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A commentary on

The new statistics: why and how

by Cumming, G. (2014). The new statistics:
why and how. Psychol. Sci. 25(1), 7-29. doi:
10.1177/0956797613504966

Cumming’s (2014) article was commis-
sioned by Psychological Science to reinforce
the journal’s 2014 publication guidelines.
It exhorts substituting confidence inter-
vals (CIs) for Null Hypothesis Significance
Testing (NHST) as a way of increasing the
scientific value of psychological research.
Cumming’s article is somehow biased,
hence the aims of my commentary: to bal-
ance out the presentation of statistical tests
and to fend Cls against misinterpretations.
Researchers with an interest in the correct
philosophical application of tests and Cls
are my target audience.

TECHNICAL TESTS

NHST is a philosophical mismatch of three
incompatible theories: Fisher’s, Neyman-
Pearson’s, and Bayes’s (Gigerenzer, 2004).
Technologically, however, it reduces to
either of the former two, most often
to Fisher’s (Cortina and Dunlap, 1997).
Few researchers concern themselves with
the philosophical underpinnings of NHST
and rather use it as a mere technology.
Therefore, it is more interesting to discuss
Fisher’s (1954) or Neyman and Pearson’s
theories (1933) than NHST. Cumming
does so in his book (2012) but not in his
article, thus painting an inaccurate picture
of the value of data testing in research.

In a nutshell, Fisher’s relevant
constructs are null hypotheses, levels
of significance and ad hoc p-values.

Neyman-Pearson’s relevant constructs are
main and alternative hypotheses, long-
run errors under repeated sampling (a,
B), critical test values, and power (1-§)—
p-values are not relevant here but can
be used as proxies for deciding between
hypotheses (Perezgonzalez, 2014).

Cumming’s Figure 1 about the dance
of ps (alternatively, http://youtu.be/
ez4DgdurRPg) is not suitable for repre-
senting Fisher’s ad hoc approach (and,
by extension, most NHST projects). It
is, however, adequate for representing
Neyman-Pearson’s repeated sampling
approach, a simple count of significant
tests irrespective of their p-value. As it
turns out, Cumming’s figure is a text-
book example of what to expect given
power (Table 1). For example, 48% of tests
are significant at o = 0.05 out of 50%
expected.

FAIR COMPARISON

Cumming writes “Cls and p values are
based on the same statistical theory” (p.
13), which is partly correct. Cls were devel-
oped by Neyman (1935) and, thus, CIs and
Neyman-Pearson’s tests are grounded on
the same statistical philosophy: repeated

Table 1 | Expected and observed significant
tests given o and 1-f.

o Expected (1-8) N sig tests Observed

0.05 0.50 12 0.48
0.01 0.26 7 0.28
0.10 0.63 1 0.68
0.20 0.76 19 0.76

Based on Cumming’s (2014), data, calculated with
G * Power.

sampling from the same population, errors
in the long run (1—CI = 8), and assump-
tion of true population parameters (which
are unknown in the case of Cls)—p-values,
however, are part of Fisher’s theory.

CIs and Neyman-Pearson’s tests are,
thus, two sides of the same coin. Tests
work on the main hypotheses, with known
population parameters but unknown sam-
ple probabilities, and calculate point esti-
mates to make decisions about those
samples. ClIs work on the alternative
hypotheses, with known sample inter-
val probabilities but unknown population
parameters, and calculate ClIs to describe
those populations.

To be fair, a comparison of both
requires equal ground. At interval level,
CIs compare with power, and Cumming’s
figure reveals that 92% of sample statis-
tics fall within the population CIs (95%
are expected) versus the power results pre-
sented in Table 1. At point estimate level,
means (or a CI bound) compare with p-
values, and Cumming’s figure reveals a
well-choreographed dance between those.
Namely, CIs are not superior to Neyman-
Pearson’s tests when properly compared
although, as Cumming discussed, Cls are
certainly more informative.

FENDING AGAINST FALLACIES
The common philosophy underlying Cls
and tests implies that they share similar
fallacies. Cumming touches on some but
does not pre-emptily resolve them for ClIs.
Cumming writes, “if p reveals truth...”
(p. 12). It is not clear what truth Cumming
refers to, most probably about two known
fallacies: that p is the probability of
the main hypothesis being true and,
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consequently, that 1—p is the probability
of the alternative hypothesis being true
(e.g., Kline, 2004). Similar fallacies equally
extend to the power of the alternative
hypothesis. Yet accepting the alternative
hypothesis does not mean a 1-§ proba-
bility of it being true, but a probability
of capturing 1-f samples pertaining to
its population in the long run. The same
can be said about CIs (insofar CI = 1-):
they tell something about the data—about
their probability of capturing a population
parameter in the long run—not about the
population—i.e., the observed CI may not
actually capture the true parameter.

Another fallacy touched upon is that p
informs about replication. P-values only
inform about the ad hoc probability of data
under the tested hypothesis, thus “(they)
have little to do with replication in the
usual scientific sense” (Kline, 2004, p. 66).
Similarly, CIs do not inform about repli-
cability either. They are a statement of
expected frequency under repeated sam-
pling from the same population. The 83%
next-experiment replicability reported by
Cumming (2014), although interesting, is
not part of the frequentist understanding
of CIs and seems explainable by the size of
the confidence interval.

FENDING AGAINST MINDLESS USE OF
Cls

Finally, there is the ever present risk that
CIs will be used as mindlessly as tests.
For one, Cls share the same philosophical
background than Neyman-Pearson’s tests,
yet many researchers take them to mean an
ad hoc probability of personal confidence
(Hoekstra et al., 2014). On the other hand,
the inferential value of a CI rests on the
assumption that the unknown population

parameter has equal chance of being any-
where within that interval. Using a point
estimate leads to the wrong conclusion:
that such point estimate is more probable
than any other in the interval.

FINAL NOTE

Both CIs and tests are useful tools
(Gigerenzer, 2004). Neymans Cls are
more descriptive, Fisher’s tests find sig-
nificant results and foster meta-analyses,
Neyman-Pearson’s tests help with deci-
sions, NHST means trouble. Yet, to keep
Psychology at the frontier of science we
ought to consider alternative tools in the
statistical toolbox, such as exploratory data
analysis (Tukey, 1977), effect sizes (Cohen,
1988), meta-analysis (Rosenthal, 1984),
cumulative meta-analysis (Braver et al.,
2014), and Bayesian applications (Dyjas
et al., 2012; Barendse et al., 2014), lest we
forget.
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