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Exogenous or automatic attention to emotional distractors has been observed for emotional
scenes and faces. In the language domain, however, automatic attention capture by
emotional words has been scarcely investigated. In the current event-related potentials
study we explored distractor effects elicited by positive, negative and neutral words in
a concurrent but distinct target distractor paradigm. Specifically, participants performed
a digit categorization task in which task-irrelevant words were flanked by numbers. The
results of both temporo-spatial principal component and source location analyses revealed
the existence of early distractor effects that were specifically triggered by positive words.
At the scalp level, task-irrelevant positive compared to neutral and negative words elicited
larger amplitudes in an anterior negative component that peaked around 120 ms. Also,
at the voxel level, positive distractor words increased activity in orbitofrontal regions
compared to negative words. These results suggest that positive distractor words quickly
and automatically capture attentional resources diverting them from the task where
attention was voluntarily directed.
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INTRODUCTION
In order to maintain coherent behavior in a continuously changing
environment, attentional processes are controlled endogenously
to allow for keeping goal-directed behaviors in spite of distracting
events. At the same time, organisms need to be able to effectively
process novel, unexpected events, that could be either advanta-
geous or dangerous, so as to ensure appropriate responses with
either approach or avoidance behavior (Egeth and Yantis, 1997;
Chica et al., 2013). The mechanism that is able to detect the
appearance of these new events is called exogenous attention (also
referred to as bottom-up, involuntary or stimulus-driven atten-
tion). It may be described as an adaptive mechanism for the
rapid detection and processing of biologically relevant events, even
when individuals are engaged in a resource-consuming task (Car-
retié, 2014). Exogenous shifts are reflexive, with attention being
automatically pulled by external stimulation. According to differ-
ent theoretical views (see Yantis, 2000 for a review), exogenous
attention involves several processes such as the spatial auto-
matic orientation of processing resources toward those events that
deserve further processing (Sokolov, 1963; Graham and Hack-
ley, 1991; Corbetta and Shulman, 2002; Posner et al., 2007), or
the modulation of perceptual neural mechanisms that potentiate
the processing of those stimuli capturing attention (Serences and
Yantis, 2007; Asplund et al., 2010).

The results of several event-related potential (ERP) studies have
revealed that some components may be related to distinct mech-
anisms involved in exogenous attention. In this sense, an anterior
N1component peaking around 100 ms has been associated with

an attentional mechanism of the prefrontal cortex, which directs
attention and generates a bias signal that either enhances or sup-
presses sensory representations in visual pathways (Hillyard and
Anllo-Vento, 1998; Barceló et al., 2000; Di Russo et al., 2003).
Perceptual potentiation seems to be reflected by modulations in
posterior P1and N1 components peaking around 100 and 150 ms,
respectively, (Hillyard et al., 1998; Vogel and Luck, 2000; Di Russo
et al., 2005; Natale et al., 2006). Several dorsal and ventral brain
areas in the frontal and parietal cortex have been proposed to
subserve attentional networks implicated in exogenous attention
(see Corbetta and Shulman, 2002, and Corbetta et al., 2008 for
reviews). These regions seem also to exert a modulatory control
over the activity of occipital visual cortices (Kastner et al., 1998;
Brefczynski and DeYoe, 1999).

Emotional stimuli are particularly relevant for an organ-
ism’s survival. Indeed, enhanced shifts in attention from the
target stimulus toward competing emotional as compared to
neutral faces or scenes presented as distractors are consistently
observed (see Carretié, 2014, and Pourtois et al., 2013, for
reviews). Capture of exogenous attention by emotional distrac-
tors increases reaction times and/or errors (e.g., Schimmack
and Derryberry, 2005; Hodsoll et al., 2011). Also, depending
on task demands and the current stimuli used, modulations by
emotional compared to neutral distractors affect relatively early
and/or late ERP components, including the P1 and the N1, as
well as the so-called early posterior negativity (EPN), the P2
and the Late Positive Component late positive component (LPC;
e.g., digit-categorization tasks: Carretié et al., 2009; perceptual
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discrimination tasks: Doallo et al., 2006; De Cesarei et al., 2009;
Pourtois et al., 2010). Finally, studies providing spatial informa-
tion on brain activity have revealed the involvement of visual
cortices and fronto-parietal attentional networks in the processing
of task-irrelevant emotional stimuli (e.g., Vuilleumier et al., 2001;
Pessoa and Ungerleider, 2004; Mitchell et al., 2007; Carretié et al.,
2012).

Correlates of exogenous attentional capture by emotional task-
irrelevant stimuli have been also observed in the language domain,
although the mechanisms that operate for the processing of ver-
bal distractors have been much less explored than for pictorial
materials. Several studies have used experimental paradigms in
which targets and emotional distractor words were not concur-
rent in time, such as the dot probe task (e.g., MacLeod et al., 1986),
affective variants of the cue-target paradigm (e.g., Stormark et al.,
1995; Amir et al., 2003), or the attentional blink paradigm (e.g.,
Keil and Ihssen, 2004; Arnell et al., 2007). Overall, these stud-
ies have provided important information on exogenous attention
processes, which suggests that emotional verbal distractors elicited
an involuntary capture of attention. However, some limitations
have been noted since orienting toward and disengaging from
a stimulus are processes that may be difficult to differentiate in
these paradigms (Salemink et al., 2007; Cisler et al., 2009). Similar
concerns have been raised about using tasks in which emotional
distractors and targets engaging voluntary attention are not physi-
cally segregated. Examples of these paradigms are those exploring
the emotional Stroop effect (e.g., McKenna and Sharma, 1995;
Thomas et al., 2007; González-Villar et al., 2014), those using affec-
tive lexical decision tasks (Hofmann et al., 2009; Hinojosa et al.,
2010b), or those where specific non-emotional aspects (e.g., let-
ter font detection) of words have to be identified (e.g., Schacht
and Sommer, 2009a; Hinojosa et al., 2014). It has been claimed
that these tasks may not trigger some of the processes involved
in exogenous attention, such as spatial reorienting mechanisms
(Carretié, 2014). Indeed, they have been most commonly used to
explore lexical or conflict-related processes rather than exogenous
attention.

A different source of evidence comes from studies using con-
current but distinct target distractor paradigms (CDTD) or directed
attention tasks (MacNamara et al., 2013; Carretié, 2014). In these
tasks, elements on the screen to which voluntary attention must
be directed to perform a task (targets) and elements that are task-
irrelevant (distractors) appear at the same time but are physically
segregated. The use of CDTD tasks may be a suitable tool to
explore exogenous attention mechanisms since both orienting of
attention and sensory enhancement processes seem to be operating
in these paradigms (Carretié, 2014). To the best of our knowledge,
however, only three studies have compared the processes triggered
by emotional and neutral distractor words with CDTD tasks (see
also Rampone et al., 2014, who did not include neutral distrac-
tor words). The results of these studies suggest that emotional
words capture attention to a lesser extent than do scenes or faces
(Carretié, 2014), which are in line with reports showing differ-
ences in the processing of emotional pictorial and verbal stimuli
(Hinojosa et al., 2009; Schacht and Sommer, 2009b; Frühholz et al.,
2011; Schlochtermeier et al., 2013). In this sense, Harris and Pash-
ler (2004) found slowed reaction times to negative distractors

only after the first presentation of task-irrelevant words using a
digit categorization task. Also with this paradigm, Aquino and
Arnell (2007) reported increased reaction times to sexually explicit
distractors compared to neutral words, but not between threat-
ening or school-related items and neutral words. Finally, Trauer
et al. (2012) used a visual foreground perceptual task to investi-
gate distraction effects by emotional words on steady-state visual
evoked potentials (SSVEPs). Behavioral data and SSVEP ampli-
tudes showed no differences regardless of the emotional content of
distractor words, which was taken to suggest an absence of atten-
tional modulation in early visual areas. Lexico-semantic effects
in middle and late latency ERP components were also explored.
The authors found enhanced amplitudes in the P2 and N400
components to negative task-irrelevant words and concluded that
emotional distractor words captured lexico-semantic processing
resources.

The heterogeneity of the findings suggests that more studies
are needed in order to clarify how the distinct processes involved
in exogenous attention modulate the processing of task-irrelevant
emotional words. In this sense, compared with behavioral mea-
sures, ERPs make it possible to determine which stages are being
affected by a specific experimental manipulation. Another advan-
tage over behavioral methods is that they can provide a measure
of processing stimuli even when there is no behavioral change.
In the only prior ERP study, Trauer et al. (2012) focused their
ERP analyses on the stage of elaborated meaning evaluation -
P2, N400, and LPC components- due to some limitations of the
SSVEP procedures to explore early latency components. Thus,
the involvement of orienting mechanisms and/or enhanced sen-
sory processing that occur at early attentional processing stages
remains still unexplored with ERPs. The present study sought to
clarify the mechanisms involved in exogenous attention to verbal
stimuli. To this end, emotional and neutral words were presented
as distractors while participants carried out a demanding digit cat-
egorization CDTD task. We expected effects to arise in those ERP
components that have been associated with the automatic orienta-
tion of processing resources and/or the modulation of perceptual
neural mechanisms in prior literature, namely the P1 and the N1
(Hillyard et al., 1998; Di Russo et al., 2005). Additionally, we exam-
ined those components - the P2, the EPN, the N400, and the LPC-
that have been modulated by emotional content in word process-
ing studies with a variety of experimental paradigms including
lexical decision tasks (Kanske and Kotz, 2007; Scott et al., 2009;
Méndez-Bértolo et al., 2011), silent reading (Kissler et al., 2007,
2009; Herbert et al., 2008), structural decision tasks (i.e., iden-
tification of italicized letters, Schacht and Sommer, 2009a), or
grammatical decision tasks (i.e., counting of nouns or adjectives,
Kissler et al., 2009).

As a second goal, we explored the neural origin of exogenous
attention to emotional distractor words, a question that has not
been addressed in previous research. To this aim, source loca-
tion analyses were performed using exact low resolution brain
electromagnetic tomography (eLORETA; Pascual-Marqui, 2007).
According to previous literature, activation of those brain regions
underlying attentional networks and emotional processing was
hypothesized, namely frontal, parietal and/or extrastriate visual
cortices (Vuilleumier, 2005).
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MATERIALS AND METHODS
PARTICIPANTS
Thirty undergraduate students (23 females and 7 males) from the
Universidad Rey Juan Carlos, with an age range between 18 and
26 (mean = 18.96, SD = 1.92), participated in this experiment.
Participants were native speaker of Spanish and right-handed,
as assessed with the Edinburgh Handedness Inventory (Oldfield,
1971): LQ > +72. All subjects gave written informed consent and
reported normal or corrected-to-normal visual acuity. The study
was approved by the Ethics Committee of the Universidad Rey Juan
Carlos.

STIMULI AND PROCEDURE
Three types of distractor words were presented to participants in a
digit categorization task: negative, positive and neutral words. The
complete set of verbal stimuli consisted of 150 Spanish nouns (50
per emotional category). These words were selected from a pilot
study that comprised 720 nouns. In this study, 45 individuals (dif-
ferent from those participating in the current study) rated valence,
arousal, and the level of concreteness of each word on a 9-point
Likert scale (for a detailed description of the pilot study see Hino-
josa et al., 2009). Equal numbers of negative, positive and neutral
distractor words were selected according to several criteria that
were contrasted with analyses of variance (ANOVAs; see Table 1):
(a) negative and positive words were matched in arousal rating
but both differed from neutral words; (b) negative, positive and
neutral nouns differed in valence ratings; (c) all nouns had simi-
lar concreteness, word length and frequency of use (Alameda and
Cuetos, 1995). Table 1 summarizes mean values in arousal, valence
and concreteness for nouns, as well as mean word frequency and
word length.

Participants sat in an electrically and acoustically isolated room
in a comfortable chair. The stimuli were presented on a com-
puter monitor that was positioned at eye level about 60 cm in
front of the participant. Words were presented in lower case let-
ters at fixation with digits in the left and the right periphery (10o

eccentricity). The size of all words ranged between 7.64 and 2.86◦
(width) × 0.95◦ (height). Only digits from 2 to 8 were used (0.95◦
height). Words and digits appeared in black against a light gray
background. The sequence of events in each trial is represented in
Figure 1. First, a fixation cross appeared in the center of the screen
and remained there for 500 ms. This fixation cross was followed
by a blank screen interval of 300 ms and then words flanked by

the two digits were presented for 150 ms and were followed by a
1700 ms blank interval. The intertrial interval was 2650 ms.

As indicated, participants performed a digit categorization task.
They were told to press, ‘as accurately and rapidly as possible,’ one
key of a response device if both digits were either even or odd (i.e.,
if they were ‘concordant’), and a different key if one digit was even
and the other was odd (i.e., if they were ‘discordant’). In half of
the trials digits were concordant whereas they were discordant in
the other half. The same combination of digits was repeated across
emotional conditions in order to ensure that task demands were
identical in trials with negative, positive and neutral distractors.
The order of presentation of the 150 trials (50 trials for each of the
three emotional categories) was pseudorandomized so no more
than three consecutive trials of the same emotional or numerical
category appeared consecutively. Stimuli were presented in two
runs of 75 stimuli with a brief resting period between them. Par-
ticipants were requested to avoid blinking as much as they could.
A training block of nine trials was provided at the beginning of
the session to familiarize participants with the task.

EEG RECORDING AND PRE-PROCESSING
Continuous electroencephalographic (EEG) activity was recorded
using an electrode cap (ElectroCap International) with 60 homo-
geneously distributed scalp electrodes. All electrodes were refer-
enced to the linked mastoids. Electrooculographic (EOG) data
were recorded supra- and infraorbitally (vertical EOG), as well
as from the left versus right orbital rim (horizontal EOG). Elec-
trode impedances were kept below 5 k�. An online bandpass filter
from 0.1 to 40 KHz was used (3 dB points for -6 dB/octave roll-
off), and digitization sampling rate was set to 250 Hz. Off-line
pre-processing was performed using Brain Vision Analyzer soft-
ware (Brain Products). The continuous EEG recording was divided
into 1000-ms epochs for each trial, beginning 200 ms before stim-
ulus onset. Baseline correction was made using the 200-ms period
prior to the onset of stimulus. Trials in which subjects responded
erroneously or did not respond were eliminated. EOG-artifact
removal was carried out following the procedure described by
Gratton et al. (1983). A careful EEG visual inspection was then
performed in which epochs with artifacts were eliminated from
further analyses. This artifact and error rejection procedure led to
an average admission of 86.6% positive, 90% neutral, and 91.8%
negative trials. The ERP averages were categorized according to
each distractor category (negative, neutral, and positive).

Table 1 | Means and SD of valence (1 highly unpleasant, 9 highly pleasant), arousal (1 highly calming, 9 highly arousing), concreteness (1 highly

abstract, 9 highly concrete), frequency of use (per one million), number of syllables, and number of letters.

Valence Arousal Concreteness Frequency Syllables Letters

Negative 2.13 (0.5) 7.29 (0.5) 6.10 (1.3) 80.72 (108) 2.88 (0.8) 7.08 (2)

Neutral 5.06 (0.1) 5.07 (0.2) 6.11 (1.8) 84.36 (108) 2.96 (0.8) 6.84 (2)

Positive 7.67 (0.5) 7.23 (0.5) 6.07 (1.4) 85.14 (101.1) 2.96 (0.8) 7.02 (2)

ANOVA

Emotion F = 2117.7* F = 421.7* F = 0.0ns F = 0.0ns F = 0.1ns F = 0.1ns

d.f. = 2,98; n.s., non-significant, *p < 0.001.
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FIGURE 1 | Schematic representation of the sequence described in the

main text. An example belonging to neutral words during discordant digit
condition is represented (“botella” = bottle). ITI, Intertrial interval.

DATA ANALYSIS
Behavioral analysis
Mean reaction times (RTs) of correct responses and error rates
(omissions and commissions) were analyzed. Repeated-measures
ANOVAs on each measure were carried out with respect to Dis-
tractor type (three levels: negative, neutral, and positive). The
Greenhouse–Geisser epsilon correction was applied when the
assumption of sphericity was violated. Post hoc pairwise com-
parisons were two-tailed, paired-samples t-tests with Bonferroni
correction for multiple comparisons. As a measure of effect size,
partial η -square (η2

p) is reported for significant effects.

ERP analysis
Detection and quantification of ERP components was carried out
through covariance-matrix-based temporal principal component
analysis (tPCA). All analyses were performed using IBM SPSS v20.
The main advantage of tPCA over traditional procedures based on
visual inspection of recordings and on‘temporal windows of inter-
est’ is that it presents each ERP component separately and with its
‘clean’ shape, extracting and quantifying it free of the influences
of adjacent or subjacent components (Chapman and McCrary,
1995; Dien and Frishkoff, 2005). Indeed, the waveform recorded
at a site on the head over a period of several 100 ms represents a
complex superposition of different overlapping electrical poten-
tials. Such recordings can stymie visual inspection. In brief, tPCA
computes the covariance between all ERP time points, which tends
to be high between those time points involved in the same compo-
nent, and low between those belonging to different components.
The solution is therefore a set of independent factors made up
of highly covarying time points, which ideally correspond to ERP
components. Temporal factor scores, the tPCA-derived parameter
in which extracted temporal factors (TFs) may be quantified, is
linearly related to amplitude. In the present study, the decision on
the number of components to select was based on the scree test
(Cattell, 1966). Extracted components were submitted to Promax
rotation, as recommended (Dien, 2010, 2012).

Given that signal overlapping may occur also at the space
domain, we performed subsequent spatial PCAs on every tem-
poral factor. At any given time point, several neural processes
(and hence, several electrical signals) may concur, and the record-
ing at any scalp location at that moment is the electrical balance
of these different neural processes. While temporal PCA “sepa-
rates” ERP components along time, spatial PCA (sPCA) separates
ERP components along space, each spatial factor ideally reflecting
one of the concurrent neural processes underlying each temporal
factor. Additionally, sPCA provides a reliable division of scalp
into different recording regions, an advisable strategy prior to
statistical contrasts, since ERP components frequently behave dif-
ferently in some scalp areas than in others (e.g., they present
opposite polarity or react differently to experimental manipula-
tions). This method of analysis is reference-independent since the
configuration of the scalp topography is independent of the ref-
erence electrode position (Pourtois et al., 2008). Basically, each
region or spatial factor is formed with the scalp points where
recordings tend to covary. As a result, the shape of the sPCA-
configured regions is functionally based, and scarcely resembles
the shape of the geometrically configured regions defined by
traditional procedures. Moreover, each spatial factor can be quan-
tified through the spatial factor score, a single parameter that
reflects the amplitude of the whole spatial factor. Also in this
case, the decision on the number of factors to select was based
on the scree test, and extracted factors were submitted to Promax
rotation.

Finally, repeated-measures ANOVAs on temporospatial factor
scores were carried out with respect to Distractor type (three
levels: negative, neutral, and positive). The Greenhouse–Geisser
epsilon correction was applied when the assumption of sphericity
was violated, and post hoc pairwise comparisons were two-tailed,
paired-samples t-tests with Bonferroni correction for multiple
comparisons. Effect sizes were also reported using the partial
η -square (η2

p) method.

Source localization analysis
In order to three-dimensionally locate the cortical regions that
were sensitive to the experimental effects observed at the scalp
level, exact low-resolution brain electromagnetic tomography
(eLORETA; Pascual-Marqui, 2007; Pascual-Marqui et al., 2011)
was applied to relevant temporal factor scores. eLORETA is
a 3D, discrete linear solution for the EEG inverse problem,
which provides inverse solutions that are reference-independent
(Pascual-Marqui et al., 2011; Michel and Murray, 2012). Although,
in general, solutions provided by EEG-based source-location algo-
rithms should be interpreted with caution due to their potential
error margins, LORETA solutions have shown significant corre-
spondence with those provided by hemodynamic procedures in
the same tasks (Dierks et al., 2000; Vitacco et al., 2002; Mulert et al.,
2004). Moreover, the use of tPCA-derived factor scores instead of
direct voltages (which leads to more accurate source-localization
analyses: Dien et al., 2003, 2004; Carretié et al., 2004), contribute to
reducing this error margin. In its current version, eLORETA com-
putes the current density at each of 6239 voxels mainly located
in the cortical gray matter of the digitized Montreal Neurological
Institute (MNI) standard brain.
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Specifically, three-dimensional current–density estimates for
relevant temporal factor scores were computed for each par-
ticipant and each experimental condition. Subsequently, the
voxel-based whole-brain eLORETA-images (6239 voxels) were
compared between conditions using the non-parametric map-
ping (SnPM) tool, as implemented in the sLORETA/eLORETA
software package. As explained by Nichols and Holmes (2002),
the non-parametric methodology inherently avoids multiple
comparison-derived problems and does not require any assump-
tion of normality. Voxels that showed significant differences
between conditions (log-F-ratio statistic, two-tailed corrected
p < 0.05) were located in anatomical regions and Brodmann
areas (BAs).

RESULTS
BEHAVIORAL RESULTS
Average values for RTs, omission and commission error rates to
each emotional word category are shown in the Table 2. Three
repeated-measures ANOVAs were conducted on RTs, omission
and commission error rates including Distractor type as a fac-
tor Although RTs for positive distractor trials were slower than
for the rest of trials, statistical analyses did not reach significance
[F(2,58) = 0.883, p = 0.372]. Also, no significant results were
found for error rates [F(2,58) = 1.715, p = 0.191, for omissions,
and F(2,58) = 1.359, p = 0.265 for commissions].

ERP RESULTS
Figure 2 shows a selection of grand averages once the baseline
value (prestimulus recording) was subtracted from each ERP.
As described later, experimental effects were observed at around
120 ms (N1) over anterior electrode positions (see F1 and F2 loca-
tions). Figure 3 represents the topographic distribution of this
effect.

As a consequence of the application of the tPCA, several TFs
were extracted from the ERPs (see Figure 4). Factor peak-latency
and topography characteristics revealed TF8 as the component
being associated with both posterior P1 and anterior N1, which
typically overlap in time (Di Russo et al., 2003). Indeed, tPCA
revealed that the two components were evoked at the same latency
(peaking at 120 ms). However, differential characteristics of the
posterior P1and the anterior N1 were patent both at the polarity
and the scalp topography (as described later, see also Figure 3).
Furthermore, TF7 (peaking at 140 ms), TF5 (peaking at 192 ms),
TF6 (peaking at 270 ms), and TF2 (peaking at 380 ms) were related
to posterior N1, P2, EPN, and N400 components, respectively.
Finally, the LPC was decomposed in two centroparietal factors:
TF9, peaking at 525 ms, and TF1, peaking at 730 ms.

As can be observed in Table 3, the sPCA decomposed TF8 in
one anteriorly distributed factor (corresponding to the anterior
N1) and two factors with posterior distributions (corresponding
to the P1). Also, sPCA extracted three spatial factors for each of
the remaining TFs. Therefore, the temporospatial PCA yielded a
total of 24 factor combinations (three spatial factors extracted for
each of 8 TFs).

Repeated-measures ANOVAs on these temporospatial factors
with respect to Distractor type (three levels: negative, neutral, and
positive) were carried out as previously described. Table 3 provides
the statistical details of these analyses. As can be appreciated, the
effect of Distractor type was only significant for the anterior N1.
Post hoc tests with Bonferroni correction for multiple comparisons
showed enhanced anterior N1 amplitudes for positive compared to
neutral and negative distractor words (ps < 0.05). The anterior N1
amplitude did not differ between neutral and negative distractor
words (p = 1). As Table 3 shows, no significant effects were found
on other ERP components.

SOURCE LOCALIZATION RESULTS
The last analytic step consisted of three-dimensionally localiz-
ing the cortical regions that were responsible for the differences
observed in the anterior N1. To achieve this, N1 temporal factor
scores of each subject, electrode, and condition were submitted to
eLORETA. Then, the voxel-based whole brain eLORETA-images
(6239 voxels) were compared between conditions using the SnPM
approach. N1-related activation in response to positive distractor
words was associated with enhanced activity compared to negative
distractor words in several voxels. As illustrated in Figure 5, these
voxels were located in the orbitofrontal cortex (OFC; peak MNI
coordinates: X = 45, Y = 55, Z = −5; BAs 11/10/47). Activation
differences between positive and neutral distractor words did not
reach significance. Consistent with results from scalp ERPs, no
activation differences were found between neutral and negative
distractor words in any voxel.

DISCUSSION
In the current study we investigated the processing of emotional
distractor words while participants performed a digit categoriza-
tion task. In line with previous studies using CDTD tasks, we
did not observe any sign of attentional capture by emotional dis-
tractor words in behavioral measures. In this direction, Trauer
et al. (2012) failed to report behavioral indices that evidenced
the interference of emotional word content with a perceptual
foreground task. Weak effects were found in other studies. In
particular, delayed reaction times for emotional with respect to
neutral distractor words have been reported only after the first

Table 2 | Means and SD (in parenthesis) of reaction times (RTs) and errors rates (commission/omission) to each word category (positive,

negative, and neutral).

Positive words Negative words Neutral words

RTs (ms) 822.72 (30.11) 795.79 (40.72) 799.40 (42.72)

Error rates (commission) 0.051 (0.031) 0.038 (0.030) 0.050 (0.041)

Error rates (ommission) 0.071 (0.095) 0.058 (0.084) 0.070 (0.085)
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FIGURE 2 | Grand averages at a selection of electrodes. Experimental effects are clearly visible at frontal electrode sites (anterior N1).

FIGURE 3 | Difference maps showing distractor type effects in N1.

These maps were computed at the peak latency of N1.

occurrence of a negative word (Harris and Pashler, 2004), or for
sexually explicit words (Aquino and Arnell, 2007). Since behav-
ioral correlates of attentional capture by task-irrelevant emotional
pictures and faces are usually observed (e.g., Vuilleumier et al.,
2001; MacNamara and Hajcak, 2009; Calvo and Nummenmaa,
2011; Carretié et al., 2013b; but see Holmes et al., 2006; Carretié
et al., 2013a), our data fits well with the idea that word distractors
may be able to interrupt ongoing processing to a lesser extent than
pictorial distractors (Carretié, 2014). Nonetheless, it should be

remarked that behavioral measures are the final single output of
a large set of neural processes that may not be always convergent.
Notably, one advantage of using ERPs is that the components can
be examined in the absence of an overt behavioral response (Luck,
2005). Indeed, current results corroborate the greatest sensitiv-
ity of ERPs to the effects of certain experimental manipulations.
In this respect, neural results clearly showed that the emotional
content of the distractor words modulated processing-resources
devoted to a primary ongoing task, as suggested both by scalp
and source-location data. In particular, positive distractor nouns
compared to both neutral and negative distractor words were
associated with enhanced amplitudes in an anteriorly distributed
negative component peaking around 120 ms. Activity in the OFC
was identified as the neural origin of this scalp-recorded compo-
nent. Latency, amplitude and source-location analyses suggest that
this component would be associated with attentional capture by
positive distractor words. These results will be discussed in detail
bellow.

As indicated in the Results section, a wave peaking around
120 ms after trial presentation was subdivided into two compo-
nents by spatial principal component analyses. A posterior P1
deflection showed no amplitude differences between neutral and
emotional distractors. Interestingly, however, positive distractor
words elicited larger anterior N1 amplitudes than both nega-
tive and neutral task-irrelevant words. Similar modulations in a
frontal N1 component for emotional task-irrelevant pictures have
been recently found when participants’ attention was engaged in a
counting task (Zhang et al., 2014). Prior studies linked this com-
ponent to involuntary orientation of attention to relevant stimuli
(Luck et al., 1993; Di Russo et al., 2003). Specifically, it has been
suggested that the anterior N1 may reflect a prefrontal attentional
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FIGURE 4 |Temporal principal component analysis (tPCA): factor loadings after Promax rotation. Peak-latency of relevant factors is shown.

Table 3 | Description and statistical results for the factors extracted by temporospatial principal component analysis.

Temporal factor Peak (ms) Spatial factor Scalp distribution ANOVAs (Distractor type, d.f. = 2, 58)

TF8 (anterior N1/posterior P1) 110 SF1 Frontocentral F = 5.04, p = 0.01,η2
p = 0.15

SF2 Centroparietal F = 0.35, p = 0.7

SF3 Occipitoparietal F = 0.15, p = 0.8

FT7 (posterior N1) 140 SF1 Frontocentral F = 1.12, p = 0.3

SF2 Parietooccipital (right) F = 0.92, p = 0.4

SF3 Parietooccipital (left) F = 0.52, p = 0.6

FT5 (P2) 190 SF1 Frontal F = 1.04, p = 0.4

SF2 Parietooccipital F = 0.1, p = 0.9

SF3 Centroparietal F = 1.65, p = 0.2

FT6 (EPN) 270 SF1 Frontocentral F = 0.98, p = 0.4

SF2 Parietooccipital F = 0.85, p = 0.4

SF3 Temporoparietal F = 1.6, p = 0.2

FT2 (N400) 380 SF1 Frontal F = 1.59, p = 0.2

SF2 Occpitoparietal F = 1.55, p = 0.2

SF3 Centroparietal F = 0.78, p = 0.4

FT9 (LPC) 520 SF1 Frontal F = 2.26, p = 0.1

SF2 Centroparietal F = 0.93, p = 0.4

SF3 Occipitotemporal F = 0.6, p = 0.5

TF, temporal factor; SF, spatial factor; d.f., degrees of freedom.
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FIGURE 5 | Source localization results (eLORETA): increased N1-related

activation to positive in comparison to neutral distractor words was

observed in the orbitofrontal cortex. Color bar represents voxel log-F ratio

values. The threshold for corrected p < 0.05 was therefore 1.99. The strong
yellow color indicates those voxels showing significant differences between
conditions.

mechanism that regulates sensory processing in visual cortices
(Barceló et al., 2000; Pérez-Edgar and Fox, 2003).

The neural origin of our anterior N1, which seems to be
generated in the OFC (BAs 11/10/47), argues in favor of the
involvement of this region in attentional capture by positive dis-
tractor words. The OFC has been critically implicated in both
the modulation of emotion and attentional control (Vuilleumier,
2005; Domínguez-Borrás and Vuilleumier, 2013). Neuroanatom-
ical studies indicate that the OFC is reciprocally connected with
the amygdala and extensive areas of prefrontal, motor and sensory
cortices (Pandya and Yeterian, 1996; Cavada et al., 2000; Rolls,
2000). Specifically, it has been suggested that early activation of
the OFC would modulate sensory cortices via direct feedback or
indirect projections to attention and object-recognition systems
in prefrontal, parietal and temporal cortices (Amaral et al., 2003;
Vuilleumier, 2005). In particular, Bar et al. (2006) reported that
object recognition elicited activity in the OFC around 130 ms and
50 ms before it developed in recognition-related fusiform regions.
Also, activations to emotional cues in this prefrontal region have
been reported around 120 ms, using intracranial (Kawasaki et al.,
2001) and scalp recordings (Pourtois et al., 2004). In line with
these findings, a recent proposal postulates that the medial part
of the OFC is involved in the generation of affective predic-
tions that initiate appropriate reactions to visual information,
whereas the lateral regions of the OFC seems to be implicated
in computing and sending predictions about the identity of visual
stimuli to the visual system (Chaumon et al., 2014). Interestingly,
enhanced activity in the OFC while exogenous attention is directed
to task-irrelevant emotional pictures and faces has been previously
reported (Vuilleumier et al., 2001; Bishop et al., 2004; Zhang et al.,

2014). Thus, our current finding provides additional evidence
supporting the implication of the OFC in exogenous attention to
emotional verbal distractors, which may be triggered in part by
the activation of predictive mechanism involving the processing
of affective and identity-related information.

The selective enhancement of detection sensitivity to posi-
tive distractor words deserves further consideration. This finding
agrees with the results of a growing body of research indicating
that the OFC is a key structure in the neural circuitry of posi-
tive emotions and the processing of reward (Rolls, 2000; Burgdorf
and Panksepp, 2006). In this direction, activation of the OFC
has been found when mothers viewed pictures of their own
compared to unfamiliar children (Nitschke et al., 2004), when par-
ticipants received financial reward in a gambling task (Elliott et al.,
2000), or when pleasant taste stimuli were delivered to partici-
pants (O’Doherty et al., 2001). Also, patients with OFC lesions
responded faster to targets subsequent to positive distractors in
a lateralized visual discrimination task (Hartikainen et al., 2012).
Crucially, the results of an fMRI study by Lewis et al. (2007) showed
a selective role of the OFC in the processing of valence during word
processing. Thus, our data suggest activation in OFC seems to
underlay selective attention to positive word distractors in CDTD
tasks. Furthermore, the present results can be interpreted in terms
of the positivity offset. This represents a tendency from the positive
motivational system to respond more than the negative emotional
system to comparably low levels of evaluative input, which seems
to be the case of the processing of word distractors (Cacioppo et al.,
1997; Ito and Cacioppo, 2005). Indeed, there is recent evidence
indicating that as early as in the 80–120 ms time interval, the pro-
cessing of positive and negative words implicates neural activity in
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different networks. Specifically, the processing of positive words
was associated with activations in language and attention-related
regions in left temporal, frontal and visual association cortices,
whereas negative words activated the anterior cingulate cortex
(Keuper et al., 2013). These effects were interpreted in terms of
an “emotional tagging” of word forms associated to different pro-
cessing strategies developed during language acquisition. These
strategies include enhanced lexical processing of positive words
and a fast language-independent alert response to negative words
(Keuper et al., 2013). In agreement with this view, several studies
reported valence-dependent effects at different processing stages
that show facilitated lexical processing for positive words with
both behavioral and ERPs measures (Kissler and Koessler, 2011;
Kuchinke and Lux, 2012; Kissler and Herbert, 2013). This process-
ing advantage has been linked to the orbitofrontal reward system
(Kuchinke and Lux, 2012).

Resembling current findings, increased attentional capture
by positive distractor compared to negative and neutral task-
irrelevant words has been observed in a prior study with a similar
digit categorization task (Aquino and Arnell, 2007), whereas effects
for negative distractor words have been reported when participants
carried out a perceptual primary task (Trauer et al., 2012). Follow-
ing the proposal made by Keuper et al. (2013), it may be speculated
that processing requirements imposed by the primary task may
determine valence-dependent effects elicited by distractor words.
In this sense, the processing of positive distractor words would
be more evident in tasks demanding conceptual analysis to some
extend (as in the current and in Aquino and Arnell’s studies), given
the greater implication of lexico-semantic processing in digit cat-
egorization tasks (see below). In contrast, activity associated with
the processing of negative distractor words would be preferen-
tially observed with primary tasks that do not require conceptual
processing (e.g., the perceptual task used by Trauer et al., 2012)
since the processing of negative content in words seems to rely in
language-independent mechanisms according to the proposal by
Keuper et al. (2013).

On another level, our results complement prior findings with
CDTD tasks in several aspects. They suggest that ERP modula-
tions triggered by task-irrelevant emotional words may emerge at
different processing stages. On the one hand, in convergence with
the results by Trauer et al. (2012) with a SSVEP paradigm we did
not observed that emotional compared to neutral distractor words
enhanced sensory processing in visual areas. This claim seems to
be supported by the lack of amplitude differences in the poste-
rior P1, which is mainly elicited in visual cortices (Di Russo et al.,
2003, 2005). On the other hand, we only found modulations at
early processing stages, which disagree with effects during mean-
ing derivation – in P2 and N400 components- reported in Trauer
et al.’s (2012) study. Tentatively, these discrepant results may be
again related to the functionally different processes involved in
the primary task in both studies (see above). In the experiment
by Trauer et al. (2012), participants attended an array of squares
in order to detect brief coherent movements in one direction, a
task that mainly implies early perceptual processing. In contrast,
we used a digit categorization task that relies on numerical skills
that require more elaborated conceptual knowledge at the stage of
meaning evaluation (Delazer, 2003). Thus, it could be speculated

that the emotional content of word distractors interrupted ongo-
ing task performance by capturing those processing resources that
were involved to a lesser extent in the processing of target stimuli.
The foreground task in our experiment may also account for the
lack of effects in other components such as the EPN or the LPC.
In this direction, although similar EPN modulations were found
in tasks placing different processing demands, such as structural
analysis or lexico-semantic processing (e.g., Kissler et al., 2009;
Schacht and Sommer, 2009b), there is some evidence indicating
that the EPN is more likely to be elicited when emotional words
are deeply processed (e.g., Hinojosa et al., 2010b; Rellecke et al.,
2011; Bayer et al., 2012). Similarly, task-effects have been found
to modulate the amplitude of LPC (e.g., Fischler and Bradley,
2006; Schacht and Sommer, 2009b). Therefore, emotional modu-
lations in these components seem to be more evident as the level
of attention to the valence increases, although this idea requires
further confirmation. Nonetheless, the results of a recent meta-
analysis (Carretié, 2014) emphasized the nature of the primary
task, as well as the characteristics of the distractors and individual
differences, as a modulatory factor mediating attentional capture
by emotional task-irrelevant stimuli (see also Mogg and Bradley,
1998).

The anterior N1 effects indicate that the processing of positive
content in distractor words may operate at very early stages of the
processing, as proposed by automatic vigilance models (Pratto
and John, 1991) or the affective-primacy hypothesis (Zajonc,
1980; Delaney-Busch and Kuperberg, 2013), at least when the
primary task implicates conceptual processing to some extent.
However, the early latency of our effects raises the question
about the mechanism underlying such a fast activation of emo-
tional meaning from written words. Current findings suggest that
some of the processes involved in word recognition become evi-
dent around 100 ms (Hauk et al., 2006). Indeed, ERP evidence
has been reported suggesting a rapid access to the affective con-
tent of words as early as 80 ms using the semantic differential
technique (Skrandies, 1998). Also, the finding of specific ERP
effects for positive words between 100 and 150 ms with lexical
decision (Bayer et al., 2012) or picture naming tasks (Hinojosa
et al., 2010a) suggests that the analyses of emotional meaning
has already started at 100 ms after word onset. An alternative
explanation, however, might be outlined based on the proposal
made by Bayer et al. (2012; see also Kissler et al., 2009, for sim-
ilar arguments). These authors suggested that instead of fast
semantic processing, non-linguistic mechanisms may contribute
to early emotion effects in words. They argued that early emo-
tional responses to words may originate from associative learning
that does not depend on the semantic system given the results
of previous studies that reported very early ERP modulations
for non-linguistic stimuli associated with threat related pictures
(Stolarova et al., 2006) and reward (Schacht et al., 2012). Addi-
tional support for this view, with verbal stimuli, comes from
recent evidence showing that the activity elicited by emotion-
ally and neutrally conditioned pseudowords differed in a negative
component between 80 and 120 ms (Fritsch and Kuchinke,
2013). Interestingly, the OFC seems to be critically involved
in rapid stimulus-reinforcement association learning for posi-
tive reinforcers (Rolls, 2000; Gottfried et al., 2003). This leaves
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open the possibility that associative learning mechanisms that are
non-linguistic in nature underlie anterior N1 effects to positive
distractor words.

The current study has several potential limitations. In this
sense, the absence of jitter between the fixation cross and the
stimulus onset may have increased early attentional processes as
a result of the expectation generated when the cross appeared in
the screen. Also, the presentation of the blank screen following
rather short stimulus durations (150 ms) may have interfered, and
thus interrupted, subsequent stimulus, and attentional processing.
Future research can address these issues by randomly varying the
time between the fixation cross and the stimulus and by directly
comparing the processing of stimulus with different presentation
durations. Finally, although the main focus of the current study
was on early latency components (N1 and P1), the relatively high
number of temporo-spatial factors that we explored may have
increased the probability of finding significant effects.

In sum, several conclusions can be derived from current results.
First, complementing previous findings with pictorial stimuli in
CDTD tasks, our data show that salient but task-irrelevant words
disrupt processes involved in a primary digit categorization task.
Second, positive distractor words are able to engage automatic
attentional resources at early stages of the processing, as reflected
by modulations in an anterior N1 component. Third, activation
of the OFC underlies exogenous attentional mechanisms devoted
to the processing of task-irrelevant emotional words. Finally, the
fact that attentional capture was selectively triggered by positive
words emphasizes the involvement of this brain structure in the
processing of positive emotion.

AUTHOR CONTRIBUTIONS
Conception and design of the work: José A. Hinojosa and Luis
Carretié. Acquisition, analysis, or interpretation of data for the
work: José A. Hinojosa, Francisco Mercado, Jacobo Albert, Paloma
Barjola, Irene Peláez, Cristina Villalba-García and Luis Carretié.
Drafting the work or revising it critically for important intellec-
tual content: José A. Hinojosa, Francisco Mercado, Jacobo Albert,
Paloma Barjola, Irene Peláez, Cristina Villalba-García and Luis
Carretié. Final approval of the version to be published: José A.
Hinojosa, Francisco Mercado, Jacobo Albert, Paloma Barjola,
Irene Peláez, Cristina Villalba-García and Luis Carretié. Agree-
ment to be accountable for all aspects of the work in ensuring that
questions related to the accuracy or integrity of any part of the
work are appropriately investigated and resolved: José A. Hinojosa,
Francisco Mercado, Jacobo Albert, Paloma Barjola, Irene Peláez,
Cristina Villalba-García and Luis Carretié.

ACKOWLEDGMENTS
This work was supported by grants PSI2012-37535 and PSI2011-
26314 from the Ministerio de Economía y Competitividad
(MINECO) of Spain, and grant PI13/01759 from the Institute
of Health Carlos III (ISCIII) of Spain.

REFERENCES
Alameda, J. R., and Cuetos, F. (1995). Diccionario de Frecuencias de Las Unidades

Lingüísticas Del Castellano. Oviedo: Universidad de Oviedo.
Amaral, D. G., Bauman, M. D., Capitanio, J. P., Lavenex, P., Mason, W. A., Mauldin-

Jourdain, M. L., et al. (2003). The amygdala: is i tan essential component of

the neural network for social cognition?. Neuropsychologia 41, 517–522. doi:
10.1016/S0028-3932(02)00310-X

Amir, N., Elias, J., Klumpp, H., and Przeworski, A. (2003). Attentional bias to
threat in social phobia: facilitated processing of threat or difficulty disengaging
attention from threat?. Behav. Res. Ther. 41, 1325–1335. doi: 10.1016/S0005-
7967(03)00039-1

Aquino, J. M., and Arnell, K. M. (2007). Attention and the processing of emo-
tional words: dissociating effects of arousal. Psychon. Bull. Rev. 14, 430–435. doi:
10.3758/BF03194084

Arnell, K. M., Killman, K. V., and Fijavz, D. (2007). Blinded by emotion: target misses
follow attention capture by arousing distractors in RSVP. Emotion 7, 465–477.
doi: 10.1037/1528-3542.7.3.465

Asplund, C. L., Todd, J. J., Snyder, A. P., and Marois, R. (2010). A central role for
the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nat.
Neurosci. 13, 507–512. doi: 10.1038/nn.2509

Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., et al.
(2006). Top-down facilitation of visual recognition. Proc. Nat. Acad. Sci. U.S.A.
103, 449–454. doi: 10.1073/pnas.0507062103

Barceló, F., Suwazono, S., and Knight, R. T. (2000). Prefrontal modulation of visual
processing in humans. Nat. Neurosci. 3, 399–403. doi: 10.1038/73975

Bayer, M., Sommer, W., and Schacht, A. (2012). P1 and beyond: functional sep-
aration of multiple emotion effects in word recognition. Psychophysiology 49,
959–969. doi: 10.1111/j.1469-8986.2012.01381.x

Bishop, S., Duncan, J., Brett, M., and Lawrence, A. D. (2004). Prefrontal function and
anxiety: controlling attention to threat-related stimuli. Nat. Neurosci. 7, 184–188.
doi: 10.1038/nn1173

Brefczynski, J. A., and DeYoe, E. A. (1999). A physiological correlate of the ‘spotlight’
of visual attention. Nat. Neurosci. 2, 370–374. doi: 10.1038/7280

Burgdorf, J., and Panksepp, J. (2006). The neurobiology of positive emotions.
Neurosci. Biobehav. Rev. 30, 173–187. doi: 10.1016/j.neubiorev.2005.06.001

Cacioppo, J. T., Gardner, W. L., and Berntson, G. G. (1997). Beyond bipolar concep-
tualizations and measures: the case of attitudes and evaluative space. Pers. Soc.
Psychol. Rev. 1, 3–25. doi: 10.1207/s15327957pspr0101_2

Calvo, M. G., and Nummenmaa, L. (2011). Time course of discrimination between
emotional facial expressions: the role of visual saliency. Vision Res. 51, 1751–1759.
doi: 10.1016/j.visres.2011.06.001

Carretié, L. (2014). Exogenous (automatic) attention to emotional stimuli: a
review. Cogn. Affect. Behav. Neurosci. 14, 1228–1258. doi: 10.3758/s13415-014-
0270-2

Carretié, L., Hinojosa, J. A., López-Martín, S., Albert, J., Tapia, M., and Pozo,
M. A. (2009). Danger is worse when it moves: neural and behavioral indices of
enhanced attentional capture by dynamic threatening stimuli. Neuropsychologia
47, 364–369. doi: 10.1016/j.neuropsychologia.2008.09.007

Carretié, L., Kessel, D., Carboni, A., López-Martín, S., Albert, J., Tapia, M., et al.
(2013a). Exogenous attention to facial vs. non-facial emotional visual stimuli.
Soc. Cogn. Affect. Neurosci. 8, 764–773. doi: 10.1093/scan/nss068

Carretié, L., Albert, J., López-Martín, S., Hoyos, S., Kessel, D., Tapia, M.,
et al. (2013b). Differential neural mechanisms underlaying exogenous atten-
tion to peripheral and central distracters. Neuropsychologia 51, 1838–1847. doi:
10.1016/j.neuropsychologia.2013.06.021

Carretié, L., Ríos, M., Periáñez, J. A., Kessel, D., and Alvarez-Linera, J.
(2012). The role of low and high spatial frequencies in exogenous attention
to biologically salient stimuli. PLoS ONE 7:e37082. doi: 10.1371/journal.pone.
0037082

Carretié, L., Tapia, M., Mercado, F., Albert, J., López-Martín, S., and de la Serna,
J. M. (2004). Voltage-based versus factor score-based source localization analyses
of electrophysiological brain activity: a comparison. Brain Topogr. 17, 109–115.
doi: 10.1007/s10548-004-1008-1

Cattell, R. B. (1966). The scree test for the number of factors. Multivar. Behav. Res.
1, 245–276. doi: 10.1207/s15327906mbr0102_10

Cavada, C., Compañy, T., Tejedor, J., Cruz-Rizzolo, R. J., and Reinoso-Suárez, F.
(2000). The anatomical connections of the macaque monkey orbitofrontal cortex.
A Review. Cereb. Cortex 10, 220–242. doi: 10.1093/cercor/10.3.220

Chapman, R. M., and McCrary, J. W. (1995). EP component identification and
measurement by principal components analysis. Brain Cogn. 27, 288–310. doi:
10.1006/brcg.1995.1024

Chaumon, M., Kveraga, K., Barrett, L. F., and Bar, M. (2014). Visual predictions in
the orbitofrontal cortex rely on associative content. Cereb. Cortex 24, 2899–2907.
doi: 10.1093/cercor/bht146

Frontiers in Psychology | Language Sciences January 2015 | Volume 6 | Article 24 | 10

http://www.frontiersin.org/Language_Sciences/
http://www.frontiersin.org/Language_Sciences/archive


Hinojosa et al. Positive distractor words capture attention

Chica, A. B., Bartolomeo, P., and Lupiañez, J. (2013). Two cognitive and neural
sytems for endogenous and exogenous spatial attention. Behav. Brain Res. 15,
107–123. doi: 10.1016/j.bbr.2012.09.027

Cisler, J. M., Bacon, A. K., and Williams, N. L. (2009). Phenomenological character-
istics of attentional biases towards threat: a critical review. Cognit. Ther. Res. 33,
221–234. doi: 10.1007/s10608-007-9161-y

Corbetta, M., Patel, G., and Shulman, G. L. (2008). The reorienting system of the
human brain: from environment to theory of mind. Neuron 58, 306–324. doi:
10.1016/j.neuron.2008.04.017

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus-
driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215. doi: 10.1038/nrn755

De Cesarei, A., Codispoti, M., and Schupp, H. T. (2009). Peripheral
vision and preferential emotion processing. Neuroreport 20, 1439–1443. doi:
10.1097/WNR.0b013e3283317d3e

Delaney-Busch, N., and Kuperberg, G. (2013). Friendly drug-dealers and terrifying
puppies: affective primacy can attenuate the N400 effect in emotional discourse
contexts. Cogn. Affect. Behav. Neurosci. 13, 473–490. doi: 10.3758/s13415-013-
0159-5

Delazer, M. (2003). “Neuropsychological findings on conceptual knowledge of
arithmetic,” in The Development of Arithmetic Concepts and Skills: Construct-
ing Adaptive Expertise. Studies in Mathematical Thinking and Learning, eds A. J.
Baroody and A. Dowker (Mahwah: Lawrence Erlbaum Associates Publishers),
385–407.

Dien, J. (2010). Evaluating two-step PCA of ERP data with geomin, infomax,
oblimin, promax, and varimax rotations. Psychophysiology 47, 170–183. doi:
10.1111/j.1469-8986.2009.00885.x

Dien, J. (2012). Applying principal components analysis to event-related potentials:
a tutorial. Dev. Neuropsychol. 37, 497–517. doi: 10.1080/87565641.2012.697503

Dien, J., and Frishkoff, G. (2005). “Principal components analysis of event-related
potential datasets,” in Event-Related Potentials: a Methods Handbook, ed. T. Handy
(Cambridge: MIT Press), 189–208.

Dien, J., Spencer, K. M., and Donchin, E. (2003). Localization of the event-related
potential novelty response as defined by principal components analysis. Brain
Res. Cogn. Brain Res. 17, 637–650. doi: 10.1016/S0926-6410(03)00188-5

Dien, J., Spencer, K. M., and Donchin, E. (2004). Parsing the late positive complex:
mental chronometry and the ERP components that inhabit the neighborhood
of the P300. Psychophysiology 41, 665–678. doi: 10.1111/j.1469-8986.2004.
00193.x

Dierks, T., Jelic, V., Pascual-Marqui, R. D., Wahlund, L., Julin, P., Linden,
D. E., et al. (2000). Spatial pattern of cerebral glucose metabolism (PET)
correlates with localization of intracerebral EEG-generators in alzheimer’s
disease. Clin. Neurophysiol. 111, 1817–1824. doi: 10.1016/S1388-2457(00)
00427-2

Di Russo, F., Martínez, A., and Hillyard, S. A. (2003). Source analysis of event-related
cortical activity during visuo-spatial attention. Cereb. Cortex 13, 486–499. doi:
10.1093/cercor/13.5.486

Di Russo, F., Pitzalis, S., Spitoni, G., Aprile, T., Patria, F., Spinelli, D., et al. (2005).
Identification of the neural sources of the pattern-reversal VEP. Neuroimage 24,
874–886. doi: 10.1016/j.neuroimage.2004.09.029

Doallo, S., Holguín, S. R., and Cadaveira, F. (2006). Attentional load affects auto-
matic emotional processing: evidence from event-related potentials. Neuroreport
17, 1797–1801. doi: 10.1097/01.wnr.0000246325.51191.39

Domínguez-Borrás, J., and Vuilleumier, P. (2013). “Affective biases in attention and
perception,” in The Cambridge Handbook of Human Affective Neuroscience, eds J.
Armony, and P. Vuilleumier (Cambridge: Cambridge University Press), 331–356.
doi: 10.1017/CBO9780511843716.018

Egeth, H. E., and Yantis, S. (1997). Visual attention: control, representation, and time
course. Annu. Rev. Psychol. 48, 269–297. doi: 10.1146/annurev.psych.48.1.269

Elliott, R., Friston, K. J., and Dolan, R. J. (2000). Dissociable neural responses in
human reward system. J. Neurosci. 20, 6159–6165.

Fischler, I., and Bradley, M. (2006). Event-related potential studies of language and
emotion: words, phrases, and task effects. Progr. Brain Res. 156, 185–203. doi:
10.1016/S0079-6123(06)56009-1

Fritsch, N., and Kuchinke, L. (2013). Acquired affective associations induce emo-
tion effects in word recognition: an ERP study. Brain Lang. 124, 75–83. doi:
10.1016/j.bandl.2012.12.001

Frühholz, S., Jellinghaus, A., and Herrmann, M. (2011). Time course of implicit
and explicit processing of emotional faces and emotional words. Biol. Psychol. 87,
264–274. doi: 10.1016/j.biopsycho.2011.03.008

González-Villar, A. J., Triñanes, Y., Zurrón, M., and Carrillo-de-la-Peña, M. T.
(2014). Brain processing of task-relevant and task-irrelevant emotional words:
an ERP study. Cogn. Affect. Behav. Neurosci. 14, 939–950. doi: 10.3758/s13415-
013-0247-6

Gottfried, J. A., O’Doherty, J., and Dolan, R. J. (2003). Encoding predictive reward
value in human amygdala and orbitofrontal cortex. Science 301, 1104–1107. doi:
10.1126/science.1087919

Graham, F. K., and Hackley, S. A. (1991). “Passive and active attention to input,” in
Handbook of Cognitive Psychophysiology, eds J. R. Jennings and M. G. H. Coles
(Chichester: Wiley), 251–356.

Gratton, G., Coles, M. G., and Donchin, E. (1983). A new method for off-line
removal of ocular artefact. Electroencephalogr. Clin. Neurophysiol. 55, 468–484.
doi: 10.1016/0013-4694(83)90135-9

Harris, C. R., and Pashler, H. (2004). Attention and the processing of emo-
tional words and names: not so special after all. Psychol. Sci. 15, 171–178. doi:
10.1111/j.0956-7976.2004.01503005.x

Hartikainen, K. M., Ogawa, K. H., and Knight, R. T. (2012). Orbitofrontal cortex
biases attention to emotional events. J. Clin. Exp. Neuropsychol. 34, 588–597. doi:
10.1080/13803395.2012.666231

Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., and Marslen-Wilson,
W. D. (2006). The time course of visual word recognition as revealed by
linear regression analysis of ERP data. Neuroimage 30, 1383–1400. doi:
10.1016/j.neuroimage.2005.11.048

Herbert, C., Junghofer, M., and Kissler, J. (2008). Event-related potentials
to emotional adjectives during reading. Psychophysiology 45, 487–498. doi:
10.1111/j.1469-8986.2007.00638.x

Hillyard, S. A., and Anllo-Vento, L. (1998). Event-related brain potentials in the
study of visual selective attention. Proc. Natl. Acad. Sci. U.S.A. 95, 781–787. doi:
10.1073/pnas.95.3.781

Hillyard, S. A., Teder-Salejarvi, W. A., and Munte, T. F. (1998). Temporal dynam-
ics of early perceptual processing. Curr. Opin. Neurobiol. 8, 202–210. doi:
10.1016/S0959-4388(98)80141-4

Hinojosa, J. A., Albert, J., López-Martín, S., and Carretié, L. (2014). Temporospa-
tial analysis of explicit and implicit processing of negative content during Word
comprehension. Brain Cogn. 87, 109–121. doi: 10.1016/j.bandc.2014.03.008

Hinojosa, J. A., Carretié, L., Valcárcel, M. A., Méndez-Bértolo, C., and Pozo, M. A.
(2009). Electrophysiological differences in the processing of affective informa-
tion in words and pictures. Cogn. Affect. Behav. Neurosci. 9, 173–189. doi:
10.3758/CABN.9.2.173

Hinojosa, J. A., Méndez-Bértolo, C., Carretié, L., and Pozo, M. A. (2010a). Emotion
modulates language production during covert picture naming. Neuropsychologia
48, 1725–1734. doi: 10.1016/j.neuropsychologia.2010.02.020

Hinojosa, J. A., Méndez-Bértolo, C., and Pozo, M. A. (2010b). Looking at emo-
tional words is not the same as reading emotional words: behavioral and neural
correlates. Psychophysiology 47, 748–757.

Hodsoll, S., Viding, E., and Lavie, N. (2011). Attentional capture by irrelevant
emotional distractor faces. Emotion 11, 346–353. doi: 10.1037/a0022771

Hofmann, M. J., Kuchinke, L., Tamm, S., Vo, M. L. H., and Jacobs, A. M. (2009).
Affective processing within 1/10th of a second: high arousal is necessary for early
facilitative processing of negative but not positive words. Cogn. Affect. Behav.
Neurosci. 9, 389–397. doi: 10.3758/9.4.389

Holmes, A., Kiss, M., and Eimer, M. (2006). Attention modulates the processing of
emotional expression triggered by foveal faces. Neurosci. Lett. 394, 48–52. doi:
10.1016/j.neulet.2005.10.002

Ito, T. A., and Cacioppo, J. T. (2005). Variations on a human universal: individual
differences in positivity offset and negativity bias. Cogn. Emot. 19, 1–26. doi:
10.1080/02699930441000120

Kanske, P., and Kotz, S. A. (2007). Concreteness in emotional words:
ERP evidence from a hemifield study. Brain Res. 1148, 138–148. doi:
10.1016/j.brainres.2007.02.044

Kastner, S., De Weerd, P., Desimone, R., and Ungerleider, L. G. (1998). Mechanisms
of directed attention in the human extrastriate cortex as revealed by functional
MRI. Science 282, 108–111. doi: 10.1126/science.282.5386.108

Kawasaki, H., Kaufman, O., Damasio, H., Damasio, A. R., Granner, M., Bakken,
H., et al. (2001). Single-neuron responses to emotional visual stimuli in human
ventral prefrontal cortex. Nat. Neurosci. 4, 15–16. doi: 10.1038/82850

Keil, A., and Ihssen, N. (2004). Identification facilitation for emotionally arousing
verbs during the attentional blink. Emotion 4, 23–35. doi: 10.1037/1528-
3542.4.1.23

www.frontiersin.org January 2015 | Volume 6 | Article 24 | 11

http://www.frontiersin.org/
http://www.frontiersin.org/Language_Sciences/archive


Hinojosa et al. Positive distractor words capture attention

Keuper, K., Zwitserlood, P., Rehbein, M. A., Eden, A. S., Laeger, I., Junghöfer, M.,
et al. (2013). Early prefrontal brain responses to the hedonic quality of emo-
tional words–A simultaneous EEG and MEG study. PLoS ONE 8:e70788. doi:
10.1371/journal.pone.0070788

Kissler, J., and Herbert, C. (2013). Emotion, Etmnooi, or Emitoon?–Faster lexical
access to emotional than to neutral words during reading. Biol. Psychol. 92,
464–479. doi: 10.1016/j.biopsycho.2012.09.004

Kissler, J., Herbert, C., Peyk, P., and Junghofer, M. (2007). Buzzwords: early cortical
responses to emotional words during reading. Psychol. Sci. 18, 475–480. doi:
10.1111/j.1467-9280.2007.01924.x

Kissler, J., Herbert, C., Winkler, I., and Junghofer, M. (2009). Emotion and atten-
tion in visual word processing: an ERP study. Biol. Psychol. 80, 75–83. doi:
10.1016/j.biopsycho.2008.03.004

Kissler, J., and Koessler, S. (2011). Emotionally positive stimuli facili-
tate lexical decisions—An ERP study. Biol. Psychol. 86, 254–264. doi:
10.1016/j.biopsycho.2010.12.006

Kuchinke, L., and Lux, V. (2012). Caffeine improves left hemisphere processing of
positive words. PLoS ONE 7:e48487. doi: 10.1371/journal.pone.0048487

Lewis, P. A., Critchley, H. D., Rotshtein, P., and Dolan, R. J. (2007). Neural correlates
of processing valence and arousal in affective words. Cereb. Cortex 17, 742–748.
doi: 10.1093/cercor/bhk024

Luck, S. J. (2005). An Introduction to the Event-Related Potential Technique.
Cambridge: The MIT Press.

Luck, S. J., Fan, S., and Hillyard, S. A. (1993). Attention-related modulation of
sensory-evoked brain activity in a visual search task. J. Cogn. Neurosci. 5, 188–195.
doi: 10.1162/jocn.1993.5.2.188

MacLeod, C., Mathews, A., and Tata, P. (1986). Attentional bias in emotional
disorders. J. Abnorm. Psychol. 95, 15–20. doi: 10.1037/0021-843X.95.1.15

MacNamara, A., and Hajcak, H. (2009). Anxiety and spatial attention moderate
the electrocortical response to aversive pictures. Neuropsychologia 47, 2975–2980.
doi: 10.1016/j.neuropsychologia.2009.06.026

MacNamara, A., Kappenman, E. S., Black, S. R., Bress, J. N., and Hajcak, G. (2013).
“Integrating behavioral and electrocortical measures of attentional bias towards
threat,” in Handbook of Selfregulatory Processes in Development, eds K. C. Barret,
N. A. Fox, G. A. Morgan, D. J. Fidler, and L. A. Daunhauer (New York: Psychology
Press), 215–243.

McKenna, F. P., and Sharma, D. (1995). Intrusive cognitions: an investigation of the
emotional Stroop task. J. Exp. Psychol. Learn. Mem. Cogn. 21, 1595–1607. doi:
10.1037/0278-7393.21.6.1595

Méndez-Bértolo, C., Pozo, M. A., and Hinojosa, J. A. (2011). Word frequency
modulates the processing of emotional words: Convergent behavioral and electro-
physiological data. Neurosci. Lett. 494, 250–254. doi: 10.1016/j.neulet.2011.03.026

Michel, C. M., and Murray, M. M. (2012). Towards the utilization of EEG as a brain
imaging tool. Neuroimage 61, 371–385. doi: 10.1016/j.neuroimage.2011.12.039

Mitchell, D. G., Nakic, M., Fridberg, D., Kamel, N., Pine, D. S., and Blair, R. J.
(2007). The impact of processing load on emotion. Neuroimage 34, 1299–1309.
doi: 10.1016/j.neuroimage.2006.10.012

Mogg, K., and Bradley, B. P. (1998). A cognitive-motivational analysis of anxiety.
Behav. Brain Ther. 36, 809–848. doi: 10.1016/S0005-7967(98)00063-1

Mulert, C., Jäger, L., Schmitt, R., Bussfeld, P., Pogarell, O., Möller, H. J., et al.
(2004). Integration of fMRI and simultaneous EEG: towards a comprehensive
understanding of localization and time-course of brain activity in target detection.
Neuroimage 22, 83–94. doi: 10.1016/j.neuroimage.2003.10.051

Natale, E., Marzi, C. A., Girelli, M., Pavone, E. F., and Pollmann, S. (2006). ERP
and fMRI correlates of endogenous and exogenous focusing of visual-spatial
attention. Eur. J. Neurosci. 23, 2511–2521. doi: 10.1111/j.1460-9568.2006.04756.x

Nichols, T. E., and Holmes, A. P. (2002). Nonparametric permutation tests for
functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25.
doi: 10.1002/hbm.1058

Nitschke, J. B., Nelson, E. E., Rusch, B. D., Fox, A. S., Oakes, T. R., and
Davidson, R. J. (2004). Orbitofrontal cortex tracks positive mood in moth-
ers viewing pictures of their newborn infants. Neuroimage 21, 583–592. doi:
10.1016/j.neuroimage.2003.10.005

O’Doherty, J., Rolls, E. T., Francis, S., Bowtell, R., and McGlone, F. (2001). Repre-
sentation of pleasant and aversive taste in the human brain. J. Neurophysiol. 85,
1315–1321.

Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh
inventory. Neuropsychologia 9, 97–113. doi: 10.1016/0028-3932(71)90067-4

Pandya, D. N., and Yeterian, E. H. (1996). Comparison of prefrontal architec-
ture and connections. Philos. Trans. Soc. Lond. B Biol. Sci. 29, 1423–1432. doi:
10.1098/rstb.1996.0127

Pascual-Marqui, R. D. (2007). Discrete, 3D Distributed, Linear Imaging Methods
of Electric Neuronal Activity. Part 1: Exact, Zero Error Localization. Available at:
http://arxiv.org/pdf/0710.3341 (accessed October 17, 2007).

Pascual-Marqui, R. D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu,
B., et al. (2011). Assessing interactions in the brain with exact low-resolution
electromagnetic tomography. Philos. Trans. A Math. Phys. Eng. Sci. 369, 3768–
3784. doi: 10.1098/rsta.2011.0081

Pérez-Edgar, K., and Fox, N. A. (2003). Individual differences in children’s perfor-
mance during an emotional Stroop task: a behavioral and electrophysiological
study. Brain Cogn. 52, 33–51. doi: 10.1016/S0278-2626(03)00007-1

Pessoa, L., and Ungerleider, L. G. (2004). Neuroimaging studies of attention and
the processing of emotion-laden stimuli. Prog. Brain Res. 144, 171–182. doi:
10.1016/S0079-6123(03)14412-3

Posner, M. I., Rueda, M. R., and Kanske, P. (2007). “Probing the mechanism of
attention,” in The handbook of psychophysiology, 3rd Edn, eds J. T. Cacioppo,
J. G. Tassinary, and G. G. Berntson (Cambridge: Cambridge University Press),
410–432. doi: 10.1017/CBO9780511546396.018

Pourtois, G., Delplanque, S., Michel, C., and Vuilleumier, P. (2008). Beyond con-
ventional event-related brain potential (ERP): exploring the time-course of visual
emotion processing using topographic and principal component analyses. Brain
Topogr. 20, 265–277. doi: 10.1007/s10548-008-0053-6

Pourtois, G., Grandjean, D., Sander, D., and Vuilleumier, P. (2004). Electrophysio-
logical correlates of rapid spatial orientating towards fearful faces. Cereb. Cortex
14, 619–633. doi: 10.1093/cercor/bhh023

Pourtois, G., Schettino, A., and Vulleumier, P. (2013). Brain mechanisms for emo-
tional influences on perception and attention: what is magic and what is not. Biol.
Psychol. 92, 492–512. doi: 10.1016/j.biopsycho.2012.02.007

Pourtois, G., Spinelli, L., Seeck, M., and Vuilleumier, P. (2010). Temporal precedence
of emotion over attention modulations in the lateral amygdala: intracranial evi-
dence from a patient with temporal lobe epilepsy. Cogn. Affect. Behav. Neurosci
10, 83–93. doi: 10.3758/CABN.10.1.83

Pratto, F., and John, O. P. (1991). Automatic vigilance: the attention-grabbing
power of negative social information. J. Pers. Soc. Psychol. 61, 380–391. doi:
10.1037/0022-3514.61.3.380

Rampone, G., Makin, A. D., and Bertamini, M. (2014). Electrophysiologi-
cal analysis of the affective congruency between pattern regularity and word
valence. Neuropsychologia 58, 107–117. doi: 10.1016/j.neuropsychologia.2014.
04.005

Rellecke, J., Palazova, M., Sommer, W., and Schacht, A. (2011). On the automaticity
of emotion processing in words and faces: event-related brain potentials evidence
from a superficial task. Brain Cogn. 77, 23–32. doi: 10.1016/j.bandc.2011.07.001

Rolls, E. T. (2000). The orbitofrontal cortex. Cereb. Cortex 10, 284–294. doi:
10.1093/cercor/10.3.284

Salemink, E., van den Hout, M. A., and Kindt, M. (2007). Selective attention
and threat. Quick orienting versus slow disengagement and two versions of
the dot probe task. Behav. Res. Ther. 45, 607–615. doi: 10.1016/j.brat.2006.
04.004

Schacht, A., Adler, N., Chen, P., Guo, T., and Sommer, W. (2012). Association
with positive outcome induces early effects in event-related brain potentials. Biol.
Psychol. 89, 130–136. doi: 10.1016/j.biopsycho.2011.10.001

Schacht, A., and Sommer, W. (2009a). Time course and task dependence of emo-
tion effects in word processing. Cogn. Affect. Behav. Neurosci. 9, 28–43. doi:
10.3758/CABN.9.1.28

Schacht, A., and Sommer, W. (2009b). Emotions in word and face pro-
cessing: early and late cortical responses. Brain Cogn. 69, 538–550. doi:
10.1016/j.bandc.2008.11.005

Schimmack, U., and Derryberry, D. (2005). Attentional interference effects of
emotional pictures: threat, negativity, or arousal? Emotion 5, 55–66. doi:
10.1037/1528-3542.5.1.55

Schlochtermeier, L., Kuchinke, L., Pehrs, C., Urton, K., Kappelhoff, H., and Jacobs,
A. M. (2013). Processing emotional pictures and words: effects of stimulus
complexity. PLoS ONE 8:e55619. doi: 10.1371/journal.pone.0055619.

Scott, G. C., O’Donnell, P. J., Leuthold, H., and Sereno, S. C. (2009). Early emotion
word processing: evidence from event-related potentials. Biol. Psychol. 80, 95–104.
doi: 10.1016/j.biopsycho.2008.03.010

Frontiers in Psychology | Language Sciences January 2015 | Volume 6 | Article 24 | 12

http://arxiv.org/pdf/0710.3341
http://www.frontiersin.org/Language_Sciences/
http://www.frontiersin.org/Language_Sciences/archive


Hinojosa et al. Positive distractor words capture attention

Serences, J. T., and Yantis, S. (2007). Spatially selective representations of voluntary
and stimulus-driven attentional prioriry in human occipital, parietal, and frontal
cortex. Cereb. Cortex 17, 284–293. doi: 10.1093/cercor/bhj146

Skrandies, W. (1998). Evoked potential correlates of semantic meaning-A brain
mapping study. Brain Res. Cogn. Brain Res. 6, 173–183. doi: 10.1016/S0926-
6410(97)00033-5

Sokolov, E. N. (1963). Perception and the Conditions Reflex. New York: Pergamon
Press.

Stolarova, M., Keil, A., and Moratti, S. (2006). Modulation of the C1 visual event-
related component by conditioned stimuli: evidence for sensory plasticity in early
affective perception. Cereb. Cortex 16, 876–887. doi: 10.1093/cercor/bhj031

Stormark, K. M., Nordby, H., and Hugdahl, K. (1995). Attentional shifts to emo-
tionally charged cues: behavioural and ERP data. Cogn. Emot. 9, 507–523. doi:
10.1080/02699939508408978

Thomas, S. J., Johnstone, S. J., and Gonsalvez, C. J. (2007). Event-related poten-
tials during an emotional Stroop task. Int. J. Psychophysiol. 63, 221–231. doi:
10.1016/j.ijpsycho.2006.10.002

Trauer, S. M., Andersen, S. K., Kotz, S. A., and Müller, M. M. (2012). Capture of
lexical but not visual resources by task-irrelevant emotional words: a combined
ERP and steady-state visual evoked potential study. Neuroimage 60, 130–138. doi:
10.1016/j.neuroimage.2011.12.016

Vitacco, D., Brandeis, D., Pascual-Marqui, R., and Martin, E. (2002). Cor-
respondence of event-related potential tomography and functional magnetic
resonance imaging during language processing. Hum. Brain Mapp. 17, 4–12.
doi: 10.1002/hbm.10038

Vogel, E. K., and Luck, S. J. (2000). The visual N1 component as an index of a
discrimination process. Psychophysiology 37, 190–203. doi: 10.1111/1469-8986.37
20190

Vuilleumier, P. (2005). How brain beware: neural mechanisms of emotional
attention. Trends Cogn. Sci. 9, 585–594. doi: 10.1016/j.tics.2005.10.011

Vuilleumier, P., Armony, J. L., Driver, J., and Dolan, R. J. (2001). Effects of attention
and emotion on face processing in the human brain: an event-related fMRI study.
Neuron 30, 829–841. doi: 10.1016/S0896-6273(01)00328-2

Yantis, S. (2000). “Goal directed and stimulus driven determinants of attentional
control,” in Control of Cognitive Processes: Attention and Performance, XVIII Edn,
eds S. Monsell and J. Driver (Cambridge: MIT Press), 73–103.

Zajonc, R. B. (1980). Feeling and thinking: preferences need no inferences. Am.
Psychol. 35, 151–175. doi: 10.1037/0003-066X.35.2.151

Zhang, W., Li, H., Chen, J., Chen, N., Liu, X., Wang, D., et al. (2014). Posterior P1 and
early frontal negativity reflect developmental changes in attentional distraction
during adolescence. Brain Cogn. 87, 30–38. doi: 10.1016/j.bandc.2014.02.011

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 25 September 2014; accepted: 07 January 2015; published online: 26 January
2015.
Citation: Hinojosa JA, Mercado F, Albert J, Barjola P, Peláez I, Villalba-García C and
Carretié L (2015) Neural correlates of an early attentional capture by positive distractor
words. Front. Psychol. 6:24. doi: 10.3389/fpsyg.2015.00024
This article was submitted to Language Sciences, a section of the journal Frontiers in
Psychology.
Copyright © 2015 Hinojosa, Mercado, Albert, Barjola, Peláez, Villalba-García and
Carretié. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) or licensor are credited and that
the original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.

www.frontiersin.org January 2015 | Volume 6 | Article 24 | 13

http://dx.doi.org/10.3389/fpsyg.2015.00024
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Language_Sciences/archive

	Neural correlates of an early attentional capture by positive distractor words
	Introduction
	Materials and methods
	Participants
	Stimuli and procedure
	Eeg recording and pre-processing
	Data analysis
	Behavioral analysis
	Erp analysis
	Source localization analysis


	Results
	Behavioral results
	Erp results
	Source localization results

	Discussion
	Author contributions
	Ackowledgments
	References


