confidence
intervals (Fritz et al., 2012). Bias-corrected bootstrap intervals
are known to be somewhat too liberal in the simple linear set-
ting we are considering, especially in smaller sample sizes (Hayes
and Scharkow, 2013), and found to have the highest statistical
power of the common tests of mediation. Fritz et al. (2012) cau-
tioned researchers for equating the “most powerful” with “best”
test, and found percentile bootstrap to be more accurate than
bias-corrected bootstrap in terms of Type I error in the small
samples we are considering. These authors argued that in prac-
tice one should decide a priori on the use of one of those tests
based on whether avoiding Type I error or Type II error is of
greater concern; for completeness we will present both here. The
upper and lower panel of Figure 2 present the results for c equal
to 0.2 and 0.3, respectively, with the bias-corrected and percentile
bootstrap on the left and right side, respectively. In these graphs,
the percentage of times that the indirect effect is declared to be
significant while the total effect was not, is presented (that is, if
in 2100 samples the total effect was not significant, the percent-
age is over these 2100 samples). Under either type of bootstrap,
there is evidence that with increasing sample size and increasing
total effect size, the Type I error for the indirect effect under such
conditional approach gets seriously inflated, especially when the
mediator is distal (i.e., b > a). Interestingly, the inflation is posi-
tively associated with the correlation between the test for the total
effect and the test for the indirect effect (in our simulation setting
this correlation equals b). These results suggest that power eval-
uations of tests for mediated effect after a non-significant effect

FIGURE 2 | The probability to reject the null hypothesis of no indirect

effect (IE) when the total effect (TE) is not significant. The true TE equals
0.20 (lower panel) and 0.30 (upper panel) while the IE equals 0 (with different

combinations for its components, the path coefficients a and b). Significance
is assessed at the 0.05 level and inference based on bias-corrected bootstrap
intervals (left panel) or percentile bootstrap intervals (right panel).
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has been found, should be considered with scrutiny because such
tests come with inflated Type I errors.

We will now derive approximate analytic expressions for the
relative power of the test for the indirect effect and the test for
the total effect in the presence of complete mediation when using
model (1) through (3). That is, we assume that the true value of
c’ equals zero in expression (3), but consider the linear regres-
sion Equations (2) and (3) for estimation of the indirect effect.
Denoting the variance of X, ε2, and ε3 by σ 2

X, σ 2
M|X , and σ 2

Y |M,X ,
which are assumed to be constant here, it can easily be shown
(MacKinnon, 2008, pp. 88–89) that in samples of size n, the
variance of the estimated path coefficients a and b equal

Var ( â ) = 1

n

σ 2
M|X
σ 2

X

Var
(

b̂
) = 1

n

σ 2
Y |M,X

σ 2
M|X

The Sobel-test (Sobel, 1982) that is frequently used to assess
mediation, provides an approximate estimate for the standard
error of â̂b. Using the (first-order) delta method for the variance
of the estimated indirect effect, one finds the following expression

Var
(̂
âb

) = b2Var (̂a) + a2Var(̂b)

The variance of the total effect, in the absence of a direct effect,
equals

Var (̂c) = 1

n

σ 2
Y |X
σ 2

X

= 1

n

E
(
σ 2

Y |M,X|X
)

+ Var (E (Y |X, M) |X)

σ 2
X

= 1

n

σ 2
Y |M,X + b2σ 2

M|X
σ 2

X

where the second equality follows from the law of
iterated expectations, and the third equation from
Var (E (Y |X, M) |X) = Var

(
i3 + c′X + bM|x) = b2σ 2

M|X . Wald-

tests, based on ĉ/
√

Var (̂c) and â̂b/
√

Var
(̂
âb

)
, are commonly

used to test for the total and indirect effect, respectively. Despite
their common use, the normality of the indirect effect estimator
is known to be flawed since the distribution of the product of two
coefficients is not normal, and tests relying on the asymmetric
distribution of the product or resampling procedures such as
bootstrap are shown to be superior (MacKinnon et al., 2002).
Recently, Kisbu-Sakarya et al. (2014) describe for which values of
a and b, the deviation from normality for â̂b is most severe, and
how the moments of the indirect effect influence the coverage
and imbalance of the Wald confidence intervals. Although we
acknowledge this limitation of the Wald test for the indirect
effect, we will use the ratio

(̂âb/
√

Var
(̂
âb

)
)/(̂c/

√
Var (̂c)) (4)

as a proxy for the relative efficiency of the test of the indirect effect
vs. the test of the total effect. We hereby assume that the power of
the test for the indirect effect will be larger than the power of the
test of the total effect, when the value of the Wald test statistic
of the first is larger in absolute value than the value of the Wald
test statistic of the latter. Expression (4) turns out to be helpful
to make analytical progress with insightful results, but we caution
the reader not to use the Wald test as a vehicle to perform power
calculations. To the latter end, O’Rourke and MacKinnon (2014)
provide analytical power expressions of the indirect effect relying
on joint significance testing1, hereby avoiding the distribution of
the product of coefficients. These authors also provide software
programs to perform such calculations. Note however that these
use partial correlations (MacKinnon, 2008, pp. 80–81) as effect
size measures of individuals paths in the mediated effect whereas
we consider standardized regression coefficients here.

In the case of complete mediation, the expected values of â̂b
and ĉ are the same. When comparing the variance of the estimator
of the indirect effect with the variance of the estimator of the total
effect, we find that

Var
(̂
âb

)
< Var ( ĉ ) ⇔ b2

σ 2
M|X
σ 2

X

+ a2
σ 2

Y |M,X

σ 2
M|X

<

σ 2
Y |M,X+b2σ 2

M|X
σ 2

X

⇔ a2

σ 2
M|X

<
1

σ 2
X

.

Assuming standardized variables, we have that σ 2
X = 1 and

σ 2
M|X = 1 − a2. Hence, using Equation (4) as a proxy of the

relative efficiency, the power of the test for the indirect effect will
be larger than the power of the total effect when a2/(1 – a2) < 1
or when a is smaller than

√
2/2 ≈ 0.70. This analytical finding

is in line with the observation of Kenny and Judd (2014) based
on their simulation study that “when a is very large (about 0.8 or
higher), the excessive collinearity between X and M can result in
the power of c to be greater than power of ab.” This point is also
supported by O’Rourke and MacKinnon (2014) who showed that
“when collinearity between X and M is high, the standard error
of b is increased, leading to a less powerful test of significance.”

Interestingly, Cox (1960) showed that when immediately
assuming no direct effect, i.e., considering regression model

Y = i4 + bc M + ε4

rather than Equation (3), the variance of the total effect is
always larger than the variance of the indirect effect. That
is, Var

(̂
âbc

)
< Var ( ĉ ), where bc reflects the effect of M on

Y assuming complete mediation. Obviously, such modeling

1One way to test the null hypothesis that ab = 0 is to test that both paths a
and b are zero. Simulation results have shown that this test performs about as
well as bootstrap (Hayes and Scharkow, 2013). Its major drawback is that it
does not provide a confidence interval for the indirect effect.
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strategy would require strong prior knowledge about the absence
of the direct effect of X on Y.

A second observation made by Kenny and Judd (2014) is that
“the power advantage of testing ab over c declines as the mediator
becomes either more proximal or more distal. Thus, the power
advantage is greater when a and b are relatively equal.” This claim
can also be formally derived by noting that the variance of the
indirect effect is minimized when

a =
√

(ab)2 − √
(ab)2 − (ab)4

2(ab)2 − 1
.

This expression follows from solving
∂Var

(̂
âb

)
∂a = 0. Indeed, assum-

ing standardized variables and complete mediation we have that
σ 2

X = 1, σ 2
M|X = 1 − a2, and σ 2

Y |M,X = 1 − b2, and thus

Var
(̂
âb

) = 1

n
(b2 (

1 − a2) + a2 1 − b2

1 − a2
).

Taking the first derivative with respect to a, and setting this equal
to zero, one finds (1 − 2a2b2)a4 + (2a2b2) a2 − a2b2 = 0. Solving
this quadratic equation in a2 yields

a2 = (ab)2 −
√

(ab)2 − (ab)4

2(ab)2 − 1
.

This result was also shown without proof by Hoyle and Kenny
(1999), but has a typo.

To see whether the above two analytical findings that naively
relied on the normality of the indirect effect estimator also hold

in small samples when no distributional assumptions about the
indirect effect estimator are made, we elaborate the simulation
study by Rucker et al. (2011). We focus here exclusively on set-
tings with complete mediation (i.e., the direct effect c’ is set to
zero) and vary the coefficients a and b such that their product,
and hence the indirect effect, equals 0.16 or 0.25 respectively, in
samples of size N (25, 50, 100, 200). Based on the above calcula-
tions, the power for the test of the indirect effect is expected to be
maximal when a ≈ 0.37 and a ≈ 0.45, under the settings where
ab is equal to 0.16 and 0.25, respectively. Of note, Rucker et al.
(2011) always assumed a = b in their simulation study and thus
considered the nearly most beneficiary scenario for the power of
the test for the indirect effect vs. the power for the test for the total
effect. The variables X, M, and Y are again all normally distributed
with variance equal to 1. For each combination of conditions,
5000 samples are generated. As before, the total effect is estimated
from Equation (1), while the indirect effect is estimated by the
product of coefficients a and b from Equations (2) and (3). To
enable a fair comparison, 95% confidence intervals for both the
total and indirect effect are both based on either bias-corrected or
percentile bootstrap. As mentioned before, the first is known to
be the most powerful approach for assessing indirect effects based
on models (2) and (3).

The upper left panel of Figure 3 shows the power to detect at
the 0.05 level an indirect effect equal to 0.16 for various combi-
nations of the coefficients a and b, and the power to detect the
total effect of the same size (the latter is averaged over the dif-
ferent combinations for the coefficients a and b as there were no
relevant differences amongst the five different scenarios), while
in the lower left panel both the indirect and total effect equal
0.25. The left panel presents the bias-corrected bootstrap and the

FIGURE 3 | The power to detect the total effect (TE) c and the power to

detect the indirect effect (IE) ab under complete mediation when c =
ab = 0.16 (upper panel) or c = ab = 0.25 (lower panel) for varying

combination of a and b and varying sample sizes. Significance is
assessed at the 0.05 level and inference based on bias-corrected bootstrap
intervals (left panel) or percentile bootstrap intervals (right panel).
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right panel the percentile bootstrap. In contrast to Rucker et al.
(2011)2, we prefer to present the marginal power for each test.
That is, we look at the percentage of times a significant total effect
is found (irrespective of the significance of the indirect effect)
and the percentage of times a significant indirect effect is found
(irrespective of the significance of the total effect), because this
reflects the power of a procedure whereby one tests for indirect
effect regardless of the test of total effect. In contrast, the power
displayed in Rucker et al. (2011), for instance, reflects the power
for a procedure whereby one only tests for mediated effect when
a non-significant total effect is found; such procedure is not one
that is normally adopted in practice. As predicted from the above
analytical derivation, we indeed observe the highest power for the
indirect effect when the standardized effect of X on M approxi-
mately equals the standardized effect of M on Y. But the power
to detect the indirect effect is smaller than the power to detect
the total effect of the same size when a is very large. Under the
latter scenario, the high multicollinearity between X and M may
result in imprecise estimators for b (Beasley, 2014; O’Rourke and
MacKinnon, 2014). Note that those observations are confirmed
with either type of bootstrap.

OMITTED M-Y CONFOUNDERS AND THE POWER OF THE
TEST FOR THE INDIRECT EFFECT
Claims about increased power for the test of an indirect or medi-
ated effect are not only somewhat misguided by the inflated type I
error, but also because the increased power is merely the result of
making more assumptions: model assumptions on the joint dis-
tribution of outcome and mediator, and structural assumptions
on the absence of common causes. Indeed, to identify the indi-
rect effect one needs to assume the absence of no unmeasured
confounders of the mediator-outcome relationship. Technically,
this implies no correlation between the error terms ε2 and ε3 in
models (2) and (3). In practice however, there will typically be
variables that affect both the mediator and outcome but that are
not measured or controlled for. Therefore, an apparent indirect
effect may be (partially) driven by a spurious correlation between
M and Y shows the extreme scenario where the effect of M on Y
is completely due to the omitted variable U.

We mimic the setting of Rucker et al. (2011) with the direct
effect equal to 0.16, the effect of X on M fixed to 0.4, but now
with a spurious correlation between M and Y induced by a stan-
dard normal distributed variable U (the right panel of Figure 1).
Typically, factors other than X that affect M also affect Y in the
direction that M affects Y (Bullock et al., 2010). We assume here
that U has the same effect on M and Y, and results in a spurious
0.4 effect of M on Y. Hence, the true total and indirect effect equal
0.16 and 0, respectively; but the spurious indirect effect, ignor-
ing the unmeasured U, also equals 0.16. We simulate such data
in samples of size N (25, 50, 100, 200), and repeated each set-
ting 5000 times. The total and indirect effect are estimated each
time using models (1), (2), and (3). Figure 4 shows the power to
detect the total effect, as well as the power to detect the spurious

2These authors claimed to present the power to detect a significant indirect
effect in the absence of a significant total effect (i.e., a conditional power),
but actually showed the joint probability of a significant indirect effect and a
non-significant total effect.

FIGURE 4 | The power to detect the indirect effect (IE). Data are generated
according to the right panel of Figure 1 with a = 0.4 and c’ = 0.16 and a
residual correlation rho between M and Y equal to 0.336. The different power
curves represent varying assumptions on unmeasured confounding of the
M-Y relationship in a sensitivity analysis.

indirect effect (curve with ρ equal to zero, cfr. infra). As expected,
one finds as before substantial power gain for the test of ab vs. c
with increasing sample size. However, this is misguided in view of
the absence of an indirect effect.

One may wonder what the value of the estimated indirect
effect would be if one allows for unmeasured M-Y confound-
ing. Sensitivity analyses can shed some light on the robustness of
indirect effect estimates against such violations. The mediation R-
package of Tingley et al. (2014) provides a convenient sensitivity
analysis by assessing the indirect effect for varying levels of cor-
relation ρ between ε2 and ε3 (Imai et al., 2010). If there were no
unmeasured confounders such as U in the right panel of Figure 1,
then ρ equals zero. In the above described simulation setting the
true correlation ρ equals 0.366. The different curves in Figure 4
show the probability to detect a significant indirect effect for vary-
ing levels of the sensitivity parameter ρ. With increasing values of
ρ, and hence smaller estimated indirect effect, the gain in power
of the test for the indirect effect vs. the power of the total effect
disappears. This is even more pronounced if one considers that,
since ρ is unknown, the presence of an indirect effect can in prin-
ciple only be concluded when there is significant evidence for it at
all possible values of ρ.

In practice, one must thus face the uncertainty about the no
unmeasured confounding assumption for the M-Y relationship
when assessing the indirect effect. Because that assumption is
not needed for the total effect, one may argue that some penalty
should be paid for the test of the indirect effect vs. the test of
the total effect by allowing an amount of unmeasured M-Y con-
founding. The extent of that penalty must reflect the uncertainty
about the no unmeasured confounding assumption for the M-Y
relationship. Expert knowledge for the particular study at hand
is needed for this purpose. Because we observed higher power for
the test of the indirect vs. the total effect under most scenarios, it is
informative to explore which value of the sensitivity parameter ρ

makes the power gain of the test for ab vs. the test for c disappear.
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This is shown for a particular setting in Figure 4, but we perform
such calculation for each of the settings in the simulation study
presented in Figure 2. We therefore varied the values of the sen-
sitivity parameter ρ in the analyses, and estimated each time the
corresponding indirect effect and its standard error. The value of
ρ that makes the power of the test for the indirect and the test for
the total effect equal is presented in Table 1 for each of the set-
tings. Interestingly, we observe that when a = b rather than b > a,
smaller values of ρ suffice to lose the gain in power of the test for
the indirect effect vs. the test for the total effect. Hence, in those
situations where the largest gain in power is observed, weaker vio-
lation of the unmeasured confounding assumption suffices to end
up with equal power to detect the indirect and total effect.

Note that we focused above on the assumption of no unmea-
sured M-Y confounders, but other assumptions such as “there
are no measured confounders of the M-Y relationship affected
by X” are needed too to identify the mediated effect. We refer the
interested reader to a Imai et al. (2010) and Pearl (2014) for more
details on the identification assumptions for direct and indirect
effects.

PRACTICAL IMPLICATIONS
What are the practical implications of the above findings? We
argue that much depends on the research hypotheses specified at
the design of the study. Does the study primarily aim to estab-
lish the total effect of an intervention on an outcome (“the total
effect approach”) or is the focus solely on the underlying pro-
cesses (“the mediation only approach”). Under the total effect
approach, the first question that should be raised concerns the
power of the study to detect a relevant total effect. Only a small
proportion of articles in social sciences contain a solid description
of power and/or sample size calculations that were made before
any data were collected. If a sufficiently powered study fails to
detect a total effect, should we start looking at one or more media-
tors? First, we concur with O’Rourke and MacKinnon (2014) that
the inclusion of a mediator that occurs post-hoc because of fail-
ure to find a significant total effect is inappropriate but that such
inclusion should be specified at the design stage. Second, we have
shown in this paper that the type I error of a strategy whereby one
stops testing after a significant total effect but continues to test

Table 1 | Value of the sensitivity parameter ρ that makes the power of

the test for the indirect effect and the power of the test for the total

effect equal.

N = 25 N = 50 N = 100 N = 200

INDIRECT EFFECT = 0.16

a = 0.20/b = 0.80 0.15 >0.50 >0.50 >0.50
a = 0.26/b = 0.60 0.07 0.30 0.41 0.46
a = 0.40/b = 0.40 0.03 0.16 0.20 0.22
a = 0.60/b = 0.26 0.01 0.06 0.04 0.06
INDIRECT EFFECT = 0.25

a = 0.30/b = 0.83 >0.50 >0.50 >0.50 >0.50
a = 0.40/b = 0.63 0.16 0.36 0.40 0.40
a = 0.50/b = 0.50 0.11 0.20 0.22 0.22
a = 0.63/b = 0.40 0.05 0.12 0.13 0.14

for mediation after a non-significant total effect may be highly
inflated. One potential solution would be to apply some mul-
tiple testing correction. However, since the test for the indirect
effect and total effect are dependent (Tofighi et al., 2009), such
correction is not straightforward. A conservative approach would
be to apply some type of Bonferroni correction. Third, even if
one would correct somehow for this inflation, one should realize
that the potential higher power of the test of the indirect effect vs.
the test of the total effect rests on strong untestable assumptions.
Alternatively, one may argue that unknown suppression mech-
anisms may come into play and explain the lack of total effect.
MacKinnon et al. (2000) use the term suppressor to describe “a
variable which increases the predictive ability of another vari-
able by its inclusion in a regression equation.” Suppression occurs
when the indirect effect via the suppressor has an opposite sign
to that of the total effect, and thus its omission might lead to
the total effect to appear small or non-significant. Not seldom,
papers presenting significant indirect effects in the absence of a
significant total effect show (possibly non-significant) direct and
indirect effects with opposite signs resulting in a small total effect.
Simultaneously examining multiple mediators (with or without
opposite indirect effects) may reveal further insights, but such
explorations are typically post-hoc or cannot even be performed
because the potential suppressor is not measured. Moreover, one
should be aware of the strong assumptions needed to identify
the indirect effects for each mediator separately in such multiple
mediator models (Imai and Yamamoto, 2013).

Under the mediation only approach on the other hand, there
is no need to explicitly test for the total effect but it should be
made clear in the reporting of such studies that the identifica-
tion of the indirect effect requires stronger assumptions than the
total effect. At the design stage, researchers should not only per-
form an adequate sample size calculation to detect indirect effects
with sufficient power (Fritz and MacKinnon, 2007), but also think
carefully about common causes of mediator and outcome. At the
analysis stage, one should then consider models that control for
those measured potential confounders of the M-Y relationship.
Additionally, we plea for sensitivity analyses (Imai et al., 2010;
Tingley et al., 2014) to be standard part of mediation analyses.
How robust is the finding of a significant indirect effect against
violations of the no unmeasured M-Y confounder assumption?
If a small value of the sensitivity parameter(s) makes the indirect
effect insignificant, results may not be fully convincing. In this
paper, we used sensitivity analyses along the lines of Imai et al.
(2010) and considered the correlation ρ between ε2 and ε3 as the
sensitivity parameter. The latter only requires a single sensitivity
parameter, but may be intuitively hard to understand. Alternative
approaches have recently been proposed to assess indirect effect
bias. Cox et al. (2014) for example build on the LOVE (left out
variables error) method by Mauro (1990) and assess omitted
variable bias for the mediator-outcome relation using two cor-
relations: (i) the correlation between a hypothesized confounder
and the outcome and (ii) the correlation between this confounder
and the mediator. These correlations are intuitively easier to
understand and their approach also enables the researcher to
identify the different combinations of sizes of these correlations
that cause the indirect effect to become zero.
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In summary, whereas other scholars (Rucker et al., 2011;
Kenny and Judd, 2014; O’Rourke and MacKinnon, 2014) mostly
discussed the power of the test for the indirect effect vs. the
power of the test for the total effect, we shifted the focus to the
type I error and the impact of unmeasured M-Y confounding.
When mediation is of primary interest, we suggest on the one
hand to build in some conservatism by pleading for sensitivity
analyses as a compulsory part of every mediation analysis, but
on the other hand to drop the prerequisite of a significant total
effect. First, since there is no single method that can deal with
unmeasured M-Y confounding given the observed data, unless
other strong untestable assumptions are made (MacKinnon and
Pirlott, 2014), we view sensitivity analyses as a necessity. Second,
by dropping the requirement of a significant total effect on the
other hand, we may decrease the type II error (i.e., missing true
mediated effects) that is associated with the causal steps approach
(MacKinnon et al., 2002). Most of the arguments that we dis-
cussed above are exacerbated in non-randomized studies. But
precisely because randomization simplifies the assumptions, the
randomized experiment was the proper framework for highlight-
ing complications. We hope authors and reviewers find the above
guidelines useful to assess the trustworthiness of an estimated
indirect effect in future publications.
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the product explains normal theory mediation confidence interval estimation.
Multivariate Behav. Res. 49, 261–268. doi: 10.1080/00273171.2014.903162

MacKinnon, D. P. (2008). Introduction to Statistical Mediation Analysis. New York,
NY: LEA.

MacKinnon, D. P., Krull, J. L., and Lockwood, C. M. (2000). Equivalence of the
mediation, confounding and suppression effect. Prev. Sci. 1, 173–181. doi:
10.1023/A:1026595011371

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., and Sheets,
V. (2002). A comparison of methods to test mediation and other intervening
variable effects. Psychol. Methods 7, 83–104. doi: 10.1037/1082-989X.7.1.83

MacKinnon, D. P., and Pirlott, A. G. (2014). Statistical approaches for enhanc-
ing causal interpretation of the M to Y relation in mediation analysis. Pers. Soc.
Psychol. Rev. doi: 10.1177/1088868314542878. [Epub ahead of print].

Mauro, R. (1990). Understanding L.O.V.E. (left out variables error): a method for
estimating the effects of omitted variables. Psychol. Bull. 108, 314–329. doi:
10.1037/0033-2909.108.2.314

O’Rourke, H. P., and MacKinnon, D. P. (2014). When the test of mediation
is more powerful than the test of the total effect. Behav. Res. Methods. doi:
10.3758/s13428-014-0481-z. [Epub ahead of print].

Osborne, J. (2010). Challenges for quantitative psychology and measurement in the
21st century. Front. Psychol. 1:1. doi: 10.3389/fpsyg.2010.00001

Pearl, J. (2014). Interpretation and identification of causal mediation. Psychol.
Methods 19, 459–481. doi: 10.1037/a0036434

Rucker, D. D., Preacher, K. J., Tormala, Z. L., and Petty, R. E. (2011). Mediation
analysis in social psychology: current practices and new recommendations.
Soc. Personal. Psychol. Compass 5, 359–371. doi: 10.1111/j.1751-9004.2011.
00355.x

Shrout, P. E., and Bolger, N. (2002). Mediation in experimental and nonexperimen-
tal studies: new procedures and recommendations. Psychol. Methods 4, 422–445.
doi: 10.1037/1082-989X.7.4.422

Smith, E. R. (2012). Editorial. J. Pers. Soc. Psychol. 102, 1–3. doi: 10.1037/a0026676
Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in struc-

tural equation models. Sociol. Methodol. 13, 290–313. doi: 10.2307/270723
Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). mediation: R

package for causal mediation analysis. J. Stat. Softw. 59.
Tofighi, D., MacKinnon, D. P., and Yoon, M. (2009). Covariances between regres-

sion coefficient estimates in a single mediator model. Br. J. Math. Stat. Psychol.
62, 457–484. doi: 10.1348/000711008X331024

Zhao, X., Lynch, J. G., and Chen, Q. (2010). Reconsidering Baron and Kenny:
myths and truths about mediation analysis. J. Consum. Res. 37, 197–206 doi:
10.1086/651257

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 08 October 2014; accepted: 14 December 2014; published online: 12 January
2015.
Citation: Loeys T, Moerkerke B and Vansteelandt S (2015) A cautionary note on the
power of the test for the indirect effect in mediation analysis. Front. Psychol. 5:1549.
doi: 10.3389/fpsyg.2014.01549
This article was submitted to Quantitative Psychology and Measurement, a section of
the journal Frontiers in Psychology.
Copyright © 2015 Loeys, Moerkerke and Vansteelandt. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | Quantitative Psychology and Measurement January 2015 | Volume 5 | Article 1549 | 8

http://dx.doi.org/10.3389/fpsyg.2014.01549
http://dx.doi.org/10.3389/fpsyg.2014.01549
http://dx.doi.org/10.3389/fpsyg.2014.01549
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive

	A cautionary note on the power of the test for the indirect effect in mediation analysis
	Introduction
	The Relative Power of the Test for the Indirect Effect vs. the Test for the Total Effect
	Omitted M-Y Confounders and the Power of the Test for the Indirect Effect
	Practical Implications
	Acknowledgments
	References


